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Abstract. This document supplements our paper 6D Camera Re-
localization in Ambiguous Scenes via Continuous Multimodal
Inference. In particular we present the following: (1) technical details
on network architecture, training and modeling of translations, (2) more
evaluations on synthetic data, (3) the used dataset, (4) error metrics, (5)
additional quantitative (ablation) studies on the backbone network, mul-
tiple hypotheses training, uncertainty estimation, effect of the number of
hypotheses on computational time, rotation parameterization and differ-
ent means of assembling the Bingham matrix from the network output,
(6) qualitative results on our real dataset.

1 Modeling translations

As described in the main paper we model translations using mixture density
networks [3]. In more detail, for a sample input image X € RW >3 we obtain
a predicted translation t € R°=2 from a neural network with parameters I'. This
prediction is set to the most likely value of a multivariate Gaussian distribution
with covariance matrix

= . ) (1)
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where o2 is predicted by our model. As a result our model for a unimodal
Gaussian is defined as:
exp(—%(t —t)TZ(t - t))

pr(t|X) = (2m)</2|S [/ ’

(2)

where ¢ = 3 and both t as well as 3 are trained by maximizing its log-likelihood.

Similar to forming a Bingham Mixture Model, we can equally compute a
Gaussian Mixture Model with K components and corresponding weights 7 (X, T'),
such that Zfil 7;(X,T) = 1, to obtain a multi-modal solution. Again both t
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Table 1: Layer specifications. We report the dimensionality of the input fea-
ture vector, N;,, resulting output feature vector, Ny,¢, whether or not batch
normalization (BN) is used and the activation function for each layer.

N; Nowt BN activation
q 2048 K*4 no none
t 2048 K*3 no none
A 2048 K*3 no softplus
3 2048 K*3 no softplus
7w 2048 1024 yes ReLU
1024 512  yes ReLU

512 K  yes ReLU / softmax

and X as well as 7(X, I') are learned by the network and trained by maximizing
the log-likelihood of the mixture model. Note that, in this case, the components
of t are assumed to be statistically independent within each distribution compo-
nent. However, it has been shown that any density function can be approximated
up to a certain error by a multivariate Gaussian mixture model with underlying
kernel function as defined in Eq (2) [3,12].

2 Network and training details

We resize the input images to a height of 256 pixels and use random crops of
size 224 x 224 for training. For testing we use the central crop of the image. As
described in the main paper we use a ResNet-34 [7] as our backbone network,
which was pretrained on ImageNet [15], and remove the final classification layers.
Fully-connected layers are then appended as specified in Tab. 1, where we output
K camera pose hypotheses, q and t, corresponding distribution parameters, A
and X, as well as shared mixture weights 7(X,T'). We use the softplus activa-
tion function to ensure positivity of the Bingham concentration parameters and
Gaussian variances. To satisfy the convention, the Bingham concentration pa-
rameters are then negated. In case of our single component and Bingham-MDN
models we use a softmax activation function, such that Zszl m;(X,T') =1 holds
true. In our MHP version, we first apply a ReLU activation function, that, dur-
ing training, is passed to a cross-entropy loss function. Once trained, we again
apply a softmax on the final weights to form a valid mixture model. Our single
component model equals setting K = 1, whereas for mixture model predictions,
we use K = 50 pose hypotheses. During training, we follow a projected ADAM
optimization [9] with an exponential learning rate decay and train each model
for 300 epochs and a batch size of 20 images. For all models we train with an
initial learning rate of le=4.
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Fig. 1: Additional qualitative results of our synthetically created dataset. If avail-
able, camera poses are colored by their uncertainty.

3 Evaluation on synthetic scenes

We now show in Fig. 1 different query images and localization results on the
synthetic scenes provided in the paper. The superiority of our approach is con-
sistent across different viewpoints. We also provide additional quantitative and
qualitative results on our synthetic dataset. For this aim, we render the ob-
jects/scenes from the predicted camera poses of our methods in Fig. 2. There,
we show the most certain predictions sorted according to the entropy of the
resulting Bingham and Gaussian distributions.

Last but not least, we compute the intersection over union (IoU) with the
renderings obtained from the ground truth camera poses. Considering the hy-
pothesis with the highest weight as the single best prediction, on average our
Bingham-MDN reaches an IoU of 0.62, whereas our MHP distribution model,
Ours-RWTA, achieves 0.88.

4 Details on the acquisition of real ambiguous dataset

Besides our synthetically created dataset, we captured a highly ambiguous real
dataset, consisting of five scenes using Google Tango [11]. Fig. 3 shows ground
truth training and testing camera trajectories, plotted with Open3D [18], as
well as example batch images we acquired for our ambiguous scene dataset. The
resolution of the captured RGB images is 540 x 960 and the spatial extent of
our scenes can be found in Tab. 2. Further, for each image in the Blue Chairs
and Meeting Table scenes, we obtain a ground truth estimate by training an
autoencoder on reconstructing the input images and using the resulting feature
descriptors to obtain the nearest neighbor camera poses. Then we cluster the
resulting camera poses using a Riemannian Mean Shift algorithm [16] and use
the centroids of the resulting clusters as ” ground truth” modes. We visually verify
the results. The autoencoder we use to compute said features contains a ResNet-
34 encoder, followed by subsequent deconvolutions with batch normalization and
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Uncertainty: 0.00 Uncertainty: 0.03 Uncertainty: 0.04 Uncertainty: 0.06 Uncertainty: 0.85
Ground Truth loU: 0.87 loU: 0.76 loU: 0.81 loU: 0.82 loU: 0.35

Uncertainty: 0.00 Uncertainty: 0.02 Uncertainty: 0.04 Uncertainty: 0.06 Uncertainty: 0.07
loU: 0.94 loU: 0.97 loU: 0.99 loU: 0.72 loU: 0.92

Ours-RWTA

Uncertainty: 0.00 Uncertainty: 0.04 Uncertainty: 0.11 Uncertainty: 0.30 Uncertainty: 0.33
loU: 0.83 loU: 0.78 loU: 0.81 loU: 0.82 loU: 0.81

Uncertainty: 0.00 Uncertainty: 0.00 Uncertainty: 0.01 Uncertainty: 0.01 Uncertainty: 0.02
loU: 0.77 loU: 0.78 loU: 0.69 loU: 0.79 loU: 0.81

Fig. 2: Renderings of the top five camera pose hypotheses according to their un-
certainty values for our Bingham-MDN and MHP version, Ours-RWTA. Further
we show the corresponding ground truth query images as well as the intersection
over union of the ground truth and predicted renderings.

Bingham-MDN

Table 2: Spatial Extent of our scenes in meters.
Blue Chairs Meeting Table Staircase Staircase Ext.  Seminar Room

5x46x1.3 43x58x14 49x44x51 56x52x166 53x7.8x26

ReLU activation as the decoder. It is trained with an l5 reconstruction loss for
300 epochs using the Adam Optimizer [)] with a learning rate of le™3 and a
batch size of 20 images. Examples of the obtained ground truth modes can be
found in Fig. 4 (left).

5 Error Metrics

Given a ground truth camera pose, consisting of a rotation, represented by a
quaternion q, and its translation, t, we evaluate the performance of our models
with respect to the accuracy of the predicted camera poses by computing the
recall of ours and the baseline models. We consider a camera pose estimate to
be correct if both rotation and translation are below a pre-defined threshold and
compute the angular error between GT, q, and predicted quaternion, q, as

dq(a,q) = 2arccos(|q o q]). (3)
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Fig. 3: Ground truth training (blue) and test (green) trajectories of our ambigu-
ous scenes and example RGB images.

= Rotation = Translation

Kernel Size

Fig. 4: (left) Estimated ground truth modes in Blue Chairs and Meeting Table
scenes, which we use to evaluate our model’s mode detection performance and
diversity of predictions. (right) Change in uncertainty prediction in the presence
of increasing image blur. For varying kernel sizes of a Gaussian filter used to blur
the input images, we compute the average uncertainty over all images obtained
from the predictions of our model. Reported here are the normalized values.

For translations we use the norm of the difference between GT t, and predicted
translation t: d;(t,t) = ||t — t||2 to compute the error in position of the camera.

6 Ablation Studies

6.1 Multiple hypothesis estimation

Recently, [10] proposed EWTA, an evolving version of WTA, to alleviate the
collapse problems of the RWTA training schemes proposed in [14]. Updating the
top k£ hypotheses instead of only the best one, EWTA increases the number of
hypotheses that are actually used during training, resulting in fewer wrong mode
predictions that do not match the actual distribution. We evaluated the different
versions of MHP training schemes for our particular application for which the
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Table 3: Comparison between different MHP variants, RWTA [141] and EWTA
[10], averaged over all scenes of our ambiguous real dataset.

EWTA EWTA RWTA
Threshold (k=50) (k=25) (k=1, used)

10° / 0.1m  0.12 0.18 0.20
15° / 0.2m 0.34 0.40 0.56
20° / 0.3m 047 0.51 0.68

Table 4: Mean ratio of correct poses for different backbone networks on all scenes.
Threshold PoseNet Unimodal Bingham-MDN  MC-Dropout Ours-RWTA

10° / 0.1m 0.15 0.12 0.08 0.15 0.20
ResNet-34 15° / 0.2m 0.46 0.39 0.28 0.39 0.56
20° / 0.3m 0.60 0.53 0.37 0.54 0.68
10° / 0.1m 0.15 0.16 0.09 0.15 0.19
ResNet-18 15° / 0.2m 0.47 0.42 0.29 0.39 0.52
20° / 0.3m 0.60 0.54 0.39 0.54 0.66
10° / 0.1m 0.20 0.15 0.10 0.15 0.20
ResNet-50 15° / 0.2m 0.49 0.36 0.30 0.40 0.55
20° / 0.3m 0.62 0.53 0.38 0.53 0.69
10° / 0.1m 0.11 0.10 0.11 0.08 0.18
Inception-v3  15° / 0.2m 0.38 0.33 0.38 0.31 0.49
20° / 0.3m 0.55 0.53 0.52 0.49 0.63

results can be found in Tab. 3. As it is not straightforward how k should be
chosen in EWTA, we 1) start with &k = K, where K is the number of hypotheses
and gradually decrease k until k = 1 (as proposed in [10]) and 2) start with the
best half hypotheses, i.e. Kk = 0.5- K. We set K = 50 in our experiments. In our
setting, we have found this parameter to strongly influence the accuracy of our
model. Meanwhile, the wrong predictions are showing very high uncertainty so
that, if desired, they can easily be removed. Therefore, we chose to remain with
RWTA to train our models. This implicitly admits k& = 1. Note, however, that
these conclusions were drawn from experimental results on our datasets, such
that the optimal choice of training scheme remains application dependant.

6.2 Backbone network

To evaluate the effect of different network architectures on our model, we change
the backbone network of ours and the SoTA baseline methods. As most of the
recent SoTA image based relocalization methods [1,4,13] use a version of ResNet,
we compare between ResNet variants: ResNet-18, ResNet-34 and ResNet-50 and
Inception-v3 [17]. All the networks are initialized from an ImageNet [6] pre-
trained model. We report our findings in Tab. 4. Naturally all methods are
slightly dependant on the features that serve as input to the final pose regression
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layers. However, regardless of the backbone network used, Ours-RWTA shows,
on average, superior performance over the baseline methods.

6.3 Uncertainty evaluation

Due to fast camera movements, motion blur easily arises in camera localization
applications and is one factor that can lead to poor localization performance.
As a first step in handling such problems, additional information in the form of
uncertainty predictions could aid in detecting such events. Therefore, to evaluate
how our model performs in the presence of noise, we use our single component
model, i.e. K = 1, trained on the original input images, and blur the RGB im-
ages to evaluate the change in uncertainty prediction of the model. Ideally, with
increasing image blur, we would expect our model to be less certain in its pre-
dictions. To ablate on this, we apply a Gaussian Filter to the input images, with
varying kernel sizes, and report the change in uncertainty prediction in Fig. 4
(right) on the blurred images. We use the entropy over each image to obtain
a measure of uncertainty and compute the mean over our dataset images. For
visualization, we show the normalized values. An increase in uncertainty could
be clearly observed with growing kernel size and thus highly blurred images.

6.4 Number of Hypotheses and Computational Times

Incorporating our method into an existing regression model, simply leads to a
change in the last fully-connected layers of the network. We extend the last layer
to output an additional (K —1)-4 and (K — 1) - 3 parameters for predicting the
camera pose, as well as overall 6 - K for uncertainty prediction of both rotation
and translation. Further, we incorporate extra layers for the mixture coefficients
as described in Tab. 1. We run our model on a 8GB NVIDIA GeForce GTX 1080
graphics card and report the inference time of our network with respect to K
in Tab. 5. In comparison to a direct regression method our model with K = 50
incurs a negligible computational overhead around 1ms.

Further, we evaluate the effect of hyperparameter K, i.e. the number of hy-
pothesis to be regressed, for our proposed method. Based on the results, which
are summarized in Fig. 5, we suspect the optimal number of hypotheses to be
dependant on the spatial extent of the scene and on the ambiguities contained
in them. However, due to the increased complexity of the model as well as in-
stability issues during training, we observed a drop in performance with high
increase of the number of hypotheses.

Table 5: Inference time of our method with respect to the number of hypotheses.
PoseNet K =1 K=50 K =200 K =500

7.23ms T7.27Tms 8.11lms 8.19ms 8.74ms
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Fig. 5: Influence of the number of hypotheses, i.e. parameter K, on the perfor-
mance of our method, Ours-RWTA.

6.5 Rotation parameterization

The best choice of rotation parameterization for training deep learning mod-
els is an open question. PoseNet [8] proposed to use quaternions due to the
ease of normalization. The ambiguities can be resolved by mapping the predic-
tions to one hemisphere. MapNet [4] further showed improvements in using the
axis angle representation. Recently it has been shown that any representation
with four or less degrees of freedom suffers from discontinuities in mapping to
SO(3). This might harm the performance of deep learning models. Instead, [19]
proposed a continuous 6D or 5D representation. We ablate in this context by
mapping all predictions to the proposed 6D representation and model them us-
ing a GMM, similar to a MDN, but treating rotation and translation separately.
Therefore for each camera pose, in total we have 9 - 2 parameters to regress,
plus mixture coefficients. Tab. 6 shows our results, where 'Geo + L1’ refers to a
direct regression using the geodesic loss proposed in [19] and an [; loss on the
translation. When using the proposed 6D representation, we found either im-
provements or similar performance to their quaternion counterparts. However,
overall our 9D-Ours-RWTA remains the most promising model. In terms of Or-
acle Error MC-Dropout sometimes outperforms our method. This comes from
the fact that MC-Dropout mostly predicts multiple hypothesis around one mode,
which if this mode is relatively close to the ground truth one, results in a high
Oracle. 9D-Ours-RWTA predicts diverse hypothesis, but not multiple versions
of the same mode. However it shows much better performance in predicting the
correct mode than MC-Dropout.

6.6 Ablation studies for constructing V

Alternatively to the method proposed in the main paper, Gram-Schmidt can
be used to compute an orthonormal matrix V from a given matrix M € R4*4,
where the column vectors v; of V are computed from the column vectors m; as
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Table 6: Ratio of correct poses when using the continuous 6D representation

of [19] to model rotations instead of a Bingham distribution on the quaternion.

Threshold Geo+L1 Uni. MDN  MC- 9D-Ours- |MC-Dropout 9D-Ours-RWTA

Dropout RWTA Oracle Oracle

10° /0.1m 0.41 0.48 0.01 0.26 0.38 0.58 0.44
Blue Chairs 15° /0.2m 0.90 0.89 0.14 0.83 0.81 0.91 0.96

20° /0.3m 0.96 0.92 0.23 0091 0.84 0.94 1.0

10° / 0.1m 0.03 0.03 0.02 0.02 0.06 0.09 0.08
Meeting Table 15° /0.2m 0.16 0.16 0.11 0.13 0.29 0.24 0.47

20° /0.3m 0.22 0.23 0.14 0.21 0.38 0.32 0.71

10° /0.lm 0.17 0.19 0.12 0.12 0.18 0.27 0.21
Staircase 15° /0.2m 046 0.51 0.36 0.36 0.44 0.56 0.54

20° /0.3m 0.62 0.67 0.47 0.56 0.56 0.70 0.71

10° / 0.Im 0.07 0.01 0.01 0.04 0.08 0.15 0.09
Staircase Extended 15° / 0.2m  0.30 0.06 0.09  0.18 0.35 0.40 0.38

20° /0.3m 048 0.13 0.14 0.36 0.55 0.59 0.62

10° / 0.lm 0.34 0.24 0.30 0.21 0.34 0.45 0.34
Seminar Room 15° /0.2m 0.74 0.63 0.65 0.65 0.76 0.84 0.77

20° /0.3m 0.84 0.79 0.76  0.82 0.88 0.9 0.88

10° / 0.Im 0.20 0.19 0.09 0.13 0.21 0.31 0.23
Average 15° /0.2m 0.51 045 0.27 0.43 0.53 0.59 0.62

20° /0.3m 0.63 0.55 0.35 0.57 0.64 0.69 0.78
follows

i—1 -~
N Vi
Vi=1m; — g (Vi, m;) - v , where v; = (4)

k=1
Note that in the GS procedure, we predict 16 values for V and use GS to project
onto the orthonormal matrices. Yet the degrees of freedom of V is much less.
For instance the matrix scheme of [2] uses only four. As an ablation, we propose
another way to construct V using the Cayley transform [5] as follows: Given a
vector g (not necessarily with unit norm), we compute V as

V = (Iixa —S) ' (Lixa + S), (5)

where I;44 is the identity matrix and

0 —q1 @1 —q3
0 g3 q
S(@2| @ 6
(a) —q1—q3 0—q1 (6)
g3 —q2 g1 O

a skew-symmetric matrix parameterized by q. We compare between the pro-
posed method used in the paper and these two alternatives, GS orthonormal-
ization and the construction using skew-symmetric matrices. The results can
be found in Tab. 7. In comparison to GS the remaining methods only require
four parameters to be estimated instead of the 16 entries of the matrix V. For
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Table 7: Ratio of correct poses for several thresholds of Gram-Schmidt (G),

Skew-Symmetric (S) and Birdal et al. [2] (B) methods to construct V.

Unimodal Bingham-MDN Ours-RWTA
Threshold G/S/B G/S/B G/S/B
10° /0.lm 0.24 /0.23 /0.29 0.04 /0.17 /0.24 0.30 / 0.12 / 0.35
Blue Chairs (A) 15° /0.2m 0.63 /0.58 /0.73 0.15/0.49 /0.75 0.73 / 0.39 / 0.81
20° /0.3m 0.76 /0.73 /0.8 0.18 /0.59 / 0.80 0.79 / 0.43 / 0.82
10° / 0.lm  0.02 / 0.07 / 0.02 0.04 / 0.01 /0.01 0.04 /0.09 / 0.05
Meeting Table (B) 15° /0.2m 0.16 / 0.20 /0.12  0.18 /0.14 / 0.07 0.12 /0.23 / 0.28
20° /0.3m  0.24 /0.25/0.19 021/024/010 0.18/0.27 / 0.39
10° /0.lm 0.17 /0.16 /0.11  0.21 /0.16 /0.04 0.17 / 0.14 / 0.18
Staircase (C) 15° /0.2m 0.46 / 0.51 / 0.62 0.43 /0.37 /0.15 0.46 / 0.42 / 0.50
20° / 0.3m 0.62 /0.64 /0.62 0.60 /0.49 /0.25 0.60 / 0.62 / 0.68
10° /0.lm 0.04 / 0.04 /0.06 0.04 / 0.07 /0.06 0.05/ 0.06 / 0.09
Staircase Extended (D) 15° / 0.2m 0.16 /0.16 / 0.26  0.19 / 0.29 / 0.21  0.23 / 0.26 / 0.39
20° /0.3m 027 /0.27 /041 0.31/0.41/0.32 0.34/0.36 / 0.58
10° /0.1lm 0.27 /0.33 /0.06 0.30 / 0.35 /0.06 0.15 / 0.28 / 0.35
Seminar Room (E) 15° /0.2m 0.69 / 0.69 / 0.23  0.56 / 0.59 / 0.23  0.47 / 0.70 / 0.83
20° /0.3m 0.82/0.80 /040 0.64/0.70 /0.40 0.58 /0.79 / 0.95
10° /0.lm 0.15/0.16 /0.11 0.13 /0.13 /0.08 0.14 / 0.14 / 0.20
Average 15° /0.2m 0.42 / 0.43 /0.36 0.30 / 0.38 / 0.28 0.40 / 0.40 / 0.56
20° /0.3m 0.54 /0.54 /0.50 0.39 /0.49 /0.37 0.50 / 0.49 / 0.68

our unimodal as well as multimodal MDN we found the Skew-Symmetric con-
struction to outperform both Gram-Schmidt (GS) and the employed method of
Birdal et al. [2]. However, for our method, Ours-RWTA, the latter [2] performs
the best. Additionally it achieves overall the best performance in comparison to
the remaining methods and constructions.

Ezxpressive power of V In this section as well as in the main paper we have
presented a variety of ways to establish V(q). These methods range from regress-
ing 16 parameters (full flexibility) to regressing only 4 (less flexibility but also a
smaller parameter space). This raises an interesting trade-off on the expressive-
ness of V and the performance of the neural network i.e. how many parameters
would suffice to capture all the necessary Bingham distributions? This remains
to be an open question as, like many others, Birdal et al. [2] (our choice of con-
struction) did not provide an analysis on the extent of sufficiency. Nevertheless,
we would like to point out that once V is chosen to be a particular frame, it can
explain other orthogonal bases as a linear combination. This introduces certain
degree of expressive power (albeit quantized), which we have empirically found to
be sufficient compared to other potentially over-parameterized schemes. Besides,
the method of Birdal et al. [2] is computationally the cheapest.
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7 Additional qualitative results

Further, we provide more qualitative results from different query images on all
scenes of our ambiguous dataset in Fig. 6 and Fig. 7.

3D Scene (GT) 1%t Floor 2" Floor 3 Floor

4™Floor 5t™Floor Query Image (2D)

Fig. 6: Qualitative results of our model, Ours-RWTA, on the Staircase Extended
scene.
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3D Scene (GT) Query Images (2D) MC-Dropout Bingham-MDN Ours-RWTA GT-Symmetries

R

MC-Dropout

3D Scene (GT) Query Images (2D) MC-Dropout Bingham-MDN

Ours-RWTA
i 5

Bingham-MDN
5

GT-Symmetries

Fig. 7: Additional qualitative results of our ambiguous scenes dataset. We show
the ground truth camera pose, query images and resulting camera pose pre-
dictions. Both MC-Dropout and our Bingham-MDN suffer from mode collapse,
whereas our MHP-based model, Ours-RWTA, predicts diverse hypotheses cov-
ering all possible modes.
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