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Abstract. Retrieval networks are essential for searching and indexing.
Compared to classification networks, attention visualization for retrieval
networks is hardly studied. We formulate attention visualization as a con-
strained optimization problem. We leverage the unit L2-Norm constraint
as an attention filter (L2-CAF) to localize attention in both classifica-
tion and retrieval networks. Unlike recent literature, our approach re-
quires neither architectural changes nor fine-tuning. Thus, a pre-trained
network’s performance is never undermined

L2-CAF is quantitatively evaluated using weakly supervised object local-
ization. State-of-the-art results are achieved on classification networks.
For retrieval networks, significant improvement margins are achieved over
a Grad-CAM baseline. Qualitative evaluation demonstrates how the L2-
CAF visualizes attention per frame for a recurrent retrieval network. Fur-
ther ablation studies highlight the computational cost of our approach
and compare L2-CAF with other feasible alternatives. Code available at
https://bit.ly/3iDBLFv

1 Introduction

Both classification and retrieval neural networks need attention visualization
tools. These tools are important in medical and autonomous navigation to un-
derstand and interpret networks’ decisions. Moreover, attention visualization
enables weakly supervised object localization (WSOL) which reduces the cost
of data annotation. WSOL avoids bounding-box labeling required by fully su-
pervised approaches. Attention visualization and WSOL have been intensively
studied for classification architectures [44, 48,34, 32,45, 7]. However, these ap-
proaches do not address retrieval networks. In this paper, we leverage the unit
L2-Norm constraint as an attention filter (L2-CAF) that works for both classi-
fication and retrieval neural networks, as shown in Figure 1.

For classification networks, Zhou et al. [48] propose class activation maps
(CAM) for attention visualization and WSOL. Further research [34,45,46,7]
improved WSOL by augmenting the most discriminative region with other less
discriminative parts, e.g., augment a cat’s head with its legs. This improve-
ment comes at the cost of few drawbacks: (1) They impose architectural con-
straints, e.g., global average pooling (GAP) layer; (2) While fine-tuning boosts
localization efficiency, it degrades classification accuracy. Grad-CAM [32] avoids
these limitations, but it is originally formulated for classification networks.
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Fig. 1. L2-CAF enables both class-oblivious and class-specific visualizations. This sep-
arates our work from dominant literature that targets classification networks only. The
supplementary video shows more vivid and challenging visualizations.
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Fig. 2. An overview of the proposed unit L2-Norm constrained attention filter (L2-
CAF). Given a pre-trained CNN with an auxiliary head (Aux NN), feed an input
frame through a normal feed-forward pass (green solid path) to generate the network
output logits/embedding NT(x). Then, feed the same input again but multiply the last
convolutional feature map by a constrained attention filter f (orange dashed path) to
generate a new filtered output F'T'(z, f). Optimize the filter’s weights through gradient
descent to minimize the difference between NT'(xz) and FT'(z, f). In standard CNN
architectures, the L2-CAF is typically 7 x 7, i.e., a cheap optimization problem € R*.

Retrieval networks are essential for visual search [25,19], zero-shot learn-
ing [3,43,47], and fine-grained retrieval [36,26]. The large metric learning [26,
40, 6] and product quantization [4, 23, 9] literature reflect their importance. De-
spite that, attention visualization for retrieval networks has not been evaluated
quantitatively. It is more challenging compared to classification due to the net-
work’s output — a class-oblivious embedding.

The main contribution of this paper is to leverage the L2-CAF as a visualiza-
tion filter to identify key features of both classification and retrieval networks’
output. Figure 2 illustrates the approach. Given a pre-trained CNN, feeding the
same input z through the network (green solid path) will always generate the
same output NT'(z). If the final convolutional feature map is multiplied by a
constrained attention filter f in an element-wise manner (orange dashed path),
the network generates a filtered output F'T'(z, f). Through gradient descent, we
optimize f to minimize the L2 loss L = ||[NT(x) — FT(x, f)||?. The optimized
filter f reveals key spatial regions, e.g., the cat’s head. The filter size (fy, fz)
depends on the convolution layer size, e.g., the last convolution layer in standard
CNNs € R™*7.

This approach imposes no constraints on the network architecture besides
having a convolution layer. The input can be a regular image or a pre-extracted
convolutional feature. The network output can be logits trained with softmax
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or a feature embedding trained with a ranking loss. Furthermore, this approach
neither changes the original network weights nor requires fine-tuning. Thus, net-
work performance remains intact. The visualization filter is applied only when
an attention map is required. Thus, it poses no computational overhead dur-
ing inference. L2-CAF visualizes the attention of the last convolutional layer of
GoogLeNet within 0.3 seconds.

Section 3 describes two variants of the L2-CAF and their mathematical op-
timization details. The first is the class-oblivious variant illustrated in Figure 2.
The second is the class-specific variant for classification networks to localize ob-
jects of a specific class. We also present a technique to reduce the computational
cost of the L2-CAF’s optimization formulation. We benchmark our approach
quantitatively using WSOL for both classification and retrieval architectures.

In summary, the key contributions of this paper are:

1. A novel attention visualization approach for both classification and retrieval
networks (Sec. 3). This approach achieves state-of-the-art WSOL results
using classification architectures (Sec. 4.1).

2. A modified Grad-CAM to better support WSOL on retrieval networks (Sec.
4.2); L2-CAF achieves significant localization improvement margins, up to
an absolute 36%, compared to the vanilla Grad-CAM.

3. A method to visualize attention for video frames that are temporally fused
using a recurrent network (Sec. 4.3).

2 Related Work

This section briefly reviews weakly supervised object localization (WSOL) for
classification networks. Grad-CAM is reviewed in the WSOL retrieval evaluation
Section 4.2. The supplementary material reviews different ranking losses (e.g.,
N-pair). Figure 3 presents a high-level categorization of WSOL approaches in
terms of (1) supported architectures; (2) whether fine-tuning is required or not?
The experiment section provides further one-to-one comparisons.

Classification networks’ attention visualization increases interpretability and
enables WSOL. CAM [48] and Grad-CAM [32] identify the most discriminative
spatial region. To boost WSOL performance, [34, 45,46, 7] propose architectural
modifications to augment the most discriminative region with less-discriminative
object regions. This is achieved by fine-tuning a pre-trained network while hiding
the most discriminative region stochastically. This forces the network to recog-
nize other informative regions and thus improve WSOL. To detect and hide
the most discriminative region while fine-tuning, a network is assumed to use
global average pooling (GAP) [48,34,7] or an equivalent 1 x 1 feature reduction
convolution layer [45]. This fine-tuning paradigm tends to degrade classification
performance.
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Fig. 3. An overview of weakly supervised object localization (WSOL) approaches for
classification and retrieval networks. Some approaches impose architectural constraints
and require fine-tuning, e.g., CAM and ADL.

3 Constrained Attention Filter (CAF)

This section presents two variants for optimizing the proposed L2-CAF. The
first variant, class-oblivious, works for both classification and retrieval CNNs. It
generates a single heatmap per frame. The second variant, class-specific, works
for classification CNNs and generates class-specific heatmaps per frame. Both
variants impose no architectural constraints in terms of spatial pooling (GAP,
FCN) or temporal fusing components (RNN, LSTM).

3.1 Class-Oblivious Variant

Given a pre-trained network and an input z € R"W>*H*3_ the last convolution
layer provides a feature map A € RY*'** with size w x h and k channels.
The network’s output NT'(z), logits or embedding, depends on discriminative
features in A. We optimize an L2 normalized filter f to identify the discrimina-
tive features to the network’s output NT'(x). After multiplying A by the filter
f (AQ f=A"€ R"*F) the network generates a filtered output FT'(z, f).
While fixing the network’s weights and input, we optimize f to minimize

L=||NT(z) — FT(ac7]‘)\|27 subject to  ||f]|2 = 1, (1)

FT(z, f) equals NT(z) if and only if f = f; = {1}**" which is infeasible due
to the unit L2-Norm constraint.

Intuition: An ideal heatmap can be regarded as a filter that approximates
NT(x) by blocking irrelevant features in A. Accordingly, we seek a filter f that
spatially prioritizes convolutional features and flexibly captures irregular (e.g.,
discontinuous) shapes or multiple different agents in a frame. The L2-Norm, a
simple multi-mode differentiable filter, satisfies these requirements. On account
of irrelevant features, the ||f||2 = 1 constraint assigns higher weights to relevant
features. Figure 11 qualitatively emphasizes the intuition behind the L2-Norm
constraint.
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This formulation (Eq. 1) is oblivious to the nature of the network’s out-
put (logits or embedding), architecture, and input format (RGB image or pre-
extracted features). For a given input z, the class-oblivious formulation generates
a single heatmap. This can be a limitation if the input x contains objects from
different classes. The next subsection tackles this limitation by offering an alter-
native class-specific optimization formulation.

3.2 Class-Specific Variant

To support class-specific heatmaps per input, we first assume a classification
CNN architecture with class-specific logits. We learn the attention for class ¢ by
optimizing the L2-CAF f using the following loss function

N
Le=—FTe(x,f)+ >, FTix,f), subjectto [|flla=1,  (2)
i=0, izc

where F'T.(z, f) is the filtered output’s logit for class ¢ and N is the total number
of classes. This loss maximizes the output logit for the intended class ¢ while
minimizing the output logits for all other classes.

Figure 1 presents a qualitative comparison between the class-oblivious and
class-specific variants. For example, the first example shows an image of a but-
terfly standing on a mastiff’s nose. The first image shows the resulting heatmap
from optimizing Eq. 1. The following two images show the result heatmaps from
optimizing Eq. 2 for the mastiff and butterfly classes, respectively. In these ex-
amples, the L2-CAF is applied to the last convolutional layer.

Technical Details: To compute the class-oblivious heatmap for an input x, we
utilize gradient descent for [ iterations. At iteration i, L' is computed using the
filter Hfﬁ The filter f is initialized randomly, i.e., f! € [0,1]*>*". Gradient
descent iteratively updates f to minimize L. We terminate when L converges
and remains approximately the same for d iterations. Concretely, we terminate
the gradient descent at i = [ when |L! — L'=?| < € where ¢ = 107° and d = 50.
This constrained minimization formulation is non-convex, so we also impose a

maximum number of iterations L,,,, to avoid oscillating between local minima.

l
After termination, the heatmap is generated by resizing % to the input’s

size. The same procedure is used for class-specific heatmaps with L. (Eq. 2). For
more details, please refer to our released code.

Timing: To optimize the small (e.g., 7 x 7) L2-CAF using gradient descent,
the vanilla L2-CAF requires multiple feed-forward and backpropagation passes
through the network. This is affordable for lightweight networks like MobileNet [16]
and GoogLeNet (InceptionV1) [37] but computationally expensive for bulky net-
works like VGG [33] and DenseNet [17]. We propose a technique to reduce this
cost through (1) making a single feed-forward pass through the whole network
to compute the network’s output at every layer, (2) optimizing the L2-CAF f
using a small subset of layers.
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Fig. 4. Reduce the computational optimization cost of the L2-CAF f by solving an
equivalent sub-problem (blue-dashed). Instead of using the network’s endpoints (z,
NT(z)), use (V(z), V'(z)) to optimize f.

Figure 4 illustrates this technique. Instead of optimizing the filter f through
the network’s endpoints (z, NT'(z)), it is equivalent to use the outputs of the
direct pre and post layers (V, V') to the attention filter. For a given input z,
these layers’ outputs (V(x), V'(z)) require a single feedforward pass through the
whole network. Once computed, the loss function from Eq. 1 becomes

L=|[V'(z) = FT(V(2), )II*, subject to |[|f]]2=1. (3)

To generate class-specific heatmaps for a classification network, V’(z) must
be the network’s logits NT'(x). Since it is typical to visualize the attention of the
last convolution layer, this formulation skips the overhead of a network’s trunk
and significantly reduces the computational cost. The speed-up of this technique
is quantified through an ablation study.

The fast L2-CAF approach is a computationally cheaper alternative to sam-
pling [27,35] and masking [11,10] approaches. In addition, the L2-CAF has a
smaller set of hyper-parameters. For instance, while both L2-CAF and mask-
ing [11, 10] approaches require a stopping criterion for an optimization problem,
Fong et al. [10] evaluate multiple mask-sizes per image. Furthermore, the fast L2-
CAF works on a small subset of network layers, i.e., independent of the network
backbone. Thus, it compares favorably for video processing. For 3D volumes
(e.g., medical images), our optimization problem remains independent of the
network size, i.e., € R7*7*7.

4 Experiments

The next two subsections present L2-CAF’s quantitative evaluation using classi-
fication and retrieval networks, respectively. Then, a recurrent retrieval network
qualitatively illustrates L2-CAF’s potential for video applications. Finally, we
present our ablation studies.

4.1 WSOL Using Classification Networks

The L2-CAF is quantitatively evaluated using WSOL on both standard and fine-
tuned classification architectures. We leverage the ImageNet validation set [8]
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Table 1. Classification and localization accuracies on the ImageNet (ILSVRC) valida-
tion set using standard architectures — no fine-tuning required.

Classification Localization

Method Backbone Top 11 Top 51 Top 11 Top 51
Grad-CAM GoogLeNet [37] 71.17 86.39 44.43 57.50
L2-CAF (ours) GoogLeNet [37] 71.17 86.39 45.48 59.32
Grad-CAM ResNetV2-50 [14] 71.51 86.56 46.57 59.96
L2-CAF (ours) ResNetV2-50 [14] 71.51 86.56 48.18 62.38
Grad-CAM DenseNet-161 [17] 78.20 91.39 49.28 66.57

L2-CAF (ours) DenseNet-161 [17] 78.20 91.39 49.68 65.28

for evaluation on standard architectures. For fined-tuned architectures, we fol-
low ADL [7] evaluation procedure and utilize both ImageNet [8] and CUB-200-
2011 [39] datasets. In all experiments, we use the fast L2-CAF technique. The
loss in Eq. 2 is minimized using the last convolution layer and the network’s
logits (before softmax) as endpoints.

Evaluation using standard architectures is performed using both the
top-1 and top-5 predictions. Similar to [32], we obtain the top predictions for
every image, then, optimize our filter f to learn the corresponding heatmap
for every prediction. Following Zhou et al. [48], we segment the heatmap using
a simple thresholding technique. This generates connected segments of pixels;
we draw a bounding box around the largest segment. Localization is correct if
the predicted class is correct and the intersection over union (IoU) between the
ground truth and estimated bounding boxes is >50%. Table 1 compares L2-CAF
and Grad-CAM using three architectures. Both approaches are applied to the last
7 x 7 convolution layer. We fix the architecture and evaluate different localization
approaches — same classification but different localization performance.

L2-CAF versus Grad-CAM: Grad-CAM is 5 times faster than L2-CAF on
DenseNet-161 (7 times on GoogLeNet). Both approaches support a large variety
of architectures. In terms of localization accuracy, L2-CAF compares favorably
to Grad-CAM. Fong and Vedaldi [11] explain why gradient-based approaches like
Grad-CAM are not optimal for visualization. They show that neural networks’
gradients % are independent of the input image x for linear classifiers (y =

wz + b; % = w). For non-linear architectures, this problem is reduced but not
eliminated. They also show qualitatively that gradient saliency maps contain
strong responses in irrelevant image regions. We hypothesize that DenseNet-
161’s better classification accuracy and, accordingly, better gradient closes the

localization performance gap.

Evaluation using fine-tuned architectures is performed using the top-1
accuracy on fine-tuned architectures (e.g., VGG-GAP [48)); this follows the eval-
uation procedure in attention-based dropout layer (ADL) [7]. ADL is the current
state-of-the-art method for WSOL. During fine-tuning, ADL applies dropout at
multiple network stages. It is not straightforward to determine where to plug
these extra dropout layers — it is network dependent. Therefore, we leverage
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Table 2. Classification and localization accuracies on the CUB-200-2011 test and Im-
ageNet validation split using fine-tuned architectures. The accuracy with an asterisk*
indicates that the score is from the original paper.

CUB-200-2011 ImageNet
Method Backbone Tuning CLS 1+ LOC 1 CLS 1 LOC ¢t
CAM VGG-GAP GAP 68.53 45.66 69.96 43.46
L2-CAF (ours) VGG-GAP GAP 68.53 46.01 69.96 44.09
Fuse 2 CAMs VGG-GAP ACoL [45] 71.90 45.90* 67.50 45.83*
CAM VGG-GAP ADL 64.16 48.27 69.58 42.93
L2-CAF (ours) VGG-GAP ADL 64.16 48.55 69.58 43.27
CAM ResNet50-SE ADL 78.94 61.71 76.218 49.90
L2-CAF (ours) ResNet50-SE ADL 78.94 61.16 76.218 50.49

their publicly released VGG-GAP and ResNet50-SE implementations to evalu-
ate our approach. The ACoL performance is reported from the original paper.
Table 2 presents a quantitative evaluation using CUB-200-2011 and ImageNet
datasets. The first column denotes the object localization approach, e.g., CAM
versus L2-CAF. Grad-CAM is dropped because it is equivalent to CAM when a
GAP layer is utilized [32]. In the second column (backbone), all the architectures
utilize a global average pooling or an equivalent surrogate [45]. The third column
denotes the fine-tuning approaches considered: GAP [48], ACol [45], ADL [7].
We fine-tune the VGG-GAP architecture with both GAP and ADL. L2-CAF
consistently outperforms CAM’s localization on the ImageNet validation set.
Relation with WSOL approaches (e.g., ADL): To generate class activa-
tion maps (CAMs), WSOL approaches employ a global average pooling layer
(GAP) [48,34,46,7], or equivalent [45]. L2-CAF relaxes this architectural re-
quirement. Thus, while supporting previous WSOL approaches, L2-CAF intro-
duces a new degree of freedom. This flexibility is vital to explore attention visu-
alization and WSOL beyond standard supervised classification networks.

4.2 WSOL Using Retrieval Networks

Weakly supervised object localization provides a quantitative evaluation met-
ric for attention visualization approaches. The ability to localize attention for
various architectures is a core advantage of L2-CAF. In this subsection, we quan-
titatively evaluate L2-CAF against Grad-CAM. We employ the class oblivious
formulation (Eq. 1) using the last convolution layer and the raw embedding
(before unit-circle normalized) as endpoints.

Datasets: We employ CUB-200-2011 birds [39] and Stanford CARS196 [21]
retrieval datasets, i.e., standard retrieval datasets [26,40,6,41]. Both datasets
provide the ground truth bounding box annotation. They pose several challenges
for foreground objects’ localization. Birds are not naturally rectangular; discrim-
inative parts (e.g., head [5]) occupy a small part of the body. Cars pose a similar
challenge in terms of relatively smaller discriminative parts (e.g., wheel) relative
to the whole body. Figure 5 depicts the ratio of the ground truth bounding box
to the whole image size for both datasets.
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Fig. 5. Histogram of the foreground objects’ bounding box size relative to the whole
image in CUB and CARS196 datasets. CUB birds tend to occupy less than 50% of the
whole image (left-skewed), while the Stanford cars are normally distributed.

Evaluation metrics: For retrieval, we utilize both Recall@l (RQ1) and the
Normalized Mutual Information (NMI) metrics. For localization, we follow the
same evaluation procedure in [48, 32] for classification networks. We replace the
top-1 by R@Q1 metric to decide if the network’s output is correct or not. The
same IoU > 50% criterion is used to evaluate localization.

Vanilla Grad-CAM baseline: To evaluate L2-CAF quantitatively, we extend
the classification Grad-CAM to deal with retrieval networks. The Grad-CAM
class-discriminative localization map M€ has been proposed as follows

M¢ = RELU (Z agAk> (4)
k

w h c

; ()

k‘n
||

i=0 j

where M¢ € R¥*" for any class ¢, A € R¥*"*F is a convolutional feature map
with k& channels. o € R* quantifies the k' channel’s importance for a target
class c. Basically, >, a¢ A* provides a weighted sum of the feature maps (A) for
class c. af is computed using the gradient of the score for class y¢ with respect
to the feature maps A*.

To support a retrieval network, we utilize the gradient of the output embed-

ding a%j instead of the class score a‘?;’gj as follows
1 w h ay
- 6
O(k W % h Z Z 8Ak ) ( )
i=0 j=0 1,7

we denote this formulation as vanilla Grad-CAM for retrieval. We compute Ak
using tf.gradients [1].

Grad-CAM-abs baseline: The Vanilla Grad-CAM is largely inferior for re-
trieval networks because of the RELU in Eq. 4. RELU is introduced for clas-

sification networks to emphasize feature maps that have a positive influence on



10 A. Taha et al.

Table 3. Triplet (TL) and N-pair (NP) losses’ quantitative retrieval evaluation using
NMI and Recall@1 on CUB-200-2011 and CARS196. Quantitative localization accuracy
evaluation using the 0.5 intersection over union (IoU) criterion. A column indicates
the absolute localization improvement margin relative to the vanilla Grad-CAM.

CUB-200-2011 CARS196

Retrieval Localization Retrieval Localization

Method Backbone Loss NMIT R@1T LOCT A NMIT R@1t LOC?T A
Grad-CAM GoogLeNet  TL 0.582 47.75 20.63 0.532 54.55 32.38

Grad-CAM-abs GoogLeNet  TL 0.582 47.75 22.96 +2.33 0.532 54.55 46.21 +13.82
L2-CAF (ours) GoogLeNet TL 0.582 47.75 29.63 +9.00 0.532 54.55 54.10 +21.72

Grad-CAM ResNet TL 0.601 50.06 16.15 - 0.565 61.55 31.77 -
Grad-CAM-abs ResNet TL 0.601 50.06 29.49 +13.34 0.565 61.55 56.32 +24.55
L2-CAF (ours) ResNet TL 0.601 50.06 39.28 +23.13 0.565 61.55 61.27 +29.50
Grad-CAM GoogLeNet NP 0.583 48.95 14.13 0.597 65.23 28.29

Grad-CAM-abs GoogLeNet NP 0.583 48.95 19.87 +5.74 0.597 65.23 55.01 +26.72
L2-CAF (ours) GoogLeNet NP 0.583 48.95 30.50 +16.37 0.593 65.23 64.85 +36.56

Grad-CAM ResNet NP 0.580 47.92 11.92 - . . -
Grad-CAM-abs ResNet NP 0.580 47.92 26.67 +14.75 0.609 67.61 61.62 +29.20
L2-CAF (ours) ResNet NP 0.580 47.92 38.69 +26.77 0.609 67.61 67.35 +34.93

Image Grad-CAM Grad-CAM-abs  L2-CAF

Fig. 6. Qualitative attention evaluation for different visualization approaches on re-
trieval networks. Both Grad-CAM variants suffer near images’ corners.

the class of interest y¢, assuming pixels with negative gradient belong to other
classes. This assumption is valid for classification but invalid for retrieval. There-
fore, we further modify the Grad-CAM formulation by replacing the RELU with
the absolute function abs. This Grad-CAM-abs baseline is defined as follows

MY, = abs ZaZAk . (7)
k

Implementation details are reported in the supplementary material.

Results: Table 3 presents a quantitative evaluation for both retrieval and local-

ization performance. ResNet-50 has more parameters than GoogLeNet; and is

marginally better in terms of retrieval. Generally, N-pair loss outperforms triplet

loss. Cars are rectangular and thus simpler than CUB birds for bounding box



L2-Norm Constrained Attention Filter (L2-CAF) 11

VA

2

Fig. 7. Qualitative localization evaluation on CUB-200-2011 and CARS196 using a re-
trieval network trained with a triplet loss. The green and blue bounding boxes indicate
the ground truth and the L2-CAF bounding boxes, respectively.

Trimmed ResNet
Event features

Embedding

Fig. 8. A convolution architecture to embed autonomous navigation videos. This net-
work employs a ranking loss to learn a feature embedding and a recurrent layer for
temporal modeling. The CNN layer is shared across the three frames. The attention
filters (f1, f2, f3) are used during attention visualization only.

localization. The localization error is highly correlated and upper-bounded by
the retrieval performance (R@1). Grad-CAM-abs outperforms the vanilla Grad-
CAM for retrieval. L2-CAF brings further localization improvement.

Figure 6 qualitatively compares different localization approaches. We found
that feature maps at the images’ corners can have a high positive gradient, while
the feature maps at the foreground object can have a high negative gradient.
It is a common practice to embed images into the unit-circle, 4.e., some images
are embedded in the negative space. When this happens, the vanilla Grad-CAM
ignores the foreground objects. Grad-CAM-abs handles negative gradient better
but still suffers around the corners. Grad-CAM inferior behavior around the
corner is qualitatively reported in [10]. This undesirable behavior degrades Grad-
CAM’s WSOL performance. Figure 7 shows a qualitative localization evaluation
on both datasets. For CUB-200-2011, our estimated bounding box (blue) tends
to be centered around the birds’ heads.

4.3 Recurrent Networks’ Attention

This subsection illustrates how to visualize attention for temporally fused video
frames through the Honda driving dataset (HDD) [29]. HDD is a video dataset
for reasoning about drivers’ actions (events) like crossing intersections, making
left and right turns. A key objective is modeling the subtle intra-action (events)
variations without explicit fine-grained labeling. For instance, an autonomous
navigation application with a left-turn query video should differentiate smooth
left-turns maneuvers from those interrupted by crossing pedestrians. A retrieval
network models these intra-action variations through a feature embedding.
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Fig. 9. The recurrent network’s attention visualization at different time steps using
heatmaps. Each row depicts three frames sampled from an action video. Contours
highlight regions with higher attention. The network attends to the spatial locations
of traffic lights and road signs. This figure is best viewed on a screen (color and zoom).

Figure 8 presents a recurrent retrieval network for video embedding. Given
a trimmed video event, three frames are sampled at t1, to, and t3. To enable a
large training mini-batch for triplet loss, a pre-trained ResNet is employed to
extract convolutional features for every frame. The extracted ResNet features
are fed into a trainable shallow CNN. The resulting convolutional features are
temporally fused using an LSTM [12, 15].

After training, we employ three L2-CAF filters (f1, fa2, and f3) to visualize
attention, i.e., one filter per frame. These filters are inserted between the shallow
CNN and the LSTM layers during inference only. To ground attention in each
frame, we optimize each filter independently. Concretely, we pass the first frame’s
features through f; and optimize f; while feeding the second and third frames’
features normally, i.e., fo and f3 are inactive. After f; converges, we deactivate
it and optimize the next filter fo and so on. After optimizing all filters, each
filter provides an attention map for the corresponding frame.

Figure 9 presents our qualitative evaluation. In the first row at t3, the network
attention is drawn to the traffic lights and double yellow lane marks. Similarly,
the second row shows attention drawn toward the traffic light at ¢; 5. The final
row shows an interesting case at t3 where the attention is drawn to the stop sign
and also to the frame’s top center, which is the typical location for a traffic light.
Through visualization, we can see that the network uses traffic lights, signs, and
road signs as discriminative features. We found that a Mast Arm (L-shaped)
traffic light is easier to detect by a neural network compared to a straight pole
traffic light. The variable height of a straight pole traffic light poses a challenge
for neural networks. For instance, the network attends to the right side of the
frame multiple times at different heights in the second row at ¢; ».
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Fig. 10. Sanity checks [2]. First column visualizes attention using a pretrained network—
nothing random. Columns two to five visualize attention when logits and weights (all-
layers) are randomized. Different random initializations generate different heatmaps.
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Fig. 11. Qualitative evaluation for alternative constraints. Softmax offers a sparse re-
sult while the Gaussian filter assumes a single mode. L2-CAF supports multi-mode.
The supplementary material shows more vivid visualizations for the L2-CAF, randomly
initialized, converging in slow motion.

4.4 Ablation Study

This subsection provides sanity checks for saliency maps [2], then evaluates al-
ternative attention constraints, and finally presents a timing analysis.

Sanity Checks: Figure 10 shows how L2-CAF is affected by randomly initial-
ized logits-layer or weights (all layers). Sanity checks [2] emphasize a high de-
pendency between the optimized L2-CAF (heatmap) and the network’s weights.
Alternative Attention Constraints: We qualitatively compare the L2-CAF
with both softmax and Gaussian constraints. These are selected for their differen-
tiability, simplicity, and usability in recent literature. Other filtering alternatives
(e.g., L1-Norm) are also feasible. Softmax is a typical attention mechanism for
image captioning [42,18] and machine translation [38]. In these problems, the
softmax attention module is employed recurrently on a single image frame or
an input sentence for every output word. This fits the softmax’s sparse nature.
Gaussian filters have been utilized for temporal action localization [24, 28]. They
are denser (more relaxed) compared to softmax but also assume a single mode
(elliptical shape). To localize objects in images using a Gaussian constraint, we
optimize the filter’s mean p € R? while fixing the covariance matrix o € R?*?
to the identity matrix. ¢ must be constrained to avoid a degenerate solution
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Fig. 12. Time analysis for the L2-CAF. The fast L2-CAF brings a significant speed-up
while solving the same optimization problem.

where the Gaussian becomes a uniform distribution, i.e., ¢ — oo. All filters are
optimized using the class-oblivious formulation (Sec 3.1).

Figure 11 provides a qualitative evaluation using GoogLeNet architecture and
three attention constraints. The L2-CAF identifies key region(s) for a network’s
output with a single glimpse. The filter prioritizes these regions quantitatively.
L2-CAF supports a large spectrum of neural networks as a post-training in-
spection tool. It supports complex architectures including, but not limited to,
encoder-decoder [20, 30], generative [13], and U-shaped architectures [31,22]. Tt
neither undermines the performance nor raises the inference cost. L2-CAF is not
the fastest attention visualization approach but is computationally cheap.
Timing Analysis: Speed is the main limitation of our iterative formulation.
Figure 12 presents a timing analysis for L2-CAF. The y-axis denotes the pro-
cessing time per frame in seconds. The vanilla L2-CAF uses the default endpoints
(x, NT(z)), while the fast L2-CAF uses the output of the last convolution layer
and the logits NT'(x) as endpoints. The vanilla and fast L2-CAF are equiva-
lent optimization problems but the fast L2-CAF provides a significant speed-up.
The three fully connected layers in VGG, between the last convolution layer
and the logits, limit the fast optimization technique. VGG-GAP replaces these
fully connected layers with an average pooling layer, so its speed is similar to
GoogLeNet. Fast L2-CAF takes ~ 0.4 and 0.3 seconds per frame on VGG-GAP
and GoogLeNet, respectively. The DenseNet-161’s speed-up is maximum because
the fast L2-CAF skips all dense blocks before the last convolution layer.

5 Conclusion

We have introduced the unit L2-Norm constrained attention filter (L2-CAF) as
a visualization tool that works for a large spectrum of neural networks. L2-CAF
neither requires fine-tuning nor imposes architectural constraints. Weakly super-
vised object localization is utilized for quantitative evaluation. State-of-the-art
results are achieved on both standard and fine-tuned classification architectures.
For retrieval networks, L2-CAF significantly outperforms Grad-CAM baselines.
Ablation studies highlight L2-CAF’s superiority to alternative constraints and
analyze L2-CAF’s computational cost.
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