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Abstract. An algorithm to combine multiple loss terms adaptively for
training a monocular depth estimator is proposed in this work. We con-
struct a loss function space containing tens of losses. Using more losses
can improve inference capability without any additional complexity in
the test phase. However, when many losses are used, some of them may
be neglected during training. Also, since each loss decreases at a differ-
ent speed, adaptive weighting is required to balance the contributions of
the losses. To address these issues, we propose the loss rebalancing al-
gorithm that initializes and rebalances the weight for each loss function
adaptively in the course of training. Experimental results show that the
proposed algorithm provides state-of-the-art depth estimation results on
various datasets. Codes are available at https://github.com/jaehanlee-
mcl/multi-loss-rebalancing-depth.
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1 Introduction

Monocular depth estimation is the task to estimate depth information of a scene
from a single image. It is applicable to various higher-level vision tasks, since
the depth information is essential for understanding 3D scene geometry. It is
more challenging than the depth estimation using stereo images [38] or video
frames [44] due to the lack of reliable cues. Early algorithms [7, 13, 26, 39] made
assumptions, such as ‘blocks world,’ to make it easier. They yield unreliable
results when the assumptions are invalid. After Eigen et al. [9] introduced a
convolutional neural network (CNN) for monocular depth estimation, various
CNN-based algorithms have been developed.

Recent advances in monocular depth estimation are due to better backbone
networks [14,17,18,42], huge RGBD datasets [4,5,11,39,41,43,45], richer labels
for training [22, 37, 48], or sophisticated loss functions [5, 8–10, 16, 25]. Among
them, the loss function design has two advantages. First, using a sophisticated
loss can improve inference capability without requiring additional memory com-
plexity for more complicated networks. Second, it may increase the computation
time for training but does not affect the time complexity for testing. Existing
algorithms adopt various loss functions, including scale-invariant loss [9], gra-
dient loss [8], and normal loss [16]. They also formulate a loss function as a
combination of several losses for more effective training.

https://github.com/jaehanlee-mcl/multi-loss-rebalancing-depth
https://github.com/jaehanlee-mcl/multi-loss-rebalancing-depth
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Fig. 1. Overview of the loss rebalancing algorithm: A depth estimator estimates a
depth map D from an image I. Throughout its training, losses are recorded and their
weights are initialized and adjusted by the loss rebalancing algorithm.

However, there is no systematic analysis of these loss functions, and there
is a lack of understanding how these losses improve the performance. In this
paper, we attempt to address this issue. We construct a loss function space,
containing many loss terms: some are from existing algorithms, and the others
are newly designed. Through extensive experiments and analysis, we find that,
as more loss terms are used to train a depth estimator, the performance gets
better. However, to exploit a large loss function space in training, two weighting
issues should be addressed. First, each loss has a different order of magnitudes.
Thus, some losses may be neglected, if the losses are simply summed up. Second,
in the course of training, each loss decreases at a different speed. Hence, the
contributions of the losses should be balanced periodically. Therefore, we propose
the loss rebalancing algorithm that initializes and adjusts the weights for multiple
losses adaptively, so that each loss contributes properly to the training of a
depth estimator and thus improves the estimation performance. Fig. 1 shows an
overview of the proposed loss rebalancing algorithm.

Extensive experimental results and ablation studies show that the proposed
loss rebalancing algorithm improves the performances of monocular depth esti-
mators meaningfully.

This paper has the following main contributions:

• For monocular depth estimation, we construct a loss function space of several
tens of losses, and propose the loss rebalancing algorithm to utilize the loss
function space effectively.
• The proposed algorithm improves depth estimation performance significantly,

without requiring additional network parameters or inference time.
• The proposed depth estimators yield excellent results on the NYUv2 [41]

and Make3D [39] datasets.

2 Related Work

Loss functions: To train monocular depth estimators based on deep learning,
many loss functions have been proposed. Depth losses directly measure the dif-
ferences between ground-truth depths and their estimates. Several depth losses
are based on the L2-norm [2, 8, 9, 15, 31, 49], but there are different types of
depth losses, such as the L1-norm [35], multinomial logistic loss [10, 28, 30, 36]
and berHu loss [25].
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Eigen et al. [9] pointed out that, in monocular depth estimation, it is ill-posed
to estimate a global depth scale, and a significant amount of depth errors are
caused by the mismatch between true and predicted scales. They hence proposed
a scale-invariant loss to eliminate the impacts of global scales, which has been
also adopted in [8, 36].

Gradient losses and normal losses are also often used. A gradient loss penal-
izes errors, especially near object boundaries in a scene. It is measured from
the differences between the derivatives of ground-truth and predicted depth
maps. Some algorithms [8,12,16,22] use gradient losses jointly with depth losses.
Chakrabarti et al. [3] generalized the gradient losses using higher-order deriva-
tives. A normal loss imposes a penalty on mismatches between ground-truth
and predicted normal vectors. It can be computed using normal vector labels of
training data [37]. When they are unavailable, normal vectors can be approx-
imated from depth maps [16]. In addition, the semantic loss [19], the pairwise
loss [50], the SSIM loss [12] have been developed.

Even though various losses have been proposed to yield successful results,
to the best of our knowledge, no paper analyzes the effectiveness of different
losses systematically. Moreover, in most algorithms, the overall loss is defined
as a weighted sum of only a few loss terms, and the weights are determined
heuristically. In this work, we define a loss function space consisting of 78 losses.
Then, we propose an effective algorithm to use all those losses and to initialize
and adjust their weights.

Loss function balancing: Balancing between various loss functions has been
considered in the multi-task learning field [6,21,40]. During the training of mod-
els, the weights of loss functions for various tasks, such as depth estimation, se-
mantic segmentation, and surface normal estimation, are dynamically adjusted.
Kendall et al. [21] proposed a weighting scheme based on the uncertainty of
each loss function. They assumed that the tasks are independent of one an-
other in their maximum likelihood formulation. Chen et al. [6] designed another
weighting scheme, which balances the gradient magnitude for each task. Sener
and Koltun [40] attempted to achieve a Pareto optimum between loss functions.
Note that, in both [6] and [40], it was assumed that the objectives of multiple
loss functions conflict with one another. All these algorithms are for multi-task
learning, so they are fundamentally different from the proposed rebalancing al-
gorithm of loss functions for a monocular depth estimator. Their assumptions
are invalid in the proposed loss function space, because we derive all losses from
the same depth map.

3 Proposed Algorithm

Fig. 1 is an overview of the proposed algorithm. The proposed depth estimator
has the encoder-decoder architecture [1,47] similarly to most deep-learning-based
depth estimators. The architecture is described in detail in Section 4.1. During
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the training, losses are recorded by the loss rebalancing algorithm, which initial-
izes and adjusts the weights of loss functions.

Let f denote the depth estimator network and θ be its parameters. Given
an image I, f estimates a depth map D̂ = f(I;θ). The objective is to determine
the optimal parameters to minimize the overall loss function `all,

θ∗ = arg min
θ

∑
k:Ik∈I

`all (f(Ik;θ),Dk) (1)

where I is the set of training images, and Dk is the ground-truth depth map for
the kth training image Ik.

3.1 Loss function space

The overall loss function `all is defined as a weighted sum of multiple loss func-
tions in the loss function space L,

`all =
∑
i:`i∈L

wi`i (2)

where `i denotes the ith loss function in L and wi is the corresponding weight.
Table 1 lists all 78 (= 6× 13) losses in L. Given a depth map D0, we repeatedly
halve its spatial resolution in both horizontal and vertical directions to yield
downsampled depth maps D1,D2,D3,D4,D5. Here, superscripts denote spatial
scales. Then, we compute 13 kinds of losses at each spatial scale. Let us describe
each loss subsequently. For notational convenience, we omit the superscripts
representing spatial scales.

Table 1. Loss functions, which compose the loss function space L.

Spatial scale

0 1 2 3 4 5

Depth losses `0D `1D `2D `3D `4D `5D

Mean- `0M `1M `2M `3M `4M `5M
removed `0M5 `1M5 `2M5 `3M5 `4M5 `5M5

losses `0M17 `1M17 `2M17 `3M17 `4M17 `5M17

`0M65 `1M65 `2M65 `3M65 `4M65 `5M65

Gradient `0r `1r `2r `3r `4r `5r
losses `0c `1c `2c `3c `4c `5c

`0rr `1rr `2rr `3rr `4rr `5rr
`0rc `1rc `2rc `3rc `4rc `5rc
`0cc `1cc `2cc `3cc `4cc `5cc

Normal `0N `1N `2N `3N `4N `5N
losses `0Nr `1Nr `2Nr `3Nr `4Nr `5Nr

`0Nc `1Nc `2Nc `3Nc `4Nc `5Nc
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Let D be a ground-truth depth map and D̂ be its estimate. The common
depth loss `D is given by the entrywise L1-norm for a matrix,

`D =
1

HW
‖D̂−D‖1 (3)

where W and H are the width and height of the depth maps. We use the L1-
norm for most losses, which is known to facilitate more efficient training than
the L2-norm [35].

A mean-removed loss measures a difference between depth maps after remov-
ing depth scales. This loss function is similar to the scale-invariant term in [9].
First, the global-mean-removed loss `M is defined as

`M =
1

HW
‖(D̂− µ̂)− (D− µ)‖1 (4)

where µ̂ and µ are the average depths in D̂ and D, respectively. This loss is
based on the observation that, although it is ambiguous to estimate the global
depth scale (i.e. average depth) from an image, the relative depth of each pixel
with respect to the average depth can be predicted more reliably. Note that
relative estimation is easier than absolute estimation in other applications as
well, such as age estimation [32]. Similarly, a depth estimator should be capable
of predicting whether a pixel within a region is farther or nearer than the average
depth of the region. Thus, we introduce a local-mean-removed loss `Mn, which
penalizes the relative depth errors with respect to local n× n square regions,

`Mn =
1

HW

∥∥∥∥(D̂− D̂ ~
Jn
n2

)
−
(

D−D ~
Jn
n2

)∥∥∥∥
1

(5)

where ~ denotes the convolution, and Jn is the n × n matrix composed of all
ones. As listed in Table 1, we consider three square sizes (n = 5, 17, 65).

Next, we use gradient losses [3, 8, 12, 22]. The gradient loss `r in the row
direction is defined as

`r =
1

HW
‖∇rD̂−∇rD‖1 (6)

where the partial derivative ∇r is implemented as the difference between hori-
zontally adjacent pixels. Similarly, the gradient loss `c in the column direction
and the 2nd-order derivatives `rr, `rc, and `cc are also defined.

We also use the normal loss `N. This loss may be computed using ground-
truth normal vectors [8, 37]. However, we train a depth estimator using only
depth labels. Thus, as in [16], we approximate the normal vector nij at (i, j)
from the depth gradient by

nij = [−∇rD(i, j),−∇cD(i, j), 1]
T
. (7)

Then, `N is defined using the cosine similarity by

`N =
1

HW

H∑
i=1

W∑
j=1

(
1−

n̂Tijnij

‖n̂ij‖2‖nij‖2

)
(8)
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Fig. 2. Projection of the losses in L onto the plane, determined by the two principal
axes. The losses are represented by different colors and marks according to (a) loss
types and (b) spatial scales. Also, in (a), to facilitate observation, some losses in the
same types are connected by dashed lines or enclosed by dashed ellipses.

We further introduce the 2nd-order normal losses `Nr and `Nc, by measuring
the normal vectors of the partial derivative maps ∇rD and ∇cD. Specifically, to
compute `Nr, the second-order normal vector [−∇r∇rD,−∇c∇rD, 1]T is used
instead of (7). Similarly, `Nc is computed.

Some loss functions in L exhibit similar tendencies during the training. To
analyze the similarity or dissimilarity among the loss functions, we train a pre-
liminary depth estimator and record the output values of each loss function `i
in a vector ti. Then, we project these vectors ti for `i ∈ L onto the 2D plane, by
performing the principal component analysis (PCA). Fig. 2 shows the projection
results. In Fig. 2 (a), losses are represented in different colors and marks accord-
ing to their types. The depth losses `D and the global-mean-removed losses `M,
respectively, are tightly located regardless of the spatial scales. In contrast, the
gradient losses, especially the 2nd-order ones `rr and `cc, exhibit different char-
acteristics according to the spatial scales and are located far from one another
in the function space. In Fig. 2 (b), we also classify the losses by their spatial
scales. Except for the depth losses `D and the global-mean-removed losses `M,
each type of losses are widely distributed in the space according to the scales.

3.2 Loss rebalancing algorithm

We use the loss functions in L to train a monocular depth estimator. Those
functions address different aspects of depth structures. Combining these diverse
loss functions improves the inference capability of the trained estimator. As
compared to using a single loss function, the proposed approach increases the
training time but does not require any additional complexity in the test phase;
after training, it demands the same time or memory complexity to estimate the
depth map of a test image.

There are two weighting issues to be addressed.

• How to initialize the weight wi for each `i ∈ L in (2)?
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• In the course of training, how to adjust wi for `i, whose output values de-
crease at a different speed from the other loss functions? For example, if `i
is a relatively easy optimization function and decreases much faster than the
others, should we increase or decrease wi?

To solve these issues, we propose weight initialization and rebalancing schemes.

Weight initialization: Each loss function `i yields output values, which may
have different orders of magnitudes from those of the other loss functions. This
is because `i is computed at a different spatial scale, or it deals with a different
feature. Thus, to balance the contribution of each `i to the overall loss function
`all, we train the network preliminarily after setting each weight equally to 1

|L|
and record the average output ¯̀

i of `i. Then, we initialize the weight wi so that
the contribution wi ¯̀i to the overall loss ¯̀

all is identical for every i. In other
words, we initially set

w
(0)
i =

¯̀
all

¯̀
i

for each `i ∈ L, (9)

where the superscripts (0) mean that it is the initial weight.

Weight rebalancing: During the training, we adjust the weights periodically.

Suppose that a period consists of N training images. Let L
(t)
i denote the sum

of the N losses, generated by `i in period t. Also, let w
(t−1)
i be the weight for

L
(t)
i , which is determined after the previous period t−1 and used for the current

period t. Then, the overall loss L
(t)
all in period t is given by

L
(t)
all =

∑
i

w
(t−1)
i L

(t)
i . (10)

After period t, we update weight w
(t)
i by comparing L

(t)
i with L

(t−1)
i . Let

P
(t)
i = L

(t)
i /L

(t)
all be the ratio of the ith loss L

(t)
i to the overall loss L

(t)
all . We

compute the change in the ratio by ∆P
(t)
i = P

(t)
i − P

(t−1)
i . Then, we adjust the

weight w
(t)
i via

w
(t)
i = w

(t−1)
i

(
1− λ× ∆P

(t)
i

P
(t)
i

)
(11)

where λ is called the rebalancing parameter. This rebalancing equation has the
following properties:

• If λ = 0, then w
(t)
i = w

(t−1)
i . Thus, the initial weights remain unchanged

without rebalancing.
• If λ = 1, (11) can be rewritten as

w
(t)
i P

(t)
i = w

(t−1)
i P

(t−1)
i , (12)

which means that the weight is updated to maintain the contribution of ith
loss to the overall loss at the same level between the two periods t− 1 and t.
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Fig. 3. Visualizing the contributions of losses according to the scheduling of λ: The
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i for the corresponding loss.

If the magnitude decreases as compared to the previous epoch, the circle is in blue. If
it increases, the circle is in red. Green means no change. Please refer to Fig. 2 to see
which loss is indicated by each circle.

• In general, if λ > 0, the weight for an ‘easy’ loss function increases. Suppose
that a certain loss function `i is easier to train than the others. Then, its

current percentage P
(t)
i is lower than the previous P

(t−1)
i , resulting in a

negative ∆P
(t)
i . Then, w

(t)
i > w

(t−1)
i from (11). Therefore, `i is multiplied

with a bigger weight in the next period. Hence, a positive λ encourages the
training algorithm to focus on easy loss terms.

• On the contrary, if λ < 0, the training focuses on ‘difficult’ loss terms.

• It can be shown that
∑
i w

(t−1)
i L

(t)
i =

∑
i w

(t)
i L

(t)
i for all t. Thus, rebalancing

in (11) is done so that the overall loss L
(t)
all in (10) is maintained when w

(t−1)
i

is replaced with w
(t)
i . This makes the monitoring of overall losses over periods

easier, since the scale of an overall loss is not affected by the rebalancing.

We can start with a positive λ to reduce easy losses more quickly and teach
the network to learn uncomplicated depth structures in scenes first. Then, we
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can gradually reduce λ to teach the network hard-to-learn structures. In the
default mode, we start with λ = 3 and monotonically decrease it to −3.

Fig. 3 visualizes the contributions of losses according to the scheduling of

λ. The radius of each circle indicates the magnitude of w
(t)
i P

(t)
i for the corre-

sponding loss, and its color represents the increase or decrease of the magnitude.
Losses with increased contributions (i.e. magnitudes), as compared to the previ-
ous epoch, are in red, while those with decreased contributions are in blue. The
following observations can be made from Fig. 3.

• (λ = 0) The loss rebalancing is not applied. Difficult loss terms, such as `0rr
and `0cc, occupy more portions of contributions as the training goes on.

• (λ = 1) The contribution of each loss is maintained at the same level.
• (λ = 3) Easy losses are emphasized as the training goes on. We see that `D

and `M at all scales and all types of coarse scale losses are on the easier side.
• (λ = −3) Difficult losses are emphasized. Most fine-scale losses are difficult.
• (λ : 3 → −3) By decreasing λ from 3 to −3, the training focuses on easy

loss terms first and on difficult ones later.

In Section 4, it is shown experimentally that the default mode (λ : 3 → −3)
provides the best depth estimation results.

4 Experimental Results

4.1 Implementation details

Encoder-decoder architecture: We adopt the encoder-decoder architecture [1,
47] for the monocular depth estimator. We design the network structure of the
depth estimator in the simplest way, so that the proposed multi-loss rebalancing
algorithm can be applied to other existing or future backbone networks with
minimal modifications.

For the encoder, we test two backbones, DenseNet161 [18] and PNASNet [33],
after removing their classification layers. The spatial resolution of an input image
to the encoder is 288×384, while that of the encoder output is 9×12. Thus, the
encoder reduces the spatial resolution by a factor of 1

25 both horizontally and
vertically. The decoder includes 5 up-sampling blocks, which expand the encoder
output to the resolution of D0. We describe the decoder structure in detail in
the supplemental document.

Network training: For the performance comparison, we train the proposed
networks using the Adam optimizer [23] for 20 epochs with a learning rate of
10−4. The batch size is set to 12 and 8 for the DenseNet-based and PNAS-
based networks, respectively. We perform the weight initialization in (9) after
the preliminary training of 1/4 epoch. Next, the weight rebalancing in (11) is
performed periodically every 1/4 epoch. In the default mode, the rebalancing
parameter λ is initialized to 3 at the first epoch and gradually decreased to −3
until the fifth epoch. Also, we adopt the augmentation policy of [16].
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Table 2. Evaluation metrics for estimated depth maps: d̂i and di denote estimated
and ground-truth depths of pixel i, respectively, and N is the number of pixels. Also,
lij has a value of 1 or −1 depending on the relative relation between di and dj .

Metrics for ordinary depth estimation

δn % of di such that max{ d̂i
di
,
di
d̂i
} < 1.25n

RMSElin ( 1
NΣi(d̂i − di)2)0.5

ARD 1
NΣi|d̂i − di|/di

log10 1
NΣi| log10 d̂i − log10 di|

RMSElog ( 1
NΣi(log d̂i − log di)

2)0.5

RMSEsi RMSE (log) with global scale removed

SRD 1
NΣi|d̂i − di|2/di

Relative depth perception: We apply the proposed algorithm to relative
depth perception [5,45,52] as well. By fusing relative depth maps with ordinary
ones, we can improve the depth estimation performance further. We include the
training details and experiment results for the relative depth estimator in the
supplemental document.

4.2 Datasets and evaluation metrics

We use two depth datasets: NYUv2 [41] for indoor scene and Make3D [39] for out-
door scene. Ground-truth depth maps have blank areas with missing depth. For
training, we fill in the incomplete depth maps using the colorization scheme [29],
as done in [41].

For experiments on NYUv2, we develop two depth estimators: ‘Proposed
(Dense)’ and ‘Proposed (PNAS)’. Both estimators are trained using the se-
quences of the training split in [41]. The two estimators differ only in the encoder
backbones, and their training details are the same. For experiments on Make3D,
we train ‘Proposed (PNAS)’ using the Make3D training data.

Table 2 lists the evaluation metrics. We follow the evaluation protocol of [10].

Image GT Pred. Image GT Pred. Image GT Pred.

Fig. 4. Qualitative results. Farther depths are in red, while closer ones in blue.
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Table 3. Performance comparison on NYUv2 [41]. The best results are boldfaced.

The higher, the better The lower, the better

δ1 δ2 δ3 RMSElin ARD log10 RMSElog RMSEsi SRD

Eigen et al. [9] 61.1% 88.7% 97.1% 0.907 0.215 - 0.285 0.219 0.212
Li et al. [31] 62.1% 88.6% 96.8% 0.821 0.232 0.094 - - -
Eigen and Fergus [8] 76.9% 95.0% 98.8% 0.641 0.158 - 0.214 0.171 0.121
Chakrabarti et al. [3] 80.6% 95.8% 98.7% 0.620 0.149 - 0.205 - 0.118
Laina et al. [25] 81.1% 95.3% 98.8% 0.573 0.127 0.055 0.195 - -
Xu et al. [46] 81.1% 95.4% 98.7% 0.586 0.121 0.052 - - -
Lee et al. [27] 81.5% 96.3% 99.1% 0.572 0.139 - 0.193 - 0.096
Fu et al. [10] 82.8% 96.5% 99.2% 0.509 0.115 0.051 - - -
Kundu et al. [24] 85.6% 96.6% 99.1% 0.506 0.114 0.046 - - -
Zhang et al. [51] 81.5% 96.2% 99.2% 0.501 0.144 - 0.181 - -
Lee and Kim [28] 83.7% 97.1% 99.4% 0.538 0.131 - 0.180 0.148 0.087
Zhang et al. [50] 84.6% 96.8% 99.4% 0.497 0.121 - 0.175 - -
Hu et al. [16] 86.6% 97.5% 99.3% 0.530 0.115 0.050 - - -

Proposed (Dense) 85.0% 96.9% 99.2% 0.457 0.127 0.053 0.160 0.128 0.088
Proposed (PNAS) 87.0% 97.4% 99.3% 0.430 0.119 0.050 0.151 0.123 0.078

4.3 Comparison with conventional algorithms

Table 3 compares the performances on NYUv2. Even ‘Proposed (Dense)’ out-
performs all conventional algorithms by a large margin in terms of RMSElin and
RMSElog, and provides comparable or better results in terms of other metrics.
In particular, [28] adopts the same DenseNet as the backbone, but its decoder
structure and post-processing scheme are much more complicated that those of
‘Proposed (Dense)’. Nevertheless, ‘Proposed (Dense)’ outperforms [28] in most
metrics, which means that the proposed loss rebalancing algorithm improves the
depth estimation performance effectively. Moreover, ‘Proposed (PNAS)’ outper-
forms all algorithms in most metrics. Fig. 4 shows examples of depths maps,
predicted by ‘Proposed (PNAS)’.

Table 4. Comparison on Make3D [39].

Evaluated in 0-70m depth range

RMSElin ARD log10

Karsch et al. [20] 15.10 0.361 0.148
Liu et al. [34] 12.89 0.307 0.125
Kundu et al. [24] 9.56 0.452 -
Xu et al. [46] 8.56 0.198 -
Fu et al. [10] 7.32 0.162 0.067

Proposed 5.87 0.231 0.082

Table 4 shows that the proposed algorithm also provides excellent perfor-
mance on the outdoor dataset Make3D. We see that the proposed algorithm
outperforms the existing algorithms in terms of RMSElin. The supplemental
document shows that the proposed algorithm yields competitive results on the
KITTI dataset [11] as well.
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4.4 Ablation studies

We analyze the depth estimation performance of the proposed algorithm on the
NYUv2 test split in Table 5. Here, LD. LM, LG, and LN denote the sets of
depth, mean-removed, gradient, and normal losses in Table 1, respectively. Also,
Lk denotes the set of losses at spatial scale k. Each model is trained for 5 epochs
using three training datasets [4,41,43]. Since the network training has stochastic
properties, we show the average performance of the three models for each setting
for more reliable comparison.

Loss function space: From Part (a), the following observations are made.

• {`0D, `0M, `0r , `0c} and {`0D, `0r , `0c , `0N} correspond to the loss sets of [8] and [16],
respectively. They make small improvements as compared with the baseline
using only `0D.

• By employing multi-scale losses, greater performance gains are achieved. It
is most effective to combine gradient losses with depth losses (LD ∪ LG).
This is presumably because gradient losses are more widely distributed in
the loss function space in Fig. 2 than mean-removed or normal losses are.

• Coarse-scale losses (L3 ∪ L4 ∪ L5) are more effective than fine-scale ones
(L0 ∪ L1 ∪ L2). Using the finest-scale set L0 only is the least reliable.

Loss rebalancing: Part (b) demonstrates the effectiveness of the proposed loss
rebalancing algorithm. Compared with the corresponding settings in Part (a)
using the same loss functions, the improved scores are in red, while the worsened
ones in blue. As mentioned above, coarse-scale losses are more important for
reliable depth estimation. Also, as shown in the bottom row in Fig. 3, the loss
rebalancing algorithm emphasizes these important losses at the beginning of
training. Therefore, in all cases including coarse-scale losses, the loss rebalancing
algorithm improves the depth estimation performances. On the other hand, if
only fine-scale losses are used (L0 or L0∪L1∪L2), the loss rebalancing algorithm
becomes ineffective. However, by comparing the results of the entire loss function
space L to those of L3∪L4∪L5, we see that these fine-scale losses also contribute
to the performance improvement.

Scheduling of λ: Part (c) compares the performance according to the schedul-
ing of λ in (11). As discussed in Section 3.2, a bigger λ focuses more on easy
losses, such as depth, global-mean-removed, and other coarse-scale ones. Note
that λ = 3 provides better results than λ = −3. However, the settings using
decreasing λ provide better results. This implies that focusing on easy losses
first and on difficult ones later is an effective strategy. Among all settings, the
default setting λ : 3→ −3 provides the best results.

Weight initialization: The first two rows in Part (d) show that the weight
initialization in itself does not contribute to the training. However, prior to the
weight rebalancing, it is essential to equalize the contribution of losses. If each

loss has a different magnitudes, the ratio P
(t)
i and its change ∆P

(t)
i in (11) are

not meaningful, invalidating the rebalancing algorithm. Thus, the rebalancing
without the initialization yields unreliable results in the third row of Part (d).
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Table 5. Ablation studies using various settings: ‘I’ means the weight initialization
and ‘R’ means the weight rebalancing. The best results are boldfaced. In Part (b), the
improved results (compared to Part (a)) are in red, while the degraded ones in blue.

(a) Combination of loss functions

# Losses I R λ δ1 RMSElin RMSElog ARD

{`0D} 1 - - 0 84.8% 0.474 0.164 0.128
{`0D, `

0
M, `

0
r , `

0
c} 4 - - 0 85.6% 0.456 0.159 0.124

{`0D, `
0
r , `

0
c , `

0
N} 4 - - 0 84.8% 0.472 0.164 0.127

LD ∪ LN 24 - - 0 86.3% 0.448 0.155 0.121
LD ∪ LM 30 - - 0 85.9% 0.455 0.157 0.124
LD ∪ LG 36 - - 0 86.5% 0.445 0.153 0.117

L0 13 - - 0 85.3% 0.462 0.160 0.132
L0 ∪ L1 ∪ L2 39 - - 0 85.7% 0.454 0.157 0.122
L3 ∪ L4 ∪ L5 39 - - 0 86.6% 0.444 0.153 0.119

L 78 - - 0 86.4% 0.440 0.153 0.122

(b) Effectiveness of loss rebalancing algorithm

LD ∪ LN 24 X X 3→ −3 86.3% 0.440 0.153 0.119
LD ∪ LM 30 X X 3→ −3 86.3% 0.446 0.154 0.119
LD ∪ LG 36 X X 3→ −3 86.9% 0.437 0.151 0.118

L0 13 X X 3→ −3 84.8% 0.466 0.161 0.126
L0 ∪ L1 ∪ L2 39 X X 3→ −3 85.5% 0.456 0.158 0.123
L3 ∪ L4 ∪ L5 39 X X 3→ −3 86.7% 0.443 0.152 0.116

L 78 X X 3→ −3 87.0% 0.434 0.150 0.117

(c) Scheduling of λ

L 78

X X −3 84.7% 0.459 0.161 0.130
X - 0 86.5% 0.443 0.154 0.118
X X 1 86.5% 0.442 0.154 0.123
X X 3 86.6% 0.445 0.153 0.117
X X 2→ −2 86.8% 0.439 0.151 0.116
X X 3→ −3 87.0% 0.434 0.150 0.117
X X 5→ −5 86.4% 0.445 0.153 0.121

(d) Necessity of weight initialization

L 78

- - 0 86.4% 0.440 0.153 0.122
X - 0 86.5% 0.443 0.154 0.118
- X 3→ −3 85.6% 0.459 0.157 0.127
X X 3→ −3 87.0% 0.434 0.150 0.117

(e) Another weighting algorithm [21]

L 78 - 85.6% 0.455 0.160 0.125

Table 6. Performance comparison of the proposed depth estimators using different
backbones on NYUv2 [41].

The higher, the better The lower, the better

δ1 δ2 δ3 RMSElin ARD log10 RMSElog RMSEsi SRD

VGG16 77.2% 95.0% 99.0% 0.544 0.160 0.067 0.196 0.160 0.117
ResNet50 82.4% 96.3% 99.1% 0.482 0.138 0.058 0.174 0.142 0.094
SENet154 87.1% 97.5% 99.4% 0.426 0.116 0.049 0.149 0.123 0.074
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Weighting algorithm [21]: Part (e) replaces the proposed loss rebalancing
algorithm with the weighting scheme in [21]. Their maximum likelihood formu-
lation assumes the tasks are independent of one another. This assumption is
invalid in L because all losses are derived from the same depth map. Hence,
their scheme performs worse than the proposed algorithm. Similarly to the first
row of Fig. 3, [21] emphasizes difficult losses.

4.5 Different backbone networks

We verify that the proposed algorithm is effective regardless of a backbone net-
work. In Table 6, We replace the encoder backbone with widely-used networks:
VGG16 [42], ResNet50 [14], and SENet154 [17]. By comparing Table 6 to Ta-
ble 3, we see that, for each backbone, the proposed algorithm outperforms the
conventional algorithms using the same backbone. For instance, [8], [25], and [16]
use VGG16, ResNet50, and SENet154 as their backbones, respectively.

Table 7. Training and testing times of the proposed algorithm on NYUv2 [41].

Training {`0D} L3 ∪ L4 ∪ L5 L Testing

s/iter 1.63 1.70 1.97 s/scene 0.047

4.6 Time complexity

Table 7 analyzes the complexity of the proposed algorithm in training and test-
ing. The experiments are done with a TITAN X GPU. For training, using more
losses increases the training time. However, compared to the use of `0D alone, the
training time increases only 4% and 21% for L3 ∪ L4 ∪ L5 and L, respectively,
even though the number of losses increases from 1 to 39 and 78. Regardless of
the loss setting, proposed algorithm requires the same inference time.

5 Conclusions

For monocular depth estimation, we constructed a loss function space of diverse
loss terms and showed that the proposed space improves the depth estimation
accuracy without increasing the network complexity or inference time. Also, we
proposed the loss rebalancing algorithm to make each loss term contribute to the
training in a balanced manner. Experimental results showed that the proposed
depth estimators achieve excellent performances on various datasets.
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