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Abstract. We propose a markerless end-to-end training framework for
parametric 3D human shape models. The training of statistical 3D hu-
man shape models with minimal supervision is an important problem in
computer vision. Contrary to prior work, the whole training process (i)
uses a differentiable shape model surface and (ii) is trained end-to-end
by jointly optimizing all parameters of a single, self-contained objective
that can be solved with slightly modified off-the-shelf non-linear least
squares solvers. The training process only requires a compact model def-
inition and an off-the-shelf 2D RGB pose estimator. No pre-trained shape
models are required. For training (iii) a medium-sized dataset of approx-
imately 1000 low-resolution human body scans is sufficient to achieve
competitive performance on the challenging FAUST surface correspon-
dence benchmark. The training and evaluation code will be made avail-
able for research purposes to facilitate end-to-end shape model training
on novel datasets with minimal setup cost.
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1 Introduction

Statistical human shape models are a prerequisite for a wide variety of tasks
such as shape completion, 3D virtual avatar generation, e.g . for virtual try-on,
gaming, and markerless motion capture.

Conventional approaches [3,18,26] for human shape model training employ a
two-stage process consisting of a template-to-scan registration step followed by
a model parameter estimation step. In the first step, high-quality 3D scans of
humans are registered to a common template mesh using additional supervision,
e.g . hand-picked landmarks [3, 18]. Once the scans are brought into correspon-
dence, the registered meshes (registrations) are manually reviewed for errors.
Correct registrations are then used for the training process to produce multi-
person articulated human shape models of high quality.

Shape model training is a chicken-and-egg problem. High-quality registra-
tions are best acquired with a good model while the training of a good model
requires high-quality registrations. Alternatively, a bootstrapping approach [18]
employs a weak model to regularize the registration process and train a better
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(a) Pose space (b) Shape space

Fig. 1: Samples from our trained articulated morphable human shape model. A
template with N = 1326 vertices produces realistic avatars. Shapes are acquired
by changing pose-specific parameters (a) and shape-specific parameters (b).

model. This process can be repeated multiple times with alternating optimizers.

In contrast, recent advances in 3D hand model inference on noisy depth
images indicate that joint, continuous optimization of data correspondences and
model parameters is less likely to converge to bad local minima [33]. Similar
work on joint shape model training for hands [21] and humans [37] exists. A
differentiable surface model (e.g . subdivision surfaces) enables joint, continuous
optimization. In this work we follow the best practices for differentiable shape
model formulation [21, 27, 37], objective formulation and joint optimization [11,
12,21,36]. The training and evaluation code1 will be made available for research
purposes to facilitate end-to-end shape model training on novel datasets with
minimal setup cost. Our contribution is threefold:

First, we propose a differentiable multi-person articulated human shape mo-
del (inspired by [21,26,37]) that can be trained using joint optimization without
any 3D supervision. Differentiability is achieved using a Catmull-Clark subdi-
vision surface module [9] with additional benefits: Only a low-poly base mesh
is required to generate realistic 3D avatars (see Fig. 1) and the model param-
eter count is reduced considerably. Similar to the model proposed in [26], the
resulting model is compatible with 3D-modelling software and can be computed
efficiently.

Secondly, we formulate a single objective for model training that can be mini-
mized with off-the-shelf nonlinear least squares solvers with minor modifications.
We employ common best practices to deal with non-euclidean manifolds, robust
cost functions, and discrete data-to-model correspondence updates.

Our third contribution is the application of the aforementioned differentiable
multi-person shape model and the proposed optimization procedure to roughly
1000 markerless low-resolution point clouds. The advent of least squares solvers
on the GPU [11] enables large scale joint optimization for multi-person shape mo-
del training which was previously only considered using alternating optimization

1 https://github.com/Intelligent-Systems-Research-Group/JOMS/
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methods. We evaluate the reconstruction quality of our approach and benchmark
the competitive generalization quality on a challenging shape correspondence
benchmark.

2 Related Work

2.1 Human Shape Models

Early work by Blanz and Vetter [4] introduces a morphable shape model for
faces using a triangulated mesh structure. Registered meshes in the training set
are distilled to a morphable model using principal components analysis (PCA).

Anguelov et al. [3] propose the popular morphable human shape model
SCAPE. The model factorizes in a subject-specific shape model and a pose
specific shape model. SCAPE does not model the vertex displacement directly
but instead relies on triangle transformations. The triangle soup is realigned
with an additional least squares estimation step. This approach is also not di-
rectly compatible with current software packages, 3D modelling software, and
game engines. The required registered meshes are generated in a semi-supervised
preprocessing step.

Hirshberg et al. [18] modify SCAPE and incorporate the registration process
into the model using alternating optimization. This approach is enhanced by
Bogo et al. [5] to incorporate texture information and deal with temporal infor-
mation that arises by shapes in motion [6]. The Stitched Puppet method [38]
transforms SCAPE into a probabilistic graphical model and fits the model to
data using a particle-based optimization method.

Loper et al. [26] introduce the SMPL model. This approach produces shape
models that are compatible with 3D modelling software. The quality of the
model relies heavily on high-quality registrations. Our model formulation extends
SMPL and we review a modified version in Section 3. SMPL is extended to faces
[24], hands [30] and modelling infants [17]. Multiple models can be combined to
construct a fully articulated morphable 3D human shape model [20,27].

In contrast to bootstrapping approaches that require registrations, deep learn-
ing approaches find shape correspondences without an explicit model [16]. How-
ever, many deep learning approaches still rely on templates for training data
generation. [10,14,15,23] are trained on large scale synthetic datasets like SUR-
REAL [34]. SURREAL is generated with the help of trained shape models.

2.2 Subdivision Surfaces

Training or fitting mesh models is usually done with variants of nonrigid iterative
closest point (NICP) where the data to model correspondence finding and model
training is performed in an alternating fashion. To use joint optimization of
correspondences and model parameters a differentiable surface representation is
required. One way to transform a polygonal mesh into a differentiable surface is
the application of subdivision surfaces [9]. Transforming a polygonal mesh into
a subdivision surface is easy and can be implemented as a post-processing step.
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Cashman and Fitzgibbon [8] train animal shape models on segmented images
using a template mesh with subdivision surfaces. Taylor et al. [32] learn a subdi-
vision surface hand model from depth images and cast the whole training process
as a single joint optimization problem. They incorporate subdivision surfaces to
allow for continuous sliding of the corresponding surface points. Khamis et al. [21]
build on this framework to train a morphable articulated hand model from depth
images. Taylor et al. [33] use the subdivision surface hand model from [21] to
build a hand tracker within a joint continuous optimization framework. Cat-
mull Clark subdivision surfaces [9] have also been considered for human surface
models in the context of surface reconstruction [19] and motion capture [37].
The major difference between [37] and our work is that in our work we train a
multi-person shape model with the addition of shape blend-shapes [26]. The ap-
proach outlined in [37] requires existing sparse surface correspondences while our
method describes a fully automatic model training pipeline. In contrast to [37],
we also provide a quantitative evaluation to show the efficacy of our approach.

2.3 Joint Optimization

In general, alternating optimization is employed due to implementation simplic-
ity and scalability. It is also used in variants of NICP which is in turn required
when the surface is not differentiable. Current shape models are trained using
forms of bootstrapping with human supervision in the loop.

Taylor et al. [32] compare alternating with joint optimization and report
an increased convergence rate and a decreased reconstruction error using joint
optimization. For optimization, they linearize the surface at the corresponding
point with the tangent plane. The update in the tangent plane is applied to the
underlying surface by traversing the mesh and transforming the update direction
and magnitude between surface patches accordingly.

Robustified cost functions are prevalent in shape model training to deal with
noisy 3D data. Zach [35] proposes a joint optimization scheme for robust bundle
adjustment using lifting methods. Lifting methods introduce additional vari-
ables and circumvent alternating optimization. Zach and Bourmaud [36] deliver
further insight into lifting and gradual refinement for bundle adjustment and
recommend using the lifting method when a fast decrease in the objective is
preferred and a sensible initial estimation of parameters is known.

Large scale optimization with nonlinear least squares objectives has been
made more accessible through open-source optimizers such as Ceres [1] and Opt-
lang [11]. DeVito et al. [11] introduce a GPU solver and show that using generic
Gauss-Newton and Levenberg-Marquardt with conjugate gradient as the inner
solver is competitive to handcrafted problem-specific solvers for many optimiza-
tion problems that arise in computer graphics and computer vision.

3 Articulated Morphable Shape Model

The employed statistical shape model is a variation of SMPL [26] that enables
joint optimization of all parameters. A differentiable surface model derived from
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the SMPL pose deformation model is introduced by [37]. They use an articulated
person model for joint optimization. The model we propose incorporates the
multi-person aspects of [26] and the subdivision surfaces for smooth parametric
shape modelling from [21] into the articulated human shape model from [37].

In order to make the following formalism easier to read, the supplementary
material contains tables summarizing symbols.

Formalism: The model template consists of a base mesh with N = 1326 vertices
and F = 1324 quadrilateral faces. The underlying skeleton consists of K = 16
joints. A root joint is added and the resulting K + 1 nodes are connected by
K edges (often referred to as bones in the literature). A visualization of the
body parts can be found in the supplementary material. Sample meshes can be
instantiated from the statistical model using subject-specific parameters ~β ∈ RB
with B = 10 and pose specific parameters (R,m) ∈ SO(3)K+1 × R3. (R,m) =
(R0, R1, . . . , RK ,m) is separated in global pose parameters R0 (global rotation),
m (global translation) and skeleton pose parameters R1, R2, · · · , RK . The mean
shape is denoted by T̄ ∈ R3N (vectors in R3N are interpreted as stacked x, y, z
coordinates of N vectors in R3). Shape blend-shapes are denoted by S ∈ R3N×B

and corrective pose blend-shapes by P ∈ R3N×9K . Each column in S denotes a
shape blend-shape and the columns of P denote the 9K corrective pose blend-
shapes. Shape blend-shapes are introduced to model varying shape between dif-
ferent subjects. In contrast to [26], the shape blend-shapes are not enforced to
be orthogonal. Corrective pose blend-shape are incorporated to counteract arte-
facts (e.g . surface shrinking near joints during mesh articulation) when applying
linear blend skinning Eq. (5). In contrast to [26], our skeleton always binds to the
mean shape T̄ with the zero pose (R∗,m∗) = (I, I, . . . , I,0) ∈ SO(3)K+1 × R3.

Blend-Shape Application: Blend-shapes are applied to the mean shape T̄ using

T = T̄ + S~β + P vec(R1 −R∗1, R2 −R∗2, . . . , RK −R∗K), (1)

where I ∈ R3×3 is the identity matrix and vec(·) flattens each argument and
concatenates the vectors to form a single column vector of the required shape.
The resulting vertex positions after the application of all linear blend-shapes are
denoted by T . We prescribe a fixed sparsity pattern to the corrective pose blend-
shape matrix P which reduces the parameter count and prevents overfitting. In
our implementation, we assign each vertex to two adjacent joints which leads to
at most 2 · 9 = 18 nonzero entries per row in P.

Subject-specific Skeleton: To articulate the shape we use a skeleton that defines
a forward kinematic tree. The subject-specific joint locations in the rest pose are
given by

J = J̄ + J ~β, (2)

where J̄ ∈ R3K are the joint locations corresponding to the mean shape T̄
and J ∈ R3K×B are the skeleton basis shapes that are correlated with the
respective shape blend-shapes S. We follow [37] for the subject-specific skeleton
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formalism instead of [26] which instead regresses from T̄ +S~β to J by employing
a sparse regression matrix with 3N ·3K parameters. Our end-to-end optimization
framework prohibits the use of sparsity inducing regularizers (as used by [26]).
Additionally, only (B + 1)3K instead of 9NK parameters are introduced.

Kinematic Tree: We use the resulting joint locations and a prescribed skeleton
topology to construct a transformation for each joint 1 ≤ k ≤ K in the skeleton.
This transformation can then be applied to any x ∈ R3. The transformation of
x w.r.t. the joint indexed by k is denoted by G′k : R3 × SO(3)K+1 × R3K → R3

with

G′k(x;R,J) =

1 0 0 0
0 1 0 0
0 0 1 0

Gk

(
x− jk

1

)
where (3)

G0(R,J) =

(
R0 0
0T 1

)
and Gk(R,J) =

(
Rk jk − jA(k)

0T 1

)
GA(k) ∀1≤k≤K . (4)

The position of the joint indexed by k is jk ∈ R3, A(k) denotes the ancestor
joint index with respect to joint indexed by k and j0 = 0. Note that the x− jk
transforms x from the joint indexed by k to the root node.

Linear Blend Skinning: The kinematic tree defined above is used to transform
the vertex positions T to T ′ using linear blend skinning [22]:

t′i = m +

K∑
k=1

wk,iG
′
k(ti;R,J), ti, t

′
i ∈ R3,∀1≤i≤N (5)

where ti, t
′
i ∈ R3 denote the i-th vertex of T and T ′ respectively and wk,i ∈ [0, 1]

is a linear blend skinning weight for vertex ti transformed by G′k. All blend
skinning weights are denoted by W ∈ [0, 1]K×N . The blend skinning weights are
constrained by

K∑
k=1

wk,i = 1 (6)

for all vertices indexed by i. After linear blend skinning and global translation
m, the resulting vertex positions are denoted by T ′ ∈ R3N .

Complete Model Formulation: The whole mesh transformation is denoted by

T ′ = M(R,m, ~β;Θ), (7)

where Θ = (T̄ ,S, J̄ ,J ,P,W) denote the aggregated model parameters. We
convert the quad mesh into a subdivision surface denoted by

S(u;T ′) : Ω × R3N → R3, (8)

where u = (s, t, f) denotes a point on the surface S in local 2D coordinates
(s, t) ∈ [0, 1]2 with patch index f ∈ {1, 2, · · · , F}. More precisely u consists of
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(a) Hierarchical data setup (b) OpenPose on synthetic images

Fig. 2: (a) Visualization of the hierarchical input data and latent variables. Top
left: Depiction of different persons in the training corpus. Top right: A single
person with shape parameters ~β shown in different body poses. Bottom left: A
fitted model with subject-specific shape coefficients ~β and pose-specific param-
eters (R,m). The 3D point cloud is indicated with filled blue circles. Bottom
right: Zoom in on a single point in the point cloud with 3D position p and nor-
mal n. The corresponding model surface point is parameterized by (u,R,m, ~β).
Each datapoint induces a residual for the data term EData. (b) Keypoints: This
figure shows an input scan from the Dynamic FAUST dataset [6] with 8 vir-
tual cameras surrounding the scan in the center. Keypoints are extracted and
visualized from each synthetic image using OpenPose [7].

a 2D bezier patch parameterization [13] and the respective patch index, so u ∈
Ω = [0, 1]2 × {1, 2, · · · , F}. We implement S approximately using the approach
outlined in [25] due to its efficiency and simplicity. Implementation details are
provided in the supplementary material.

4 Objective and Optimization

To avoid a cluttered multi-index formalism we introduce a number of sets to
describe the hierarchical nature of the data and accompanying latent variables
(see Fig 2a).

The training of the human shape requires the estimation Θ̂ of model parame-
ters Θ from given point cloud measurements (scans) of different instances. Here,
an instance denotes a 3D-scan of a specific subject in a specific pose. For n scans
of Q individual subjects and P measurements per scan, we subsume all latent
parameters in the triplet Γ = (B,R,U), where B is the set of Q latent shape

vectors ~β ∈ B, R is the set of n latent pose configurations (R,m) ∈ R and U
is the set of nP latent surface correspondences u ∈ U . In total, this leads to an
unknown variable count of

|B|+ |R|+ |U| = QB + 3(K + 2)n+ 2Pn. (9)

The estimation of the model parameters Θ requires the estimation of the
latent parameters denoted by Γ̂ . We cast the model learning process as a non-
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linear least squares problem with unknowns Θ and Γ and propose the following
cost function:

Data Term: The main functional is defined as

EData =
∑

(p,u,R,m,~β)∈IData

φ
(
||S(u,M(R,m, ~β;Θ))− p||2

)
, (10)

where p ∈ R3 denotes a point on the 3D scan, IData ⊂ R3×U ×R×B contains
all data points with latent variable dependencies and φ : R → R with φ(r) =
r2/(r2 + ρ2) is the robust Geman-McClure kernel.

Cost Function: Since the data term itself is not sufficient to lead to satisfactory
results, additional regularization terms have to be added to constrain the solu-
tion space to minimizers which are restricted to non-degenerate shapes. To this
end, we introduce additional prior information and regularization terms. Our
complete cost function is

E =λDataEData + λ2D-jointE2D-joint + λ2D-surfE2D-surf + λmeanEmean

+λbshapeEbshape + λpshapeEpshape + λsymmEsymm + λsymm-skelEsymm-skel

+λjointEjoint + λweightsEweights + λconvexEconvex + λshapeEshape

+λposeEpose + λgroundEground

(11)
and consists of a weighted sum of squared error terms E• and non-negative
scalar hyperparameters λ• that control the impact of each term. The values for
the weights λ• are listed in the supplementary material. The remaining section
describes the regularization terms in detail.

2D Joint Term: When the model pose and shape is initialized far away from
the pose and shape of the scan, the optimization of the data term is likely to
end in a local minimum. In order to steer the pose and shape estimation in the
right direction, we define a landmark term based on synthetic views of the scans.
We apply OpenPose [7] on these scans for 2D keypoint extraction (see Fig. 2b).
Those keypoints, which correspond to joints (and have a detection score above
0.5) are used as landmarks. We denote Π as the set of |Π| = 8 virtual cameras
and add a landmark term that penalizes the distance between the model joints
projected onto the virtual 2D images and the 2D landmarks:

E2D-joint =
∑

(Q,π,R,m,~β)∈I2D-joint

K∑
k=1

||π(G′k(jk, R,J) + m)− qk||2 (12)

where π : R3 → R2 is a camera-specific projection that maps points in world
coordinates to points in image coordinates. I2D-joint ⊂ R2K×Π×R×B contains
the 2D-labels Q ∈ R2K with qk ∈ R2 for each joint k in an image with latent
dependencies. Even though OpenPose was trained on natural labeled RGB im-
ages [7], the predictions work surprisingly well for non-photorealistic synthetic
images. The camera setup and the synthetic images with keypoint estimations
are depicted in Fig. 2b.
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2D Surface Term: OpenPose not only provides keypoints that correspond to
joints but also provides keypoints corresponding to landmarks on the surface
of the scan (e.g . nose and ears). We propose an additional error term for such
keypoints. The 2D surface landmark term

E2D-surf =
∑

(q′,u′,π,R,m,~β)∈I2D-surf

||π
(
S(u′,M(R,m, ~β;Θ))

)
− q′||2, (13)

encourages the optimization process to bring the model surface points at u′ ∈ Ω
close to the 2D annotations q′ ∈ R2 in the image space after the perspective
projection π. I2D-surf ⊂ R2 ×Ω ×Π ×R×B contains all 2D surface landmarks
and links the relevant surface location, camera projection function and latent
dependencies.

Smoothing Terms: Self-intersections for mesh-based model-fitting approaches
have to be mitigated during optimization. Additionally, we have to deal with
missing data (e.g . armpits and soles of the feet) and an interpolation scheme
has to be adopted in such body regions. To this end, we correlate T̄ , S and
P so that vertex displacement corresponding to adjacent vertices in the graph
of the mesh are similar. When interpreting these variables as vector fields on
the mesh we prefer solutions where the vector fields are smooth. One way to
encourage this behavior is by exploiting the linear, positive semidefinite Laplace-
Beltrami operator from the template shape with vertex positions T̄ init ∈ R3N .
We represent the linear discrete Laplace-Beltrami operator by the matrix ∆ ∈
RN×N and denote ||C||2∆ = CT∆C by slight abuse of notation for a provided
vector C ∈ RN . We estimate ∆ with vertex positions T̄ init using the approach
from [2]. Our model parameters live mostly in R3N . We make use of ∆ by
applying it to the N different x, y and z components in the spirit of [31]. To this
end, we employ the regularization terms

Emean = ||T̄x − T̄ init
x ||2∆ + ||T̄y − T̄ init

y ||2∆ + ||T̄z − T̄ init
z ||2∆ (14)

Ebshape =

B∑
j=1

(
||S(j)

x ||2∆ + ||S(j)
y ||2∆ + ||S(j)

z ||2∆
)

(15)

Epshape =

9K∑
j=1

(
||P(j)

x ||2∆ + ||P(j)
y ||2∆ + ||P(j)

z ||2∆
)

(16)

where ·x, ·y, ·z refer to the x,y or z component from a vector in R3N and ·(j)
denotes the j-th column of the indexed matrix.

Symmetry Term: The body model is split into the left- and right-hand side along
the y-z plane. We employ a symmetry term that encourages symmetric shapes
with

Esymm = ||T̄x + T̄mirror
x ||2 + ||T̄y − T̄mirror

y ||2 + ||T̄z − T̄mirror
z ||2+

B∑
j=1

(
||S(j)

x + S̃(j)
x ||2 + ||S(j)

y − S̃(j)
y ||2 + ||S(j)

z − S̃(j)
z ||2

)
,

(17)
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where T̄mirror and S̃ permute T̄ and S, respectively, so that each vertex maps
to its mirrored partner. A corresponding term exists for J̄ and J with

Esymm-skel = ||J̄x + J̄mirror
x ||2 + ||J̄y − J̄mirror

y ||2 + ||J̄z − J̄mirror
z ||2+

B∑
j=1

(
||J (j)

x + J̃ (j)
x ||2 + ||J (j)

y − J̃ (j)
y ||2 + ||J (j)

z − J̃ (j)
z ||2

)
,

(18)

where J̄mirror and J̃ are defined accordingly.

Skeleton Consistency Term: Our current formulation does not prevent the opti-
mizer to move the joints to arbitrary locations outside of the surface. To coun-
teract this behavior, we softly constrain the mean joint positions J and skeleton
basis shapes J to deform with the mean shape T̄ and blend-shapes S at some
specified vertices. We denote the set of manually specified vertex indices for the
joint indexed by k with Ringk (see e.g . [21] or the supplementary material). The
joint error term is defined as

Ejoint =

K∑
k=1

||jk − 1

|Ringk|
∑

i∈Ringk

t̄i||2 +

B∑
b=1

||J (b)
k − 1

|Ringk|
∑

i∈Ringk

S(b)
i ||

2

 ,

(19)

where S(b)
i ∈ R3 denotes the i-th vertex position of the b-th blend-shape and

J (b)
k ∈ R3 denotes the k-th joint of the b-th skeleton basis shape.

Blend-Skinning Term: We encourage blend-weightsW that are close to an initial
estimate W init (see the supplementary materials for details) with

Eweights = ||W −W init||2F . (20)

Convex Combination Term: We introduce another term that softly encourages
the convex combination constraint Eq. (6) for the blend-skinning weights W via

Econvex =

N∑
i=1

(
1−

K∑
k=1

wk,i

)2

. (21)

Shape Regularization Term: We encourage the blend-shape coefficients ~β to be
small using

Eshape =
∑
~β∈B

||~β||2. (22)

Pose Regularization Term: We want to discourage unrealistic human postures
with the addition of simple pose regularization term

Epose =
∑

(R,m)∈R

K∑
k=1

||Rk − R̄k||2F (23)

where R̄k ∈ SO(3) denotes the mean rotation of joint k. These are also intro-
duced as variables during optimization and denoted by R̄.
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Ground Plane Consistency Term: To counteract missing 3D measurements on
the soles of the feet we employ a ground plane term to compensate for missing
data. We assume a known ground plane perpendicular to the y-axis and offset
at height H ∈ R. We penalize uniformly sampled model surface points u′′ ∈ Ω
that fall below the ground plane via

Eground =
∑

(u′′,R,m,~β)∈Iground

(
S(u′′,M(R,m, ~β;Θ))y −H

)2

, (24)

where Iground ⊂ Ω × R × B contains sampled surface points below the ground
plane with latent dependencies for each scan and ·y denotes the y-coordinate of
a point in R3.

Optimization: The objective defined in Eq. (11) is cast as a nonlinear least
squares problem and minimized using a truncated variation of Levenberg-Marquardt,
where the normal equations are solved approximately using the conjugate gra-
dient method. This leads to the local minimizers

Θ̂, R̂ = arg min
Θ,R̄

min
Γ
E(Γ ;Θ, R̄). (25)

Optimization is performed using the Optlang [11] framework. Several aspects
of the optimization procedure require special attention (e.g . discrete correspon-
dences updates) and are discussed in the supplementary material. We use a
varying hyperparamter schedule for λ•, encouraging a rough alignment of body
pose before relaxing the constraints on S,W and P. At the start of the opti-
mization we mainly rely on detected keypoints. In the later stages, the keypoints
are discarded and Edata takes precedence.

5 Experimental Evaluation

5.1 Training

We train a female, a male and a unisex model. For training, we test the limits of
our approach and use the entire GPU memory (11 GB). We train the models on
n = 911 scans each where the first 250 scans are acquired from the D-FAUST
dataset [6]. D-FAUST contains 10 subjects (5 female and 5 male) and spans a
wide variety of body poses. We sample 50 scans per person from this dataset
by clustering the pose space with k-means on multi-view OpenPose 3D joint
predictions to cover a diverse set of poses. The remaining 661 scans are randomly
chosen from the CAESAR dataset [29]. We subsample all 911 scans to 20,000
data points each. This results in a total of Q = 666 distinct individuals for each
model in the training process. One training process simultaneously optimizes
more than 3.6 · 107 latent parameters plus |Θ| + 3K model parameters (the
count of latent parameters Eq. (9) increases with the training set size). This
setup requires up to three days of training on an NVIDIA RTX 2080 TI.
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Fig. 3: (a) Visualization of our trained female shape model, from left to right:
Mean shape and the first three PCA components sorted by explained variance
in descending order (±3σ for the first two principal components and ±5σ for the
third principal component). The model without applied subdivision is overlayed
as a wireframe mesh. (b) After training with B = 10 shape blend-shapes, we
compute the shape and skeleton for each person in the training set and create
new blend-shapes using PCA. We vary the number of principal components from
0 to 10 and record the average reconstruction error for each setting.

Fig. 4: Qualitative model fit results on the FAUST dataset: This figure shows 15
different poses in total of all 10 different subjects. The scans are shown in red
and the model fits are shown in light blue.

Model Subspace Evaluation: We analyze the factorization of shape and pose
parameters of our models qualitatively. Therefore, we keep the pose parameters
(R,m) fixed to a non-canonical pose and vary ~β to see if a change in ~β leads to
obvious changes in posture. Results of this experiment such as shown in Fig. 1b
indicate, that shape and pose are factored correctly. In particular changes in ~β
do not lead to changes in pose.

Principal Components: We orthogonalize the trained shape blend-shapes S of
our female model using PCA and visualize the first three principal components
(see Fig. 3a). The first two principal components (PC) correspond to more or
less correlated variations in body weight and height. This result is similar to [3]
and [28] where the first two components describe variations in gender in addition
to weight and height. It differs from the female model in SMPL [26], where the
first PC clearly corresponds to body size and the second PC to body weight. We
identify two different explanations: (I) Our training set consists of less (approx.
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one third of [26]) and different (e.g . European vs. North American CAESAR
dataset) individuals. Therefore, our training set is very likely to represent an-
other statistical distribution. (II) Missing texture information can lead to sliding
of correspondences along the surface [5] which has a negative impact on the mo-
del training process. We can not easily analyze (I) due to memory constraints
on the GPU and the non-availability of the multi-pose dataset. We analyze (II)
by benchmarking our approach on the FAUST correspondence challenge in Sec-
tion 5.2.

Model Capacity: We evaluate the reconstruction error by incrementally adding
shape blend-shapes to our model (see Fig. 3). After training with B = 10 shape
blend-shapes, we compute the shape and skeleton for each person in the training
set and create new blend-shapes using PCA. We vary the number of principal
components from 0 to 10 and record the average reconstruction error for each
setting (see Fig. 3b). No retraining is performed. The residuals in EData are
interpreted as the reconstruction error and the euclidean distance || · ||22 is com-
puted for each data point. This error is estimated by sampling 20, 000 points
from each scan, computing the distance to the model and averaging the error
over all sampled measurements and scans. This error is not sufficient to evaluate
the quality of the model but it can give further insight into the training process
and model quality. The reconstruction error reduction seems to taper off when
using 7 or more principal components. The average reconstruction error for all
10 principal components is 3.7 mm.

5.2 Inference

For inference we keep Θ̂ and R̂ fixed and estimate Γ̂ = arg minΓ E(Γ ; Θ̂, R̂). For
evaluation we fit our female, male and unisex models on the FAUST dataset [5]
which consists of 10 different persons with 30 scans each.

Qualitative Results: The model-fitting results on 10% of the scans of the FAUST
dataset are depicted in Fig. 4. The 2D keypoint terms lead to convincing rough
alignments. Coarse body proportions are faithfully reconstructed. Few coarse
alignment errors occur due to insufficient pose estimates, mostly stemming from
touching body parts or from erroneous head alignment by OpenPose when the
scan is not facing at least one of the 8 virtual cameras.

Quantitative Results: We evaluate our approach quantitatively using the FAUST
intra-subject challenge and inter-subject challenge. The challenges consist of 100
scan pairs where points on the source scan have to be mapped to corresponding
points on the target scan. We evaluate registration results on FAUST using the
provided evaluation platform. The average error on the intra-subject challenge
and inter-subject challenge for our female model are 2.353 cm and 3.234 cm re-
spectively. We compare our results to the current state of the art (see Table
1): In the intra-subject challenge, our approach performs comparably to the
listed methods. On the inter-subject challenge our approach is on par with the
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Table 1: Quantitative results on the FAUST dataset (average error in cm) and
prerequisites for model training that were used to achieve the reported perfor-
mance.

Intra-subject Inter-subject Dependencies

FAUST [5] 0.7 1.1 strong pose prior
Stitched Puppet [38] 1.568 3.126 SCAPE [3]
3D-CODED [15] (unsup) N/A 4.835 SURR. [34], SMPL [26]
3D-CODED [15] (sup) 1.985 2.878 SURR. [34], SMPL [26]
Deprelle et al. [10] 1.626 2.578 SURR. [34], 3D-CODED [15]
LBS-AE [23] 2.161 4.079 None
Halimi et al. [16] 2.51 N/A None

Female only (Ours) 2.353 3.234 OpenPose [7]
Male only (Ours) 2.387 3.519 OpenPose [7]
Unisex (Ours) 2.304 3.525 OpenPose [7]
Female and male (Ours) 2.301 3.422 OpenPose [7]

Stitched Puppet [38] approach which, in contrast to our method, was trained by
sampling a pre-trained, strong multi-person shape model. The various variants
of the 3D-CODED methods perform worse in their unsupervised settings [15]
or require large labeled synthetic training data to outperform model-based ap-
proaches [10,15]. Finally, we clearly outperform LBS-AE [23] on the inter-subject
challenge. For Halimi et al. [16] no publicly available inter-subject result exists.

6 Discussion and Conclusion

We show that articulated multi-person shape model training can be addressed
within a single objective where all parameters are jointly optimized. The pro-
posed method is markerless in the sense that no handcrafted landmarks are
required and no pre-existing shape model is required, which might implicitly
incorporate expensively generated correspondences. Instead, the landmark term
of our objective deals with untextured 3D scans in combination with the output
of an off-the-shelf 2D keypoint detector with comparatively low accuracy.

The limiting factor of our approach is the memory of the GPU, which re-
stricts the scalability in terms of the resolution and the amount of training data
in comparison to alternating or stochastic optimization methods. On the other
hand, the presented results show, that despite the limitations in terms of reso-
lution and variability of the training data, the achieved accuracy in the FAUST
correspondence challenge is comparable to strong human shape models that have
higher resolution and rely on (semi)-supervised training schemes.
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