
Modeling Artistic Workflows for Image
Generation and Editing

Supplementary Materials

Hung-Yu Tseng1, Matthew Fisher2, Jingwan Lu2, Yijun Li2, Vladimir Kim2,
Ming-Hsuan Yang1

1University of California, Merced 2Adobe Research

1 Overview

In this supplementary material, we first present the implementation details for
each component of the proposed framework. Second, we complement the ex-
periment details. Third, we visualize the learning-based regularization. Fourth,
we show visual examples illustrating the failure cases of the proposed method.
Finally, we present more qualitative results to complement the paper.

2 Implementation Details

We implement our framework with PyTorch [12]. The details for each component
are described as follows.

Workflow inference. The hyper-parameter λ1 in Equation 5 of the paper is
assigned to be 10. We use the Adam optimizer [8] with the learning rate of
2×10−4 and batch size of 8 for optimizing the model. We first train each network
separately with 450, 000 iterations, then jointly train all the networks in the
workflow inference module with 450, 000 iterations.

Artwork generation. We set the hyper-parameter λc in Equation 3 of the
paper to be 1. Similar to the training for the workflow inference module, we use
the Adam optimizer [8] with the learning rate of 2 × 10−4 and batch size of 8.
We train each network separately with 1, 200, 000 iterations, then jointly train
all the networks in the artwork generation module with 600, 000 iterations. We
adopt the objectives in the BicycleGAN [14] approach for training the artwork
generation module, as described in Equation 3 in the paper. More specifically,
the loss Lbicycle

i in Equation 3 is formulated as

Lbicycle
i = LGAN

i + λ1L1 + λlatentLlatent + λKLLKL, (1)

where LGAN
i is the hinge version of GAN loss [3], L1 is the `1 loss between the

generated and ground-truth images, Llatent is the latent regression loss between
the predicted and input latent representations, and LKL is the KL divergence loss
on the latent representations. Following the setting in the BicycleGAN scheme,
we respectively assign the hyper-parameters λ1, λlatent, and λKL to be 10, 0.5,



2 H.-Y. Tseng et al.

Algorithm 1: Training overview of the learning-based regularization
at i-th stage

1 Require: pre-trained generation model {EGi ; GGi }, learning rate �, iterations

T reg, importance factor �GAN

2 wi = 0:001 ∈ R1×8c

3 while t = {1; : : : ; T reg} do
4 Sample (xi; xi+1) and x′i from the dataset

5 zAda
i = EGi (xi), �

Ada
i = 0 ∈ R1×8c

6 // Get reconstructed image before the AdaIN optimization

7 x̂Gi+1 = GGi (xi; z
Ada
i + �Ada

i )
8 // Optimize incremental term with the regularization function

(AdaIN optimization)

9 �̃Ada
i = �Ada

i − �
(
5�Ada

i
LAda(x̂Gi+1; xi+1) + wi�

Ada
i

)
10 // Get the reconstructed image and editing results after the

optimization

11 x̃Gi+1 = GGi (xi; z
Ada
i + �̃Ada

i )

12 x̃′
G
i+1 = GGi (x′i; z

Ada
i + �̃Ada

i )
13 // Update the regularization function based on the

reconstruction and editing results after the optimization

14 LL2R = LAda(x̃Gi+1; xi+1) + �GANLGAN(x̃′
G
i+1)

15 wi = wi − �5wi L
L2R

16 end
17 Return: wi

Table 1. FID scores of real images. We show the FID (↓) scores of the real images
in the test set to supplement the results in Table 2 and Table 3 of the paper.

Datasets Face Anime Chair

Real images 12:8 16:5 25:3

and 0.01. We use the network architecture proposed in the MUNIT [7] framework
(involving AdaIN normalization layers [6]) rather than the U-Net structure in
the BicycleGAN framework.

AdaIN optimization. In the editing scenario during the testing phase, we
conduct the AdaIN optimization from the first to the last stages sequentially to
refine the reconstructed image. For each stage, we set the hyper-parameters λp,
α, T in Algorithm 1 in the paper to be 10, 0.1 and 150, respectively.

Learning-based regularization. We summarize the training of the proposed
learning-based regularization in Figure 4 of the paper and Algorithm 1. The reg-
ularization function is trained separately for each creation stage. We respectively
set the hyper-parameters η, T reg, and λGAN to be 10−3, 40000, and 1. We use
the Adam optimizer [8] and the batch size of 1 for the training.



Modeling Artistic Work
ows for Image Generation and Editing 3

Fig. 1. Training examples in each dataset. For each dataset, we show the example
training images at each creation stage.

3 Experiment Details

We illustrate how we process each dataset for evaluating the proposed framework.
Example training images in each dataset are shown in Figure 1. In addition, we
also describe how we compute FID [5] score.

Face drawing dataset. We collect the photo-realistic face images from the
CelebAMask-HQ dataset [9]. We prepare three design stages for the face draw-
ing dataset: sketch, 
at coloring, and detail drawing. We use the ground-truth
attribute segmentation mask to remove the background of the cropped RGB
images in the CelebAMask-HQ dataset as the �nal-stage images. For the 
at
coloring, we assign pixels with the median color computed from the correspond-
ing region according to the ground-truth attribute segmentation mask. Finally,
we use the pencil sketch [10] model to generate simple sketch images from the

at coloring images.

Anime drawing dataset. We construct the dataset from the anime images
in the EdgeConnect [11] dataset. Three stages are used in this dataset: sketch,
rough coloring, detail coloring. For rough coloring, we �rst apply the SLIC [1]
super-pixel approach to cluster the pixels in each anime image. For each cluster,
We then compute the median color and assign to the pixels in that cluster.
Finally, we adopt the median �lter to smooth the rough coloring images. As for
the sketch, we use the pencil sketch [10] scheme to extract the sketch image from
the original anime image.

Chair design. We render the chair models in the ShapeNet dataset [4] via
the photo-realistic renderer [2] for building the dataset. There are four stages
presented in this dataset: sketch, normal map, coloring, and lighting. We sample
two di�erent camera viewpoints for each chair model. For each viewpoint, we
randomly sample from 300 spherical environment maps of diverse indoor and
outdoor scenes to render the last-stage image. For the coloring image, we use a
default white lighting environment for the rendering. We con�gure the rendering
tools to produce the corresponding depth map for each viewpoint and infer the
normal map image from the depth map. Finally, we extract the sketch image
from the normal map image using the pencil sketch model [10].


