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Abstract. To tackle increasingly complex tasks, it has become an es-
sential ability of neural networks to learn abstract representations. These
task-specific representations and, particularly, the invariances they cap-
ture turn neural networks into black box models that lack interpretabil-
ity. To open such a black box, it is, therefore, crucial to uncover the
different semantic concepts a model has learned as well as those that it
has learned to be invariant to. We present an approach based on INNs
that (i) recovers the task-specific, learned invariances by disentangling
the remaining factor of variation in the data and that (ii) invertibly trans-
forms these recovered invariances combined with the model representa-
tion into an equally expressive one with accessible semantic concepts. As
a consequence, neural network representations become understandable
by providing the means to (i) expose their semantic meaning, (ii) se-
mantically modify a representation, and (iii) visualize individual learned
semantic concepts and invariances. Our invertible approach significantly
extends the abilities to understand black box models by enabling post-
hoc interpretations of state-of-the-art networks without compromising
their performance.

1 Introduction

Key to the wide success of deep neural networks is end-to-end learning of power-
ful hidden representations that aim to (i) capture all task-relevant characteristics
while (ii) being invariant to all other variability in the data [32, 1]. Deep learning
can yield abstract representations that are perfectly adapted feature encodings
for the task at hand. However, their increasing abstraction capability and per-
formance comes at the expense of a lack in interpretability [3]: Although the
network may solve a problem, it does not convey an understanding of its pre-
dictions or their causes, oftentimes leaving the impression of a black box [40]. In
particular, users are missing an explanation of semantic concepts that the model
has learned to represent and of those it has learned to ignore, i.e. its invariances.

Providing such explanations and an understanding of network predictions
and their causes is thus crucial for transparent AI. Not only is this relevant
to discover limitations and promising directions for future improvements of the
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Fig. 1. Proposed architecture. We provide post-hoc interpretation for a given deep
network f = Ψ ◦ Φ. For a deep representation z = Φ(x) a conditional INN t recov-
ers Φ’s invariances v from a representation z̄ which contains entangled information
about both z and v. The INN e then translates the representation z̄ into a factorized
representation with accessible semantic concepts. This approach allows for various ap-
plications, including visualizations of network representations of natural and altered
inputs, semantic network analysis and semantic image modifications.

AI system itself, but also for compliance with legislation [21, 9], knowledge dis-
tillation from such a system [34], and post-hoc verification of the model [50].
Consequently, research on interpretable deep models has recently gained a lot
of attention, particularly methods that investigate latent representations to un-
derstand what the model has learned [50, 58, 4, 16, 15].

Challenges & aims Assessing these latent representations is challenging
due to two fundamental issues: (i) to achieve robustness and generalization de-
spite noisy inputs and data variability, hidden layers exhibit a distributed coding
of semantically meaningful concepts [17]. Attributing semantics to a single neu-
ron via backpropagation [41] or synthesis [62] is thus impossible without altering
the network [42, 67], which typically degrades performance. (ii) end-to-end learn-
ing trains deep representations towards a goal task, making them invariant to
features irrelevant for this goal. Understanding these characteristics that a repre-
sentation has abstracted away is challenging, since we essentially need to portray
features that have been discarded.

These challenges call for a method that can interpret existing network repre-
sentations by recovering their invariances without modifying them. Given these
recovered invariances, we seek an invertible mapping that translates a represen-
tation and the invariances onto understandable semantic concepts. The mapping
disentangles the distributed encoding of the high-dimensional representation and
its invariances by projecting them onto separate multi-dimensional factors that
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correspond to human understandable semantic concepts. Both this translation
and the recovering of invariances are implemented with invertible neural net-
works (INNs) [47, 12, 27]. For the translation, this guarantees that the resulting
understandable representation is equally expressive as the model representation
combined with the recovered invariances (no information is lost). Its invertibility
also warrants that feature modifications applied in the semantic domain correctly
adjust the recovered representation.

Our contributions to a comprehensive understanding of deep representa-
tions are as follows: (i) We present an approach, which, by utilizing invertible
neural networks, improves the understanding of representations produced by
existing network architectures with no need for re-training or otherwise com-
promising their performance. (ii) Our generative approach is able to recover the
invariances that result from the non-injective projection (of input onto a latent
representation) which deep networks typically learn. This model then provides
a probabilistic visualization of the latent representation and its invariances. (iii)
We bijectively translate an arbitrarily abstract representation and its invariances
via a non-linear transformation into another representation of equal expressive-
ness, but with accessible semantic concepts. (iv) The invertibility also enables
manipulation of the original latent representations in a semantically understand-
able manner, thus facilitating further diagnostics of a network.

2 Background

Two main approaches to interpretable AI can be identified, those which aim to
incorporate interpretability directly into the design of models, and those which
aim to provide interpretability to existing models [42]. Approaches from the first
category range from modifications of network architectures [67], over regulariza-
tion of models encouraging interpretability [38, 46], towards combinations of both
[64]. However, these approaches always involve a trade-off between model per-
formance and model interpretability. Being of the latter category, our approach
allows to interpret representations of existing models without compromising their
performance.

To better understand what an existing model has learned, its representations
must be studied [50]. [58] shows that both random directions and coordinate axes
in the feature space of networks can represent semantic properties and concludes
that they are not necessarily represented by individual neurons. Different works
attempt to select groups of neurons which have a certain semantic meaning,
such as based on scenes [66], objects [55] and object parts [56]. [4] studied the
interpretability of neurons, and found that a rotation of the representation space
spanned by the neurons decreases its interpretability. While this suggests that
the neurons provide a more interpretable basis compared to a random basis,
[16] shows that the choice of basis is not the only challenge for interpretability
of representations. Their findings demonstrate that learned representations are
distributed, i.e. a single semantic concept is encoded by an activation pattern
involving multiple neurons, and a single neuron is involved in the encoding of
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multiple different semantic concepts. Instead of selecting a set of neurons di-
rectly, [15] learns an INN that transforms the original representation space to an
interpretable space, where a single semantic concept is represented by a known
group of neurons and a single neuron is involved in the encoding of just a single
semantic concept. However, to interpret not only the representation itself but
also its invariances, it is insufficient to transform only the representation itself.
Our approach therefore transforms the latent representation space of an autoen-
coder, which has the capacity to represent its inputs faithfully, and subsequently
translates a model representation and its invariances into this space for semantic
interpretation and visualization.

A large body of works approach interpretability of existing networks based
on visualizations. [53] uses gradients of network outputs with respect to a con-
volutional layer to obtain coarse localization maps. [3] proposes an approach to
obtain pixel-wise relevance scores for a specific class of models which is gener-
alized in [41]. To obtain richer visual interpretations, [63, 57, 62, 39] reconstruct
images which maximally activate certain neurons. [45] uses a generator network
for this task, which was introduced in [13] for reconstructing images from their
feature representation. Our key insight is that these existing approaches do not
explicitly account for the invariances learned by a model. Invariances imply that
feature inversion is a one-to-many mapping and thus they must be recovered to
solve the task. Recently, [54] introduced a GAN-based approach that utilizes fea-
tures of a pre-trained classifier as a semantic pyramid for image generation. [44]
used samples from an autoregressive model of images conditioned on a feature
representation to gain insights into the representation’s invariances. In contrast,
our approach recovers an explicit representation of the invariances, which can
be recombined with modified feature representations, and thus makes the effect
of modifications to representations, e.g . through adversarial attacks, visible.

Other works consider visual interpretations for specialized models. [51] showed
that the quality of images which maximally activate certain neurons is signifi-
cantly improved when activating neurons of an adversarially robust classifer. [5]
explores the relationship between neurons and the images produced by a Gen-
erative Adversarial Network. For the same class of models, [19] finds directions
in their input space which represent semantic concepts corresponding to certain
cognitive properties. Such semantic directions have previously also been found in
classifier networks [59] but requires aligned data. All of these approaches require
either special training of models, are limited to a very special class of models
which already provide visualizations or depend on special assumptions on model
and data. In contrast, our approach can be applied to arbitrary models without
re-training or modifying them, and provides both visualizations and semantic
explanations, for both the model’s representation and its learned invariances.

3 Approach

Common tasks of computer vision can be phrased as a mapping from an input
image x to some output f(x) such as a classification of the image, a regression
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(e.g. of object locations), a (semantic) segmentation map, or a re-synthesis that
yields another image. Deep learning utilizes a hierarchy of intermediate network
layers that gradually transform the input into increasingly more abstract rep-
resentations. Let z = Φ(x) ∈ RNz be the representation extracted by one such
layer (without loss of generality we consider z to be a Nz-dim vector, flattening
it if necessary) and f(x) = Ψ(z) = Ψ(Φ(x)) the mapping onto the output.

An essential characteristic of a deep feature encoding z is the increasing
abstractness of higher feature encoding layers and the resulting reduction of in-
formation. To explain a latent representation, we need to recover its invariances
v and make z and v interpretable by learning a bijective mapping onto under-
standable semantic concepts, see Fig. 1. Sec. 3.1 describes our INN t to recover
an encoding v of the invariances. Due to the generative nature of t, our approach
can correctly sample visualizations of the model representation and its invari-
ances without leaving the underlying data distribution and introducing artifacts.
With v then available, Sec. 3.2 presents an INN e that translates t’s encoding of
z and v without losing information onto disentangled semantic concepts. More-
over, the invertibility allows modifications in the semantic domain to correctly
project back onto the original representation or into image space.

3.1 Recovering the Invariances of Deep Models

Learning an Encoding to Help Recover Invariances Key to a deep rep-
resentation is not only the information z captures, but also what is has learned
to abstract away. To learn what z misses with respect to x, we need an encod-
ing z̄, which, in contrast to z, includes these invariances. Without making prior
assumptions about the deep model f , autoencoders provide a generic way to
obtain such an encoding z̄, since they ensure that their input x can be recovered
from their learned representation z̄, which hence also comprises the invariances.

Therefore, we learn an autoencoder with an encoder E that provides the
data representation z̄ = E(x) and a decoder D producing the data reconstruc-
tion x̄ = D(z̄). Sec. 3.2 will utilize the decoding from z̄ to x̄ to visualize both
z and v. The autoencoder is trained to reconstruct its inputs by minimizing a
perceptual metric between input and reconstruction, ‖x − x̄‖, as in [13]. The
details of the architecture and training procedure can be found in Sec. A.1. It is
crucial that the autoencoder only needs to be trained once on the training data.
Consequently, the same E can be used to interpret different representations z,
e.g . different models or layers within a model, thus ensuring fair comparisons be-
tween them. Moreover, the complexity of the autoencoder can be adjusted based
on the computational needs, allowing us to work with much lower dimensional
encodings z̄ compared to reconstructing the invariances directly from the images
x. This reduces the computational demands of our approach significantly.

Learning a Conditional INN that Recovers Invariances Due to the re-
construction task of the autoencoder, z̄ not only contains the invariances v, but
also the representation z. Thus, we must disentangle [14, 33, 28] v and z using a
mapping t(·|z) : z̄ 7→ v = t(z̄|z) which, depending on z, extracts v from z̄.
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Besides extracting the invariances from a given z̄, t must also enable an
inverse mapping from given model representations z to z̄ to support a further
mapping onto semantic concepts (Sec. 3.2) and visualization based on D(z̄).
There are many different x with Φ(x) = z, namely all those x which differ only
in properties that Φ is invariant to. Thus, there are also many different z̄ that
this mapping must recover. Consequently, the mapping from z to z̄ is set-valued.
However, to understand f we do not want to recover all possible z̄, but only those
which are likely under the training distribution of the autoencoder. In particular,
this excludes unnatural images such as those obtained by DeepDream [43], or
adversarial attacks [58]. In conclusion, we need to sample z̄ ∼ p(z̄|z).

To avoid a costly inversion process of Φ, t must be invertible (implemented
as an INN) so that a change of variables

p(z̄|z) =
p(v|z)

|det∇(t−1)(v|z)|
where v = t(z̄|z) (1)

yields p(z̄|z) by means of the distribution p(v|z) of invariances, given a model
representation z. Here, the denominator denotes the absolute value of the deter-
minant of Jacobian ∇(t−1) of v 7→ t−1(v|z) = z̄, which is efficient to compute for
common invertible network architectures. Consequently, we obtain z̄ for given z
by sampling from the invariant space v given z and then applying t−1,

z̄ ∼ p(z̄|z) ⇐⇒ v ∼ p(v|z), z̄ = t−1(v|z). (2)

Since v is the invariant space for z, both are complementary thus implying inde-
pendence p(v|z) = p(v). Because a powerful transformation t−1 can transform
between two arbitrary densities, we can assume without loss of generality a
Gaussian prior p(v) = N (v|0,1). Given this prior, our task is then to learn the
transformation t that maps N (v|0,1) onto p(z̄|z). To this end, we maximize the
log-likelihood of z̄ given z, which results in a per-example loss of

`(z̄, z) = − log p(z̄|z) = − logN (t(z̄|z))− log|det∇t(z̄|z)|. (3)

Minimizing this loss over the training data distribution p(x) gives t, a bijective
mapping between z̄ and (z, v),

L(t) = Ex∼p(x) [`(E(x),Φ(x))] (4)

= Ex∼p(x)

[
1

2
‖t(E(x)|Φ(x))‖2+Nz̄ log 2π − log|det∇t(E(x)|Φ(x))|

]
(5)

Note that both E and Φ remain fixed during minimization of L.

3.2 Interpreting Representations and Their Invariances

Visualizing Representations and Invariances For an image representation
z = Φ(x), Eq. (2) presents an efficient approach (a single forward pass through
the INN t) to sample an encoding z̄, which is a combination of z with a par-
ticular realization of its invariances v. Sampling multiple realizations of z̄ for
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a given z highlights what remains constant and what changes due to different
v: information preserved in the representation z remains constant over different
samples and information discarded by the model ends up in the invariances v
and shows changes over different samples. Visualizing the samples z̄ ∼ p(z̄|z)
with x̄ = D(z̄) portrays this constancy and changes due to different v. To com-
plement this visualization, in the following, we learn a transformation of z̄ into
a semantically meaningful representation which allows to uncover the semantics
captured by z and v.

Learning an INN to Produce Semantic Interpretations The autoen-
coder representation z̄ is an equivalent representation of (z, v) but its feature
dimensions do not necessarily correspond to semantic concepts [17]. More gener-
ally, without supervision, we cannot reliably discover semantically meaningful,
explanatory factors of z̄ [37]. In order to explain z̄ in terms of given semantic
concepts, we apply the approach of [15] and learn a bijective transformation of
z̄ to an interpretable representation e(z̄) where different groups of components,
called factors, correspond to semantic concepts.

To learn the transformation e, we parameterize e by an INN and assume that
semantic concepts are defined implicitly by pairs of images, i.e. for each semantic
concept we have access to training pairs xa, xb that have the respective concept
in common. For example, the semantic concept ‘smiling’ is defined by pairs of
images, where either both images show smiling persons or both images show
non-smiling persons. Applying this formulation, input pairs which are similar
in a certain semantic concept are similar in the corresponding factor of the
interpretable representation e(z̄).

Following [15], the loss for training the invertible network e is then given by

L(e) = Exa,xb

[
− log p(e(E(xa)), e(E(xb)))

− log|det∇e(E(xa))|− log|det∇e(E(xb))|
]
. (6)

Further details regarding the application of this approach within our setting can
be found in the supplementary, Sec. A.2.

Interpretation by Applying the Learned INNs After training, the combi-
nation of e with t from Sec. 3.1 provides semantic interpretations given a model
representation z: Eq. (2) gives realizations of the invariances v which are com-
bined with z to produce z̄ = t−1(v|z). Then e transforms z̄ without loss of infor-
mation into a semantically accessible representation (ei)i = e(z̄) = e(t−1(v|z))
consisting of different semantic factors ei. Comparing the ei for different model
representations z and invariances v allows us to observe which semantic concepts
the model representation z = Φ(·) is sensitive to, and which it is invariant to.

Semantic Modifications of Latent Representations t−1 and e not only
interpret a representation z in terms of accessible semantic concepts (ei)i. Given
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Table 1. FID scores for layer visualizations of AlexNet, obtained with our method and
[13] (D&B). Scores are calculated on the Animals dataset.

layer conv5 fc6 fc7 fc8 output

ours 23.6± 0.5 24.3± 0.7 24.9± 0.4 26.4± 0.4 27.4± 0.3
D&B 25.2 24.9 27.2 36.1 352.6

v ∼ p(v), they also allow to modify z̄ = t−1(v|z) in a semantically meaning-
ful manner by altering its corresponding (ei)i and then applying the inverse
translation e−1,

z̄
e−→ (ei)

modification−−−−−−−−−→ (e∗i )
e−1

−−→ z̄∗ (7)

The modified representation z̄∗ is then readily transformed back into image space
x̄∗ = D(z̄∗). Besides visual interpretation of the modification, x̄∗ can be fed into
the model Ψ(Φ(x̄∗)) to probe for sensitivity to certain semantic concepts.

4 Experiments

To explore the applicability of our approach, we conduct experiments on several
models which we aim to understand: SqueezeNet [24], which provides lightweight
classification, FaceNet [52], a baseline for face recognition and clustering, trained
on the VGGFace2 dataset [7], and variants ResNet [22], a popular architecture,
often used when finetuning a classifier on a specific task and dataset.

Experiments are conducted on the following datasets: CelebA [36], Animal-
Faces [35], Animals (containing carnivorous animals, see Sec. B.3), ImageNet
[11] and ColorMNIST, which is an augmented version of the MNIST dataset
[31], where both background and foreground have random, independent colors.

4.1 Comparison to Existing Methods

A key insight of our work is that reconstructions from a given model’s rep-
resentation z = Φ(x) are impossible if the invariances the model has learned
are not considered. In Fig. 2 we compare to existing methods that either try
to reconstruct the image via gradient-based optimization [39] or by training a
reconstruction network directly on the representations z [13]. By condition-
ally sampling images x̄ = D(z̄), where we obtain z̄ via the INN t as described in
Eq. (2) based on the invariances v ∼ p(v) = N (0,1), we bypass this shortcoming
and obtain natural images without artifacts for any layer depth. The increased
image quality is further confirmed by the FID scores reported in Tab. 1.

4.2 Understanding Models

Interpreting a Face Recognition Model FaceNet [52] is a widely accepted
baseline in the field of face recognition. This model embeds input images of hu-
man faces into a latent space where similar images have a small L2-distance. We
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reconstructions x̄ from representations z = Φ(x) of different layers

method input conv5 fc6 fc7 fc8

ours

D&B [13]

M&V [39]

Fig. 2. Comparison to existing network inversion methods for AlexNet [29]. In contrast
to the methods of [13] (D&B) and [39] (M&V), our invertible method explicitly samples
the invariances of Φ w.r.t. the data, which circumvents a common cause for artifacts and
produces natural images independent of the depth of the layer which is reconstructed.

aim to understand the process of face recognition within this model by analyzing
and visualizing learned invariances for several layers explicitly; see Tab. S12 for
a detailed breakdown of the various layers of FaceNet. For the experiment, we
use a pretrained FaceNet and train the generative model presented in Eq. (2)
by conditioning on various layers. Fig. 3 depicts the amount of variance present
in each selected layer when generating n = 250 samples for each of 100 different
input images. This variance serves as a proxy for the amount of abstraction capa-
bility FaceNet has learned in its respective layers: More abstract representations
allow for a rich variety of corresponding synthesized images, which results in a
large variance in image space when being decoded. We observe an approximate
exponential growth of learned invariances with increasing layer depth, suggest-
ing that abstraction mainly happens in the deepest layers of the network. Fur-
thermore, we are able to synthesize images that correspond to the given model
representation for each selected layer.

How Does Relevance of Different Concepts Emerge During Training?
Humans tend to provide explanations of entities by describing them in terms of
their semantics, e.g. size or color. In a similar fashion, we want to semantically
understand how a network (here: SqueezeNet) learns to solve a given problem.
Intuitively, a network should for example be able to solve a given classification
problem by focusing on the relevant information while discarding task-irrelevant
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Fig. 3. left : Visualizing FaceNet representations and their invariances. Sampling multi-
ple reconstructions x̄ = D(t−1(v|z)) shows the degree of invariance learned by different
layers. The invariance w.r.t. pose increases for deeper layers as expected for face iden-
tification. Surprisingly, FaceNet uses glasses as an identity feature throughout all its
layers as evident from the spatial mean and variance plots, where the glasses are still
visible. This reveals a bias and weakness of the model. right : Spatially averaged vari-
ances over multiple x for different layers.

information. To build on this intuition, we construct a toy problem: Digit classi-
fication on ColorMNIST. We expect the model to ignore both the random back-
and foreground color of the input data, as it does not help making a classifi-
cation decision. Thus, we apply the invertible approach presented in Sec. 3.2
and recover three distinct factors: digit class, background color and foreground
color. To capture the semantic changes occuring over the course of training of
this classifier, we couple 20 instances of the invertible interpretation model on
the last convolutional layer, each representing a checkpoint between iteration 0
and iteration 40000 (equally distributed). The result is shown in Fig. 4: We see
that the digit factor becomes increasingly more relevant, with its relevance being
strongly correlated to the accuracy of the model.

4.3 Effects of Data Shifts on Models

This section investigates the effects that altering the input data has on the model
we want to understand. We examine these effects by manipulating the input data
explicitly through adversarial attacks or image stylization.

How Do Adversarial Attacks Affect Network Representations? Here,
we experiment with Fast Gradient Sign (FGSM) attacks [20], which manipulate
the input image by maximizing the objective of a given classification model. To
understand how such an attack modifies representations of a given model, we first
compute the image’s invariances with respect to the model as v = t(E(x)|Φ(x)).
For an attacked image x∗, we then compute the attacked representation as z∗ =
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Fig. 4. Analyzing the degree to which different semantic concepts are captured by a
network representation changes as training progresses. For SqueezeNet on ColorMNIST
we measure how much the data varies in different semantic concepts ei and how much of
this variability is captured by z at different training iterations. Early on z is sensitive to
foreground and background color, and later on it learns to focus on the digit attribute.
The ability to encode this semantic concept is proportional to the classification accuracy
achieved by z. At training iterations 4k and 36k we apply our method to visualize model
representations and thereby illustrate how their content changes during training.

Φ(x∗). Decoding this representation with the original invariance v, allows us to
precisely visualize what the adversarial attack changed. This decoding, x̄∗ =
D(t(v|z∗)), is shown in Fig. 5. We observe that, over layers of the network, the
adversarial attack gradually changes the representation towards its target. Its
ability to do so is strongly correlated with the amount of invariances, quantified
as the total variance explained by v (see Sec. B.2), for a given layer as also
observed in [25]. For additional examples, see Fig. S13.

How Does Training on Different Data Affect the Model? [18] proposed
the hypothesis that classification networks based on convolutional blocks mainly
focus on texture patterns to obtain class probabilities. We further validate this
hypothesis by training our invertible network t conditioned on pre-logits z =
Φ(x) (i.e. the penultimate layer) of two ResNet-50 realizations. As shown in
Fig. 6, a ResNet architecture trained on standard ImageNet is susceptible to
the so-called ”texture-bias”, as samples generated conditioned on representation
of pure texture images consistently show valid images of corresponding input
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visualizing perturbed representation at

perturbation x input conv fc logits prediction

none siamese
cat

random
siamese

cat

attack
mountain

lion

variance of z̄ explained by v
11.82% 7.22% 49.59% 84.77%
(±0.52) (±0.16) (±2.00) (±5.77)

Fig. 5. Visualizing FGSM adversarial attacks on ResNet-101. To the human eye, the
original image and its attacked version are almost indistinguishable. However, the input
image is correctly classified as ”siamese cat”, while the attacked version is classified
as ”mountain lion”. Our approach visualizes how the attack spreads throughout the
network. Reconstructions of representations of attacked images demonstrate that the
attack targets the semantic content of deep layers. The variance of z̄ explained by v
combined with these visualizations show how increasing invariances cause vulnerability
to adversarial attacks.

classes. We furthermore visualize that this behavior can indeed be removed by
training the same architecture on a stylized version of ImageNet 1; the classifier
does focus on shape. Rows 10-12 of Fig. 6 show that the proposed approach can
be used to generate sketch-based content with the texture-agnostic network.

4.4 Modifying Representations

Invertible access to semantic concepts enables targeted modifications of repre-
sentations z̄. In combination with a decoder for z̄, we obtain semantic image
editing capabilities. We provide an example in Fig. 7, where we modify the fac-
tors hair color, glasses, gender, beard, age and smile. We infer z̄ = E(x) from
an input image. Our semantic INN e then translates this representation into se-
mantic factors (ei)i = e(z̄), where individual semantic concepts can be modified
independently via the corresponding factor ei. In particular, we can replace each
factor with that from another image, effectively transferring semantics from one
representation onto another. Due to the invertibility of e, the modified represen-
tation can be translated back into the space of the autoencoder and is readily
decoded to a modified image x∗. Additional examples can be found in Sec. B.5.

1 we used weights available at https://github.com/rgeirhos/texture-vs-shape
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samples x̄ = D(t−1(v|z)) conditioned on ResNet pre-logits z = Φ(x)

inputs
Φvanilla: ResNet-50 trained on Φstylized: ResNet-50 trained on

standard ImageNet stylized ImageNet

Fig. 6. Revealing texture bias in ImageNet classifiers. We compare visualiza-
tions of z from the penultimate layer of ResNet-50 trained on standard Im-
ageNet (left) and a stylized version of ImageNet (right). On natural images
(rows 1-3) both models recognize the input, removing textures through styl-
ization (rows 4-6) makes images unrecognizable to the standard model, how-
ever it recognizes objects from textured patches (rows 7-9). Rows 10-12 show
that a model without texture bias can be used for sketch-to-image synthesis.
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input hair glasses gender beard age smiling
x e1 e2 e3 e4 e5 e6

mean embedding 0.872 1.000 1.061 0.803 0.874 0.833
distance (± std) (±0.048) (±0.046) (±0.030) (±0.041) (±0.053) (±0.034)

Fig. 7. Semantic Modifications on CelebA. For each column, after inferring the se-
mantic factors (ei)i = e(E(x)) of the input x, we replace one factor ei by that from
another randomly chosen image that differs in this concept. The inverse of e trans-
lates this semantic change back into a modified z̄, which is decoded to a semantically
modified image. Distances between FaceNet embeddings before and after modification
demonstrate its sensitivity to differences in gender and glasses (see also Fig. 3).

To observe which semantic concepts FaceNet is sensitive to, we compute the
average distance ‖f(x) − f(x∗)‖ between its embeddings of x and semantically
modified x∗ over the test set (last row in Fig. 7). Evidently, FaceNet is particu-
larly sensitive to differences in gender and glasses. The latter suggests a failure
of FaceNet to identify persons correctly after they put on glasses.

5 Conclusion

Understanding a representation in terms of both its semantics and learned invari-
ances is crucial for interpretation of deep networks. We presented an approach to
(i) recover the invariances a model has learned and (ii) translate the represen-
tation and its invariances onto an equally expressive yet semantically accessible
encoding. Our diagnostic method is applicable in a plug-and-play fashion on top
of existing deep models with no need to alter or retrain them. Since our transla-
tion onto semantic factors is bijective, it loses no information and also allows for
semantic modifications. Moreover, recovering invariances probabilistically guar-
antees that we can correctly visualize representations and sample them without
leaving the underlying distribution, which is a common cause for artifacts. Alto-
gether, our approach constitutes a powerful, widely applicable diagnostic pipeline
for explaining deep representations.
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37. Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B., Bachem,
O.: Challenging common assumptions in the unsupervised learning of disentangled
representations (2018)

38. Lorenz, D., Bereska, L., Milbich, T., Ommer, B.: Unsupervised part-based disen-
tangling of object shape and appearance. 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) pp. 10947–10956 (2019)

39. Mahendran, A., Vedaldi, A.: Visualizing deep convolutional neural networks using
natural pre-images. International Journal of Computer Vision 120(3), 233–255
(2016)

40. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence 267, 1–38 (2019)

41. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern Recog-
nition 65, 211–222 (2017)

42. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understand-
ing deep neural networks. Digital Signal Processing 73, 1–15 (2018)

43. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: Going deeper into neural net-
works (2015)

44. Nash, C., Kushman, N., Williams, C.K.: Inverting supervised representations with
autoregressive neural density models. In: The 22nd International Conference on
Artificial Intelligence and Statistics. pp. 1620–1629 (2019)

45. Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the
preferred inputs for neurons in neural networks via deep generator networks (2016)

46. Plumb, G., Al-Shedivat, M., Xing, E., Talwalkar, A.: Regularizing black-box models
for improved interpretability (2019)

47. Redlich, A.N.: Supervised factorial learning. Neural Computation 5(5), 750–766
(1993). https://doi.org/10.1162/neco.1993.5.5.750

48. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and ap-
proximate inference in deep generative models. In: Proceedings of the 31st Inter-
national Conference on International Conference on Machine Learning-Volume 32.
pp. II–1278. JMLR. org (2014)

49. Rombach, R., Esser, P., Ommer, B.: Network fusion for content creation with
conditional inns (2020)

50. Samek, W., Wiegand, T., Müller, K.R.: Explainable artificial intelligence: Un-
derstanding, visualizing and interpreting deep learning models. arXiv preprint
arXiv:1708.08296 (2017)

51. Santurkar, S., Tsipras, D., Tran, B., Ilyas, A., Engstrom, L., Madry, A.: Image
synthesis with a single (robust) classifier (2019)

52. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 815–823 (2015)

53. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Ba-
tra, D.: Grad-cam: Visual explanations from deep networks via gradient-
based localization. International Journal of Computer Vision 128(2), 336–359
(Oct 2019). https://doi.org/10.1007/s11263-019-01228-7, http://dx.doi.org/10.
1007/s11263-019-01228-7

54. Shocher, A., Gandelsman, Y., Mosseri, I., Yarom, M., Irani, M., Freeman,
W.T., Dekel, T.: Semantic pyramid for image generation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2020)



18 R. Rombach et al.

55. Simon, M., Rodner, E.: Neural activation constellations: Unsupervised part
model discovery with convolutional networks. 2015 IEEE International Conference
on Computer Vision (ICCV) (Dec 2015). https://doi.org/10.1109/iccv.2015.136,
http://dx.doi.org/10.1109/ICCV.2015.136

56. Simon, M., Rodner, E., Denzler, J.: Part detector discovery in deep convolutional
neural networks. ArXiv abs/1411.3159 (2014)

57. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034 (2013)

58. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks (2013)

59. Upchurch, P., Gardner, J., Pleiss, G., Pless, R., Snavely, N., Bala, K., Weinberger,
K.: Deep feature interpolation for image content changes. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7064–7073 (2017)

60. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning—a comprehen-
sive evaluation of the good, the bad and the ugly. IEEE transactions on pattern
analysis and machine intelligence 41(9), 2251–2265 (2018)

61. Xiao, Z., Yan, Q., Amit, Y.: Generative latent flow (2019)
62. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural

networks through deep visualization (2015)
63. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.

Lecture Notes in Computer Science p. 818–833 (2014)
64. Zhang, Q., Nian Wu, Y., Zhu, S.C.: Interpretable convolutional neural networks. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 8827–8836 (2018)

65. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018)

66. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors
emerge in deep scene cnns (2014)

67. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (Jun 2016). https://doi.org/10.1109/cvpr.2016.319,
http://dx.doi.org/10.1109/CVPR.2016.319


