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Abstract. Prior work in visual dialog has focused on training deep neu-
ral models on VisDial in isolation. Instead, we present an approach to
leverage pretraining on related vision-language datasets before transfer-
ring to visual dialog. We adapt the recently proposed VILBERT model
for multi-turn visually-grounded conversations. Our model is pretrained
on the Conceptual Captions and Visual Question Answering datasets,
and finetuned on VisDial. Our best single model outperforms prior pub-
lished work by > 1% absolute on NDCG and MRR.

Next, we find that additional finetuning using “dense” annotations in
VisDial leads to even higher NDCG — more than 10% over our base
model — but hurts MRR — more than 17% below our base model! This
highlights a trade-off between the two primary metrics - NDCG and
MRR - which we find is due to dense annotations not correlating well
with the original ground-truth answers to questions.

Keywords: Vision & Language, Visual Dialog

1 Introduction

Recent years have seen incredible progress in Visual Dialog [1-22], spurred in
part by the initial efforts of Das et al. [2] in developing a concrete task defini-
tion — given an image, dialog history consisting of a sequence of question-answer
pairs, and a follow-up question about the image, to predict a free-form natural
language answer to the question — along with a large-scale dataset and evaluation
metrics. The state-of-the-art on the task has improved by more than 20% abso-
lute (~54% — ~74% NDCGQG) and the original task has since been extended to
challenging domains, e.g. video understanding [23], navigation assistants [24-26].

While this is promising, much of this progress has happened in isolation, wherein
sophisticated neural architectures are trained and benchmarked solely on the Vis-
Dial dataset. This is limiting — since there is a significant amount of shared ab-
straction and visual grounding in related tasks in vision and language (e.g. cap-
tioning, visual question answering) that can benefit Visual Dialog — and wasteful
— since it is expensive and dissatisfying to have to collect a large-scale dataset for
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Training Curriculum
Fig. 1: First, the language stream of our model is pretrained on English Wikipedia and
the BooksCorpus [27] datasets with the masked language modeling (MLM) and next
sentence prediction (NSP) losses. Next, the entire model is trained on the Conceptual
Captions [28] and VQA [29] datasets with the masked image region (MIR), MLM and
NSP losses. Finally, we finetune the model on sparse annotations from VisDial [2] with
the MIR, MLM and NSP losses, and optionally finetune on dense annotations.

every new task. In this work, we explore an approach to pretrain our model on
other related vision and language datasets and then transfer to Visual Dialog.

Our work is inspired by prior work in transfer learning in computer vision and
natural language understanding where large models [30-40] are pretrained on
large datasets [27,41,42] with simple yet powerful self-supervised objectives to
learn powerful representations that are then transferred to downstream tasks,
leading to state-of-the-art results on a variety of benchmarks [41,43]. Recent work
has extended this to vision and language tasks [44-50], leading to compelling
results in Visual Question Answering [29], Commonsense Reasoning [51], Natural
Language Visual Reasoning [52], Entailment [53], Image-Text Retrieval [54,55],
Referring Expressions [56], and Vision-Language Navigation [57].

In this work, we adapt VILBERT [44] to Visual Dialog. VILBERT uses two
Transformer-based [34] encoders, one for each of the two modalities — language
and vision — and interaction between the two modalities is enabled by co-
attention layers i.e. attention over inputs from one modality conditioned on in-
puts from the other. Note that adapting VILBERT to Visual Dialog is not trivial.
The Visual Dialog dataset has image-grounded conversation sequences that are
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up to 10 rounds long. These are significantly longer than captions (which are < 2
sentences) from the Conceptual Captions dataset [28] or question-answer pairs
from VQA [29] used to pretrain ViILBERT, and thus requires a different input
representation and careful reconsideration of the masked language modeling and
next sentence prediction objectives used to train BERT [35] and VILBERT [44].

This adapted model outperforms prior published work by > 1% absolute and
achieves state-of-the-art on Visual Dialog. Next, we carefully analyse our model
and find that additional finetuning on ‘dense’ annotations' i.e. relevance scores
for all 100 answer options corresponding to each question on a subset of the
training set, highlights an interesting trade-off — the model gets to ~74.5%
NDCG (outperforming the 2019 VisDial Challenge winner), but an MRR of
~52% (~17% below our base model!). We find this happens because dense an-
notations in VisDial do not correlate well with the ground-truth answers to
questions, often rewarding the model for generic, uncertain responses.

Concretely, our contributions are as follows:

— We introduce an adaptation of the VILBERT [44] model for Visual Dia-
log, thus making use of the large-scale Conceptual Captions [28] and Visual
Question Answering (VQA) [29] datasets for pretraining and learning power-
ful visually-grounded representations before finetuning on VisDial [2]. Since
captioning and VQA differ significantly from Visual Dialog in input size
(< 2 sentence descriptions vs. < 10 question-answer rounds), this requires
rethinking the input representation to learn additional segment embeddings
representing questions-answer pairs. Our adapted model improves over prior
published work by > 1% and sets a new state-of-the-art.

— We next finetune our model on dense annotations i.e. relevance scores for all
100 answer options corresponding to each question on a subset of the training
set, leading to even higher NDCG — more than 10% over our base model — but
hurting MRR — more than 17% below our base model! This highlights a stark
trade-off between the two primary metrics for this task - NDCG and MRR.
Through qualitative and quantitative results, we show that this happens
because dense annotations do not correlate well with the original ground-
truth answers, often rewarding the model for generic, uncertain responses.

— Our PyTorch [58] code is publicly available’ to encourage further work in
large-scale transfer learning for VisDial.

2 Related Work

Our work is related to prior work in visual dialog [1-22], and self-supervised
pretraining and transfer learning in computer vision and language [30—40].

! publicly available on visualdialog.org/data.
2 github.com/vmurahari3/visdial-bert/
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Visual Dialog. Das et al. [2] and de Vries et al. [1] introduced the task of Vi-
sual Dialog — given an image, dialog history consisting of a sequence of question-
answer pairs, and a follow-up question, predict a free-form natural language
answer to the question — along with a dataset, evaluation metrics, and baseline
models. Follow-up works on visual dialog have explored the use of deep rein-
forcement learning [3,4,17], knowledge transfer from discriminative to genera-
tive decoders [5], conditional variational autoencoders [6], generative adversarial
networks [7], attention mechanisms for visual coreference resolution [9,11], and
modeling the questioner’s theory of mind [10]. Crucially, all of these works train
and evaluate on the VisDial dataset in isolation, without leveraging related vi-
sual grounding signals from other large-scale datasets in vision and language. We
devise a unified model that can be pretrained on the Conceptual Captions [2§]
and VQA [29] datasets, and then transferred and finetuned on VisDial.

Self-Supervised Learning in Vision and Language. Building on the success
of transfer learning in natural language understanding [33-40] leading to state-
of-the-art results on a broad set of benchmarks [41,43], recent work has extended
this to vision and language tasks [44-50]. These works pretrain single [45,48,49]
or two [44,46]-stream Transformer [34]-based models with self-supervised objec-
tives, such as next-sentence prediction and masked language/image modeling,
on large-scale image-text datasets and have led to compelling results in Visual
Question Answering [29], Commonsense Reasoning [51], Natural Language Vi-
sual Reasoning [52], Entailment [53], Image-Text Retrieval [54,55], and Referring
Expressions [56], and Vision-Language Navigation [57].

3 Adapting ViLBERT [44] for Visual Dialog

Lu et al. |[44] introduced VILBERT?, which extended BERT [35] to a two-stream
multi-modal architecture for jointly modeling visual and linguistic inputs. Inter-
action between the two modalities was enabled through co-attention layers, i.e.
attending to one modality conditioned on the other — attention over language
conditioned on visual input, and attention over image regions conditioned on
linguistic input. This was operationalized as swapping the key and value matri-
ces between the visual and linguistic Transformer [34] blocks. We next discuss
our changes to adapt it for Visual Dialog followed by our training pipeline.

Input Representation. Recall that the model gets image I, dialog history
(including image caption C) H = (C,(Q1,41), ..., (Qi—1,Ai—1)), question Qy,
and a list of 100 answer options A; = {Agl),AEQ), ...,ASOO)} as input, and is
asked to return a sorting of A;. We concatenate the ¢ rounds of dialog history
and follow-up question @;, with each question and answer separated by a <SEP>
token. The overall input to the language stream is represented as:

<CLS> C' <SEP> (Q1 <SEP> A; <SEP>,...,<SEP> (Q; <SEP> A; <SEP> (1)

3 along with code released at github.com/jiasenlu/ViLBERT beta.
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Similar to Wolf et al. [59], we use different segment embeddings for questions and
answers to help the model distinguish between the two and understand question
and answer boundaries in the input. Captions and answers share the same seg-
ment embeddings. To represent the image, we follow [44,60] and extract object
bounding boxes and their visual features for top-36 detected objects in the image
from a Faster R-CNN [61] (with a ResNet-101 [30] backbone) object detection
network pretrained on the Visual Genome dataset [42]. The feature vector for
each detected object is computed as mean-pooled convolutional features from
the regions of that object. A 5-d feature vector, consisting of normalized top-left
and bottom-right object coordinates, and the fraction of image area covered, is
projected to the same dimensions as the feature vector for the detected object,
and added to it, giving us the final visual features {vy,...,v36}. The beginning
of this image region sequence (consisting of object detection features) is demar-
cated by an IMG token with mean-pooled features from the entire image. The
overall input to VILBERT can be written as the following sequence:

<IMG> v, ..., U3g <CLS> C' <SEP> Q1 <SEP> A <SEP>, ..., <SEP> (Q; <SEP> A; <SEP> (2)

3.1 Pretraining on Conceptual Captions [28]

To pretrain the model, we follow [44] and train on the Conceptual Captions (CC)
dataset, which is a large corpus (with ~3M samples) of aligned image-caption
pairs. During pretraining, the sum of the masked language modeling (MLM)
loss [35] and the masked image region (MIR) loss is optimized. To compute the
MLM loss, a set of tokens in the input sequence are masked and the model is
trained to predict these tokens given context.We mask around 15% of the tokens
in the input sequence. For the MIR loss, similar to the MLM loss, we zero out
15% of the image features and the model learns to predict the semantic category
of the masked out object (out of 1601 classes from Visual Genome [42,60]).

3.2 Pretraining on VQA [29]

The VQA dataset is quite related to Visual Dialog in that it can be interpreted
as independent visually-grounded question-answer pairs with no dialog history,
and thus is a natural choice for further pretraining prior to finetuning on VisDial.
Similar to Lu et al. [44], we pretrain on VQA by learning a small decoder — a
two-layer MLP — on top of the element-wise product between the image and text
representations to predict a distribution over 3129 answers.

3.3 Finetuning on Visual Dialog [2]

To finetune on Visual Dialog, we use the MLM loss along with the next sen-
tence prediction (NSP) and MIR losses. For MLM, we mask 10% of the tokens
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in the dialog sequence. For MIR, similar to pretraining, we mask 15% of the
image features. Note that the discriminative task in visual dialog is to identify
the ground-truth answer from a list of 100 answer options consisting of popu-
lar, nearest neighbors, and random answers from the dataset. We achieve this
through the NSP loss. The NSP head is trained to predict 1 when the ground-
truth answer is appended to the input sequence, and 0 when a negative answer
sampled from the remaining answer options is appended to it. Each image in
VisDial has 10 rounds of dialog, leading to 10 sets of positive and negative sam-
ples for the NSP loss per mini-batch. Since these are fairly correlated samples,
we randomly sub-sample 2 out of these 20 during training. At test time, we use
log-probabilities from the NSP head to rank the 100 answer options per round.

3.4 Finetuning with Dense Annotations

The authors of [2] recently released dense annotations’ i.e. relevance scores for
all 100 answer options from A; corresponding to the question on a subset of the
training set. These relevance scores range from 0 to 1 and are calculated as the
ratio of number of human annotators who marked a particular answer option
as correct to the total number of human annotators (= 4). So 1 means that the
answer option was considered correct by 4 human annotators. In our final stage of
training, we utilize these dense annotations to finetune our model. Concretely, we
use the NSP head to predict likelihood scores éﬁ“ for each answer option Agi) at
round ¢, normalize these to form a probability distribution over the 100 answers

Jp = [g)il), ...,gt(mo)], and then compute a cross-entropy (CE) loss against the

normalized ground-truth relevance scores y;, given by — ", yt(i) log g}t(i).

4 Experiments

To compare to previous research, we conduct experiments on VisDial v1.0 [2].
The dataset contains human-human dialogs on ~130k COCO [62]-like images.
We follow the original splits and use ~120k for training, ~2k for validation, and
~8k for testing. We next describe the various settings we experiment with.

Evaluation Metrics. We use metrics introduced in [2]. Specifically, given the
predicted ranking of 100 answer options from a model at each round, we compute
retrieval metrics — mean rank (MR) of the ground-truth answer, mean reciprocal
rank (MRR), and recall@k (k = {1,5,10}). Additionally, along with the release
of dense annotations, i.e. relevance scores € [0,1] for all 100 answer options,
a new metric — NDCG - was introduced. NDCG accounts for multiple correct
answers in the option set and penalizes low-ranked but correct answer options.

4 publicly available on visualdialog.org/data.
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4.1 Language-only

We begin with a ‘blind’ setting, where given the dialog history and follow-up
question, and without access to the image, the model is tasked with predicting
the answer. We do not use the VILBERT formulation for these experiments, and
finetune the BERT model released in [35] and pretrained on BooksCorpus [27]
and English Wikipedia. For the MLM loss, we mask 15% of tokens and sub-
sample 8 out of 20 sequences per mini-batch during training. We experiment with
two variants — training only with NSP, and training with both NSP and MLM.
See Table 3 for language-only results (marked ‘L-only’). This setting helps us
benchmark gains coming from switching to Transformer [34]-based architectures
before the added complexity of incorporating visual input.

Varying number of dialog rounds. We train ablations of our language-only
model (with NSP and MLM losses) where we vary the number of rounds in dialog
history, starting from 0, where the input sequence only contains the follow-up
question and answer, to 2, 4, and 6 and 10 rounds of dialog history (Table 1).

Zero-shot and ‘cheap’ finetuning. We report performance for ablations of our
NSP+MLM model with no/minimal training in Table 2. First, we do a zero-shot
test where we initialize BERT with weights from Wikipedia and BooksCorpus
pretraining and simply run inference on VisDial. Second, with the same initial-
ization, we freeze all layers and finetune only the MLM and NSP loss heads.

4.2 Finetuning on VisDial

We finetune ViLBERT on VisDial with four different weight initializations —
1) with randomly initialized weights, 2) from the best language-only weights
(from Section 4.1) for the language stream (visual stream and co-attention lay-
ers initialized randomly), 3) from a model pretrained on CC [28] (as described
in Section 3.1) and 4) from a model pretrained on CC [28]+VQA [29] (as de-
scribed in Section 3.2). 1) helps us benchmark improvements due to pretraining,
2) helps us benchmark performance if the model learns visual grounding solely
from VisDial, 3) quantifies effects of learning visual grounding additionally from
CC, and 4) helps us quantify improvements with additional exposure to visually-
grounded question-answering data. See Table 3 for results.

4.3 Finetuning with Dense Annotations

Finally, we finetune our best model from Section 4.2 — marked ‘w/ CC+VQA’
in Table 3 — on dense annotations, as described in Section 3.4. Note that com-
puting the CE loss requires a separate forward pass for each of the 100 answer
options, since dialog history, question, answer are all concatenated together be-
fore passing as input. This is memory-expensive, and so in practice, we sub-
sample and only use 80 options, and use gradient accumulation to (artificially)
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construct a larger mini-batch. Finetuning with the CE loss only leads to signifi-
cant improvements on NDCG but hurts other metrics (see Table 3). We discuss
and analyse this in more detail later. But to control for this ‘metric-overfitting’,
we also train a variant with both the CE and NSP losses.

5 Results

We list findings from all experiments described in Section 4 below.

Table 1: Performance of the NSP + MLM language-only model on VisDial v1.0 val as
the number of dialog history rounds is varied

# history rounds NDCG 1 MRR 1 R@Q1 1 RQ5 1 R@Q10 T MR |

0 50.54 54.29 38.88 72.67 83.09 5.90
2 53.69 61.31 46.83 78.96 88.15 4.51
4 55.10 62.83 48.36 80.61 89.57 4.19
6 55.69 63.73 49.31 81.13 90.06 4.04
10 57.22 64.10 50.05 81.09 90.00 4.16

Table 2: Performance of the NSP + MLM language-only model on VisDial v1.0 val
with no / minimal training (described in Sec. 4.1)

Model NDCG 1 MRR 1 R@1 1+ R@5 1+ R@10 + MR |

No training 11.63  6.88 2.63 7.17 11.30 46.90
Loss heads only 19.69 9.81 3.42 1044 18.85 31.38

— Language-only performs well. The language-only model gets to 57.22 on
NDCG and 64.10 on MRR, (Table 3), which is already competitive with several
prior published works (Table 4). These trends are consistent with high human
performance on VisDial [2] with just language (question and dialog history) —
48.5 on MRR — which further improves to 63.5 on MRR with image.

— Increasing dialog history rounds helps. We report performance of the
language-only model as a function of dialog history rounds in Table 1 and
Fig. 2a. Note that the change in performance from including 0 to 4 rounds of
dialog history (+4.56 on NDCG, +8.54 on MRR) is much more than from 4 to
10 dialog history rounds (42.12 on NDCG, +1.27 on MRR). Thus, performance
continues to go up with increasing dialog history rounds but starts to plateau
with > 4 history rounds. We believe these improvements are largely indicative
of the Transformer’s ability to model long-term dependencies.

— Zero-shot model performs poorly. Running inference with the language-
only model pretrained on BooksCorpus [27] and Wikipedia without any fine-
tuning on VisDial only gets to 11.63 on NDCG and 6.88 on MRR (Table 2).
Finetuning the loss heads with all other layers frozen leads to an improvement
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of ~8 NDCG points over this. This low performance can be attributed to sig-
nificantly longer sequences in VisDial than the model was pretrained with.

— VQA initialization helps more than random or CC initialization. Fine-
tuning ViLBERT on VisDial with weights initialized from VQA pretraining gets
to 64.82 on NDCG and 68.97 on MRR, ~3 points better than random initial-
ization on NDCG and ~2 points better than CC pretraining (Table 3). We
believe poorer transfer from CC is because both VQA and VisDial have images
from COCO and are more closely related tasks than captioning on CC.
Dense annotations boost NDCG, hurt MRR. Finetuning with the CE
loss leads to 74.47 on NDCG — a ~10% improvement over the ‘w/ CC + VQA’
base model — but 50.74 on MRR, a ~17% decline below the base model (Table
4). This is a surprising finding! We carefully analyze this behavior in Section 6.
Ensembling does not improve performance. We trained 3 models initial-
ized with different random seeds for each of the 3 variants (‘w/ CC + VQA’,
‘CE’ and ‘CE + NSP’) and aggregated results by averaging the normalized
scores from the 3 models. We did not observe any significant improvement.

Table 3: Results on VisDial v1.0 val (with 95% CI). 1 indicates higher is better.

Model NDCG 1t MRR 1 R@1 1 R@51 RQ10 7T MR |
.—:’ NSP 55.80 +0.9 63.37 +o.5 49.28 +o.7 80.51 105 89.22 +0.4 4.32 101
3 NSP + MLM 57.22 0.9 64.10 0.5 50.05 0.7 81.09 +o.5 90.00 +o.4 4.16 0.1
= Random init 61.88 +0.9 67.04 +o0.5 53.51 0.7 83.94 +0.5 92.27 +0.4 3.55 +o0.1
% w/ L-only 62.08 +0.9 67.73 +o0.5 54.67 0.7 84.02 0.5 92.07 +0.4 3.58 +o.1
_T_ w/ CC [28] 62.99 0.9 68.64 0.5 55.55 0.7 85.04 o5 92.98 +o.4 3.36 0.1

w/ CC [28]+VQA [29] 64.82 0.0 68.97 +0.5 55.78 +0.7 85.34 0.5 93.11 +0.4 3.35 +o.1
Qé CE 75.10 +1.1 52.12 +o0.6 39.84 +0.7 64.93 +0.7 80.47 +o5 6.26 +o0.1
Z CE + NSP 69.11 +1.0 65.76 0.5 53.30 0.7 80.77 o5 90.00 +o.4 4.33 0.1
+

We report results from the Visual Dialog evaluation server® for our best models —
‘w/ CC + VQA’, ‘CE’ and ‘CE + NSP’ — on the unseen test-std split in Table 4.
We compare against prior published results and top entries from the leaderboard.
Our models outperform prior results and set a new state-of-the-art — VILBERT
with CC + VQA pretraining on MRR, RQk, MR metrics, and further finetuning
with a CE loss on dense annotations on NDCG. Finally, adding NSP loss along
with CE (as in Section 4.3) offers a balance between optimizing metrics that
reward both sparse (original ground-truth answers) and dense annotations.

6 Analysis

As described in Section 5, finetuning on dense annotations leads to a significant
increase in NDCG, but hurts the other 5 metrics - MRR, R@Q1, R@5, R@Q10 and

5 evalai.cloudcv. org/web/challenges/challenge-page/161/leaderboard/483
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Table 4: Results on VisDial v1.0 test-std. 1 indicates higher is better. | indicates lower
is better. T denotes ensembles. Best single-model results are bolded and best ensemble
results are underlined. x denotes the winning team of the 2019 Visual Dialog Challenge.

Model NDCG 1 MRR 1 R@1 1 R@5 1 R@10 1 MR |
GNN [12] 52.82 61.37 47.33 77.98 87.83 4.57
CorefNMN [9] 5470 61.50 47.55 78.10 88.80 4.40
RvA [11] 55.59 63.03 49.03 80.40 89.83 4.18
. | HACAN [19] 57.17 64.22 50.88 80.63 89.45 4.20
= | NMN [9] 58.10 58.80 44.15 76.88 86.88 4.81
Z | DAN [14] 57.59  63.20 49.63 79.75 89.35 4.30
= | DANT [14] 59.36  64.92 51.28 81.60 90.88 3.92
£ ] ReDAN [15] 61.86 53.13 41.38 66.07 74.50 8.91
Z | ReDAN-+' [15] 64.47 53.74 4245 64.68 75.68 6.64
Z | DualVD [22] 56.32  63.23 49.25 80.23 89.70 4.11
FGA [13] 56.93 66.22 5275 82.92 91.08 3.81
FGA' [13] 57.20 69.30 55.65 86.73 94.05 3.14
DL-61 [20] 57.32  62.20 47.90 80.43 89.95 4.17
DL-61 [20] 57.88  63.42 49.30 80.77 90.68 3.97
MReal - BDAT* [21] 7402 52.62 40.03 68.85 79.15 6.76
LF 45.31 5542 40.95 7245 82.83 5.95
2 | HRE 45.46 54.16 39.93 70.45 81.50 6.41
£ | M 47.50 55.49 40.98 72.30 83.30 5.92
E | MN-Att 49.58 56.90 42.43 74.00 84.35 5.59
T | LF-Att 51.63 60.41 46.18 77.80 87.30 4.75
S MS ConvAl 55.35 63.27 49.53 80.40 89.60 4.15
= | USTC-YTH 56.47 61.44 47.65 78.13 87.88 4.65
% | UET-VNU 57.40 59.50 45.50 76.33 85.82 5.34
S | square 60.16 61.26 47.15 78.73 88.48 4.46
MS D365 Al 64.47 53.73 42.45 64.68 75.68 6.63
_ ( Random init 60.40 6553 51.03 83.45 91.83 3.60
g ) w/ CC[28]+VQA [29]  63.87 67.50 53.85 84.68 93.25 3.32
O] CE 7447 50.74 37.95 64.13 80.00 6.28
CE + NSP 68.08 63.92 50.78 79.53 89.60 4.28

MR — which depend on the original sparse annotations in VisDial i.e. follow-up
answers provided in human-human dialog.

We begin by visualizing the distribution of dense relevance scores for these sparse
ground-truth (GT) answers in Fig. 2b and observe that ~50% GT answers have
relevance < 0.8, and ~30% have relevance < 0.6. Thus, there is some degree of
misalignment between dense and sparse annotations — answers originally pro-
vided during human-human dialog in VisDial were not always judged to be
relevant by all humans during the post-hoc dense annotation phase.
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Why are GT and dense annotations misaligned? We notice that many
questions with discrepancy between GT and dense annotations are somewhat
subjective. For e.g., in row 1, round 7 (Fig. 5), Q: ‘what color is the chair?’, the
GT answer is ‘black’ but the chair is in shadow and it is difficult to accurately
identify its color. And thus, we expect to see variance when multiple humans
are polled for the answer. Instead, the GT answer is just one sample from the
human answer distribution, not necessarily from its peak. In general, the dense
annotations seem less wrong than GT (as they are sourced by consensus) since
they are safer — often resolving to answers like ‘I cannot tell’ when there is
uncertainty / subjectivity — but also uninformative — not conveying additional
information e.g. ‘I think 3 but they are occluded so it is hard to tell’ — since
such nuanced answers are not part of the list of answer options in VisDial [2].

Model performance on GT wvs. dense annotations. Table 2c shows mean
ranks of these GT answers as predicted by three model variants — VILBERT w/
CC + VQA, CE, and CE + NSP - grouped by dense relevance scores. The ‘CE’
model gets worse mean ranks than ‘w/ CC + VQA’ for all GT answers, since it
is no longer trained with these GT answers during dense annotation finetuning.
The CE model assigns low mean ranks to GT answers with higher relevance
scores (> 0.8), which translates to a high NDCG score (Table 3). But it assigns
poor mean ranks to GT answers with relatively lower relevance scores (< 0.8),
and since ~50% GT answers have relevance scores < 0.8, this hurts MRR, RQk,
MR for the CE model (Table 3).

Next, we consider the top-50 most-relevant answer options (occurring > 10
times) as per dense annotations in VisDial v1.0 val (not restricting ourselves to
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Fig. 3: Mean relevance scores and counts for top-50 most-relevant answers from VisDial
v1.0 val dense annotations. These contain several sets of paraphrases — {“yes it’s in

color”, “yes this picture is in color”, “the picture is in color”, “yes the picture is in color”,

“yes, it is in color”, “yes it is in color”, “yes, it’s in color”, “yes in color”}, ete. and have

a bias towards binary answers

only GT answers). Fig. 3 shows the mean relevance scores for this set, and Fig. 4
shows the mean ranks assigned to these answers by our models. The CE model
gets better mean ranks in this set compared to Base, leading to high NDCG.

Qualitative examples. Finally, we present uniformly sampled example answer
predictions on VisDial v1.0 val from our models along with the ground-truth di-
alog sequences in Fig. 5 and present additional samples in the appendix. In these
examples, consistent with the Visual Dialog task definition [2], at every round of
dialog, the model gets the image, ground-truth human dialog history (including
caption), and follow-up question as input, and predicts the answer. Specifically,
the model ranks 100 answer options. Here we show the top-1 prediction.

We make a few observations. 1) The Base model is surprisingly accurate, e.g. in
row 2, round 1 (Fig. 5), Q: ‘can you see any people?’, predicted answer: ‘part of
a person’, in row 2, round 10, Q: ‘anything else interesting about the photo?’,
predicted answer: ‘the dog is looking up at the person with his tongue out’.
2) The CE model often answers with generic responses (such as ‘I cannot tell’),
especially for questions involving some amount of subjectivity / uncertainty, e.g.
in row 1, round 7, Q: ‘what color is the chair?’, predicted answer: ‘I cannot tell’
(the chair seems to be in shadow in the image), in row 2, round 7, Q: ‘does the
dog look happy?’, predicted answer: ‘I can’t tell’ (subjective question). 3) This
also highlights a consequence of misalignment between ground-truth and dense
annotations. While the ground-truth answer provides one reasonable response
for the question asked, it is answerer-specific to quite an extent and there may
be other correct answers (annotated in the dense annotations). A negative effect
of this misalignment is that when finetuned on dense annotations (CE), the
model gets rewarded for generic answers (e.g. ‘cannot tell’). While being able
to capture and reason about uncertainty is a desirable property models should
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top-50 most relevant answers as per dense

annotations (from Fig. 3) by three model variants — VILBERT w/ CC + VQA (called
‘Base’), CE, and CE + NSP. The CE model gets lower mean ranks for most answers in
this set compared to Base. This leads to significantly higher NDCG, as reported in Table
3 and Table 4, but low MRR, since these relevant answers as per dense annotations do
not correlate well with the set of original ground-truth answers, as shown in Fig. 2b

Image + Caption

GT Dialog

Base Model

Base Model + CE

Base Model + CE + NSP

a chair sitting on the beach
with boats in view offshore

Q: are there any people?
Atyes

Q: s the picture in color?
Atyes

Q: how many people are there?
Atican't tell

Q: what are they doing?

A

Q: is this near a beach?
At yes

Q: are they big boats?

A lis

Q: what color is the chair?
At white

Q: what kind of chair is it?
At beach

Q: what is it made out of?
At wood

Q: s it a nice day?

A: overcast

Q: are there any people?
Atno

Q: is the picture in color?
A:yes

Q: how many people are there?
Al

Q: what are they doing?

Q: is this near a beach?
Atyes

Q: are they big boats?
At ng

:no
Q: what color is the chair?
A: black

Q: what kind of chair is it?
A: beach

Q: what is it made out of?
A: metal

Q: s it a nice day?

A:yes

Q: are there any people?
Atno

Q: is the picture in color?

At yes. itis

Q: how many people are there?
A0

Q: what are they doing?
At i cannot tell

Q: is this near a beach?

At yes

Q: are they big boats?

A nope

Q: what color is the chair?
At i cannot tell

Q: what kind of chair is it?
Acican'ttell

Q: what is it made out of?
Acican'ttell

Q: s ita nice day?

Atyes

Q: are there any people?
Atno

Q: s the picture in color?
Atyes

Q: how many people are there?
Al

what are they doing?

Q: is this near a beach?

a brown and white dog riding a
skateboard

Q: can you see any people?
A part of a person

Q: is the photo in color?

Atyes

Q: man or woman?

Aticant tell

Q: how many dogs?

Atjust 1

Q: s the dog big or small?

At medium

Q: inside or outside?

At hard to tell but i think outside

Q: does the dog look happy?

A: kind of

Q: can you sce the ground?

Atyes

Q: what color is the skateboard?

At black

Q: anything else interesting about the
photo?

A: the dog is looking up at the person
with his tongue out

Q: can you see any people?
A part of a person

Q: s the photo in color?
Atyes

Q: man or woman?

A: can't see his face

Q: how many dogs?

Arl
Q: is the dog big or small?

At big doy

Q: inside or outside?

A: outside

Q: does the dog look happy?
Acyes

Q: can you see the ground?
Atyes

Q: what color is the skateboard?
A: black

Q: anything else interesting about the photo?
A: the dog is looking up at the person with his

tongue out

Q: can you see any people?
tyes

Q: s the photo in color?

Atyes

Q: man or woman?

A: can'ttell

Q: how many dogs?

Asl

Q: is the dog big or small?

A big doj

Q: inside or outside?

A: outside

Q: does the dog look happy?

At can't tell

Q: can you see the ground?
tyes

Q: what color is the skateboard?

At black

Q: anything else interesting about

the photo?

Atno

Atyes
Q: are they big boats?
Atno

Q: what color is the chair?
A: black

Q: what kind of chair is it?
At beach

Q: what is it made out of?
At can'ttell

Qs it a nice day?

Atyes

Q: can you see any people?
Atyes

Q: s the photo in color?
Atyes

Q: man or woman?

At can'ttell

Q: how many dogs?
Arl

Q: is the dog big or small?
At it looks like a large dog

Q: inside or outside?

A: outside

Q: does the dog look happy?

Acyes

Q: can you see the ground?

Acyes

Q: what color is the skateboard?

At black

Q: anything else interesting about the
photo?

A: the dog is looking up at the person
with his tongue out

Fig. 5: Qualitative samples for three model variants — VILBERT w/ CC + VQA (called
‘Base’), Base + CE, and Base + CE + NSP

have, it would be more helpful if these agents can convey more information with
appropriate qualifiers (e.g. ‘T think 3 but they are occluded so it is hard to tell’)
than a blanket ‘I cannot tell’. We aim to study this in future work.
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7 Implementation

We use the BERTpasg model [35] for the linguistic stream. We use 6 layers
of Transformer blocks (with 8 attention heads and a hidden state size of 1024)
for the visual stream. The co-attention layers connect the 6 Transformer layers
in the visual stream to the last 6 Transformer layers in the linguistic stream.
We train on dialog sequences with atmost 256 tokens as most sequences had
atmost 256 tokens. During inference, we truncate longer sequences by removing
rounds starting from round 1 (we keep the caption). We set all loss coefficients
to 1. We use a batch size of 128 for language-only experiments and 80 for other
experiments. We use Adam [63] and linearly increase learning rate from 0 to
2e~5 over 10k iterations and decay to le™® over 200k iterations. Our code is
available at github.com/vmurahari3/visdial-bert/.

8 Conclusion

We introduce a model for Visual Dialog that enables pretraining on large-scale
image-text datasets before transferring and finetuning on VisDial. Our model
is an adaptation of VILBERT [44], and our best single model is pretrained on
BooksCorpus [27], English Wikipedia (at the BERT stage), and on Conceptual
Captions [28], VQA [29] (at the VILBERT stage), before finetuning on VisDial,
optionally with dense annotations. Our model outperforms prior published re-
sults by > 1% absolute on NDCG and MRR, achieving state-of-the-art results,
and providing a simple baseline for future ‘pretrain-then-transfer’ approaches.

Through careful analysis of our results, we find that the recently released dense
annotations for the task do not correlate well with the original ground-truth
dialog answers, leading to a trade-off when models optimize for metrics that take
into account these dense annotations (NDCG) vs. the original sparse annotations
(MRR). This opens up avenues for future research into better evaluation metrics.

Finally, note that our model is discriminative — it can pick a good answer from
a list of answer options — but cannot generate an answer. In the future, we
aim to develop robust decoding techniques, based on decoding strategies for
transformer-based models introduced in [33,64], for a strong generative model.
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