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Abstract. In this paper, we introduce a novel approach to learn a 3D
face model using a joint-based face rig and a neural skinning network.
Thanks to the joint-based representation, our model enjoys some signif-
icant advantages over prior blendshape-based models. First, it is very
compact such that we are orders of magnitude smaller while still keeping
strong modeling capacity. Second, because each joint has its semantic
meaning, interactive facial geometry editing is made easier and more
intuitive. Third, through skinning, our model supports adding mouth in-
terior and eyes, as well as accessories (hair, eye glasses, etc.) in a simpler,
more accurate and principled way. We argue that because the human face
is highly structured and topologically consistent, it does not need to be
learned entirely from data. Instead we can leverage prior knowledge in
the form of a human-designed 3D face rig to reduce the data dependency,
and learn a compact yet strong face model from only a small dataset (less
than one hundred 3D scans). To further improve the modeling capacity,
we train a skinning weight generator through adversarial learning. Ex-
periments on fitting high-quality 3D scans (both neutral and expressive),
noisy depth images, and RGB images demonstrate that its modeling ca-
pacity is on-par with state-of-the-art face models, such as FLAME and
Facewarehouse, even though the model is 10 to 20 times smaller. This
suggests broad value in both graphics and vision applications on mobile
and edge devices.
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1 Introduction

Parametric face models are popular representations for 3D face reconstruction
and face tracking, where the face geometry is represented in a lower dimensional
space than raw vertices. 3D Morphable Face Model (3DMM) proposed in 1999
[10] is still the dominating representation, although there are a few more re-
cent models such as BFM [4] and FLAME [31] which showed stronger modeling
capacity with more training data. They all advocate learning the face model
from a large number of high quality 3D scans. Collecting a large scan dataset,
however, comes with a high cost along with the need for complicated and labor-
intensive post processing such as cleanup, retopologizing and labeling to ensure
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Fig. 1. An illustration of 52 joints in our joint-based model with hand-painted skin-
ning weight. Our joints are defined hierarchically and semantically by following human
anatomy without any training data. Our model is very compact, i.e., only a single mesh
(5k vertices) with 9k floating points for skinning weight.

accurate point to point correspondence before learning the face model. The pre-
vious state-of-the-art FLAME [31] model was learned from 33k registered scans
which is obviously not easy to scale.

Model size is another important aspect to democratizing 3D face applica-
tions, which unfortunately has not received much attention. A cheap, efficient
solution is required to support low memory 3D face reconstruction and track-
ing, especially on edge devices. Even on the cloud, efficiency is compelling as a
means of saving cost. The highest capacity model from FLAME was shown with
300 identity basis which is over 4 million floating points, and while BEM [4] has
fewer identity basis, the larger number of vertices increases the size to 32 million
floating points. The challenging issues of collecting data and reducing model size
lead us to explore a strong prior that can reduce the need for both of them.

A few recent works [40,43] propose to learn a face model from massive wild
images or videos. Although impressive results were shown, those models were
primarily designed for RGB input. Moreover, the face model is implicitly em-
bedded within the trained network, so it is unclear how it can be extracted
to serve other purposes, such as fitting to depth data and interactive editing
(such as ZEPETO [3] App). With the ubiquity of depth cameras (e.g., Microsoft
Azure Kinect), fitting 3D face models to depth or point cloud data may be an
increasingly important problem for both face reconstruction and tracking [44].

In this paper, we propose to use a new face representation that leverages a hu-
man designed, joint-based, parametric 3D face rig with learned skinning weights
to model the shape variations. At the heart of our model, we bring human prior
knowledge into the modeling which significantly reduces the data that would
otherwise be needed to learn everything from scratch. Although joint-based rep-
resentations receive little attention in literature, they are standard in the gaming
and movie industries. To build our model, we used a standard low-poly base mesh
whose topology supports anatomically plausible deformations with minimal ar-
tifacts. We created a deformation skeleton and skinned the mesh to it using
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Fig. 2. Our pipeline has 3 stages. (1) Optimize joint transformation (7) and hand-
painted skinning weight on retopologized scans to generate learned linear skinning
weight, and synthetic skinning weight training data. (2) Train an autoencoder to output
neural skinning weight then finetune the decoder to cover entire Z distribution. (3) Fix
the decoder then optimize 7 and Z on point cloud with the same loss as (1), but
correspondences are built by ICP. Note that only (3) is needed at test time.

hand-painted skinning weights (see Fig.1). Our model can be replicated easily
using the details provided in supplementary materials, and it needs to be created
only once. It can then be used in applications just like any other face models
(FLAME [31], BFM [4], Facewarehouse [13], etc). Our technique is also compat-
ible with joint-based face models publicly available on the internet. The model
capacity is defined by the number of joints, their bind poses and the skinning
weights, which are typically fixed. The skinning weights, however, do not need
to be fixed and are a key to further increasing the representation capacity.

To learn skinning weights, we collected 94 high quality scans and retopolo-
gized them to our face topology. We took 85 of our scans as training data, then fit
one fixed global skinning weight matrix across all the scans through an iterative
optimizer. This shows noticeable improvement over the hand-painted skinning
weights, and with this model we achieve lower error than FLAME 49 while being
30 times smaller. We then further increased our model capacity by training a
neural network to encode the skinning weight space into 50 parameters. We test
the effectiveness of the neural skinning weights on BU-3DFE neutral and we
can approximate FLAME 300 scan-to-mesh error, while staying 20 times more
compact. Our model also handles expressions out of the box, but we added a
subset of expression blendshapes from [14] to further increase capacity. Our fi-
nal model is on-par with FLAME 300 while remaining 10 times more compact
(evaluate on expressive scans from BU-3DFE). Our fitted face mesh enjoys the
benefit of joint model as it facilitates accurate placement of mouth interior, eyes
and accessories. Furthermore, the semantically meaningful parameters facilitate
post-fit editing. We summarize our main contribution as following:

1. We propose a new 3D face representation based on a joint-based face rig
model that incorporates strong human prior. This allow us to reduce the
required number of training scans, reduce the size of the model, accurately
place mouth interior, eyes and hair, as well as support editing.
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2. We propose a neural skinning weight generator to significantly increase our
joint-based model capacity. To preserve the compactness of our model, we
design a group-wise fully connected layer to reduce the model size 51 times.

3. We tested our model on BU-3DFE [47], retopologized scans, Azure Kinect
depth dataset, 2D images with 2D landmarks, and retargeting. Results show
that our model can achieve similar error with FLAME 300 [31] with 20 times
smaller for neutral scans, and 10 times smaller for expressive scans.

2 Related Work

Linear 3D Face Modeling In 1999, Blanz and Vetter [10] are the first to
introduce morphable model by learning PCA from 200 scans. Ten years later,
Basel Face Model (BFM) [4] was built on another 200 scans using a nonrigid
extension of iterative closest point algorithm (NICP) [6]. Recently, Large Scale
Facial Model (LSFM) [11] built a large scale version of BFM by learning from
10k scans. Wu et al. [45] added a joint for jaw rotation to significantly reduce
the number of required blendshapes. Inspire by [45], FLAME [31], added joints
to allow eye, jaw and head rotation. FLAME was trained with 33k scans, and is
considered to be the current state-of-the-art. While the trend is towards larger
amounts of training data for building face models, we believe that it is hard
to democratize such methods due to the high cost of data collection as well as
privacy concerns. The authors of [41] propose to learn a geometry and texture
correction in a PCA space based of 3DMM. JALI [20] proposes a face model
specifically for speaking movement. Combined Face & Head Model (CFHM) [34]
designed a combination of Liverpool-York Head Model (LYHM) [18] and LSFM
[11] to achieve a face model that can perform well on both head and face region.
York Ear Model [17] proposes an ear modeling. Muscle-based model [9] seeks to
explain human movement anatomically similar to us, but express in blendshapes
and jaw joint. We define our model anatomically purely in joints and introduce
neural skinning weight to increase model capacity.

Nonlinear 3D Face Modeling Fernandez et al. [5] designs a convolutional
encoder to decouple latent representation and apply a multilinear model as a
decoder to output depth images. Non-linear 3DMM [43] proposes to learn face
model by convolutional neural network on 300W-LP [39] with RGB input and
the outputs are position map and texture in UV space. Face Model Learning from
Videos (FML) [40] learns face model on fully-connected layers to output shape
and texture in the vertex space instead of UV space, and is designed to tackle
the lack of training data through unsupervised learning on a large-scale video
dataset (VoxCeleb2 [16]). FML is the closest work to ours in term of addressing
limited 3D scan datasets, but it was not designed for point cloud fitting.

While autoencoder family [37,28,19,30] achieves impressive error on retopol-
ogized mesh, which we call known-correspondence, it is unclear how to accom-
modate other tasks. We consider FLAME as a more complete face model as
it can use NICP to fit unknown correspondence, and the authors demonstrate
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2D fitting and retargeting in their paper. To make a fair comparison, we re-
trained COMA on our 85 training scans, but COMA [37] does not generalize
to BU-3DFE at all. COMA [37] and Li et al. [30] require 20k scans to achieve
their results. The model size is also larger, e.g., Dai et al. [19]’s decoder alone
is 17.8M Floats and Jiang et al. [28]’s encoder alone is 14.0M Floats, while our
entire model is only 0.2M Floats.

Personalized 3D Face Modeling High quality 3D face modeling is already
possible if the model is for a specific person. Past works [46,27] capture im-
ages from multiple views and apply multi-view stereo reconstruction to obtain
3D face mesh. Using videos instead of multiview [22], [23] is also popular for
reducing the cost of camera rig. Using only internet photos is also possible in
[38] where the authors personalize normal maps to obtain user’s mesh. Our work
indirectly creates personalized 3D face models using the neural skinning weights.

Skinning Weight Learning Bailey et al. [8] and Neuroskinning [32] propose to
learn skinning weight to replace manual effort in painting the skinning weight for
character animation. Although the idea of using neural network in Neuroskin-
ning is similar to ours, the goal is different as we wish to increase model capacity
for face modeling. Moreover, Neuroskinning takes a 3D model as an input, while
we train our network as a GAN. Perhaps a direct comparison would be inputting
both 3D scan and joint transformation into our network, but the network will
not generalize well due to the small amount of scans in training set. The network
size is also directly counted towards face model size, so Neuroskinning’s network
design would defeat the purpose of compactness of our joint model.

3 Methodology

We first define the plain joint-based model with linear blend skinning where the
weights are fixed, then introduce an advanced version where we use a network
to generate skinning weights adaptively though optimizing the latent code in
section 3.2. Fig.2 illustrates the overview of our system pipeline.

3.1 Joint-based Rigging Model

Joint-based Face Representation We use vertex based LBS similar to FLAME
[31] with N = 5236 vertices, but K = 52 joints. This can be viewed as replacing
the blendshapes in FLAME with 47 more joints which are defined as:

My, = B~ s 7% M, (1)

Where B is a fixed 4x4 bind pose matrix and the fitting variables are rigid
transformation 7, which includes Euler rotation (R), translation (T") and scaling
(S). Our joint are defined hierarchically, where the global joint transformation
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M), is defined by recursive multiplications from the parent joint M, to the root
joint Mo (an identity matrix). We first define the root joint to allow global pose,
and design all the other joints hierarchically such that each level covers a smaller
area of the mesh and therefore finer detail. We then evaluate and visualize the
fitting error on high quality scans and adjust the current joints and/or add
smaller joints, and repeat the process until we reach desired level of morphing
detail. As we only allow specific transformation on each joint, and we enforce
bilateral symmetry in most cases, we end up with only 105 variables as opposed
to 468 (9 DOF x 52 joints). The full details can be found in supplementary.

Linear Blend Skinning We apply M} and LBS on each vertex.

K
v’ :Z(wk*v*Mk) (2)

k=1

Skinning weights (w) are defined in a 2-dimensional N x K matrix, and v is
the vertex position. We first initialize w with skinning weights created manually
using the weight painting tool in Blender. Even with some expertise in the area,
it is difficult to produce good results in regions influenced by many joints, and
quite intractable to find weights that work well across a wide range of identities.
Therefore, we took a data-driven approach and regressed w over a set of ground-
truth meshes, rather than tweaking them manually to fit all kinds of scans. As we
design our joint to mainly model the local geometry variations, more than half
of the joints only affect small regions of the face. While Dictionary 3DMM [21]
uses sparse PCA to enforce local sparsity, our skinning weights w are naturally
very sparse. Similar to symmetry constraint in 3DMM [33], our joints are also
bilaterally symmetrical, so too are the skinning weights. Sparsity and symmetry
reduce the number of variables from N x K = 272,272 to 8,990 floating points
(30.3x). Fig.1 shows a sample of our skinning weights. As we only need 9k floats
to represent skinning weights, we optimize them as unknown parameters and fit
them across all the scans in the training set. As a result, the learned skinning
weights do not produce sharp artifacts that would be difficult to fix manually.

Losses In order to eliminate the correspondences error, we use the commercial
tool Wrap3 [2] to manually register all the scans into our topology. Once we
establish the dense point-point correspondences across all the scans and our
model, the fitting is conducted by minimizing RMSE:

1 N
Lo = gy 0 = v’ (3)

Where v, is the predicted vertex and vy is the ground-truth vertex. When
fitting to depth test data, we use NICP to build the correspondences between
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predicted mesh and point cloud. Similar to mean face regularization, we ini-
tialize local transforms to identity transformation (I) and add a diminishing
regularization term to limit joint transformations while NICP converges.

K
1
L = g (R 5+ 15 = 1) ()

We manually limit the transformations to keep deformations within anatom-
ically plausible bounds. This is similar to PCA coefficient limit, as FLAME also
generates artifacts if the coefficients exceed [-2, 2].

1 K |l‘k - xmam‘7 if Tk > Tmax
Lm = ? Z |l‘k - xmin|a if Tr < Tmin (5)
k=1 {0, if Toin <= Tk <= Tmaz

Where z is a substituted annotation for R, S, T, and we have L, on all of
them. We also follow the standard regularization in [13,22,38,42,46].

N

Lp=+ D (V2(0p0) = V2(vg,0))? (6)

n=1

Where V? is a Laplacian operator between v, and vy to ensures the overall
topology does not deviate too much. Our final loss is the summation of all losses.

L, =Ly+ ALy +Ae(Lr+ Ly + Lg) + N\ Ly (7
We empirically set the weight for each loss with A, = 0.03, A, = A, = 0.3.

3.2 Neural Skinning Weight

Model Capacity As we seek to further increase the capacity of our joint-
based model, we could consider applying free form deformation or corrective
blendshapes on top of the fitting result, but that would nullify the ability afforded
by the joint-based rig to accessorize the mesh. Although a local region expression
blendshapes is tolerable, identity blendshapes that effect the mesh globally will
also break the accessorizing. We could also add more joints, either manually or
through learning, but this begins to dilute the semantic meaning of the joints,
and furthermore can lead to deformation artifacts caused by too many joints in
close proximity. Instead, we chose to fit the skinning weights to each test subject
thereby creating person-specific skinning weights. While we limit our skinning
weight to be sparse and symmetrical, the 9k skinning weight parameters still
have too much freedom, which without sufficient regularization can result in
artifacts. This motivates us to use a lower dimensional latent space to model the
skinning weights generation. This approach is similar in spirit to GANFit [24]
who optimizes the latent code of a GAN [25] network.
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Skinning Weight Synthesis To train the skinning weight generator, we needed
a set of ground-truth skinning weights. As our joint-based model generates
meshes by joint transformation and skinning weight, if we perturb joint transfor-
mations, there should exist another set of skinning weights that result in about
the same mesh. We generated 32k joint transformations by iteratively fitting
joint transformations and skinning weights on scans. We saved these interme-
diate joint transformations and corresponding meshes during the fitting. We
then froze the joint transformations and optimized skinning weights until they
converged on each mesh. We end generating 32k sets of skinning weights (ws).

Network Design After generating the training data, we first follow COMA [37]
by building an autoencoder to encode a latent vector. We remove the encoder at
test time and freeze the decoder, then fit the latent vector to generate skinning
weights for each test scan. We found that the fitted latent vector during testing
could be very different from training because the skinning weight training data
are quite closed (because they are generated from only a small number of scans),
thus the latent vector does not need to use all the space. We then remove the
encoder and fine-tune the decoder with random noise (Z), similar to Generative
Adversarial Network (GAN) to increase the coverage of Z space. We found that
pre-training the autoencoder is important as training only the decoder in GAN
style is not stable. We choose fully connected (fc) layers with swish activation [35]
as our network block. While graph convolution [29] is a compelling alternative,
there is no obvious design for connecting skinning weights across different joints,
so we let the network learn these connections.

The encoder E reduces the dimension from 8,990 to 50 (Fig.2), and the
discriminator C' maps the dimension from 50 to 1. While the encoder and dis-
criminator do not have to be compacted because we do not use them at test time,
our decoder (D) maps Z from 50 to 8,990, and is suffering the large number of
parameters, especially on the late fc layers. Reducing the feature dimension of
these fc layers causes the network to struggle to learn, so we keep the dimension
large, but reuse the fc layer weight on different portions of the feature. To be
specific, let X denote the input dimension into fc layer, and Y is the output
dimension. Instead of learning X * Y weights, we split X into n groups of %
inputs and only learn a single weight < % X to reuse on all the n groups. This
reduces the number of parameters by a factor of n?. We call this: group-wise
fully connected layer inspired by group-wise convolution from MobileNet [26].
This can also be viewed as reshaping the 1D input X into 2D shape of n * %,
and apply 2D convolution with % filters of kernel size 1 %

Losses We follow WGAN [7] where the discriminator loss on batch size (m) is:

3 (C() — C(D(Z) ®)
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We also add sparsity loss to the generator to prevent our neural skinning
weights (ws) from deviating too far from the learned linear skinning weights
from section 3.1. We use the sparsity loss weight: A\g = 0.05 and adversarial loss
weight: A; = 0.1 throughout the experiments. Our generator loss is:

m
La =Y _(IJi = D(Zi)| + | D(Zi)| = MC(D(Z:))) 9)

i=1
The generator and discriminator loss remain the same on both autoencoder
and generator. Only the input changes from skinning weight (w;) to noise (7).

3.3 Expression Modeling

Because our joints have semantic meaning, we can use 12 of them to model a
subset of facial expressions directly. However, to make sure our model has enough
capacity to model all other expressions (such as cheek puff), we simply add 24 of
the 47 blendshapes from [14] as each of them represents one specific expression.
The full list of blendshapes can be found in the supplemental material. To apply
expression blendshapes on top of the neural skinning weight model, we fit joint
transformation and neural skinning weight iteratively, then fit expression coef-
ficients, and repeat the whole process for a few cycles. We use the loss function
from Eq. 7 through out every stage.

4 Expertimental Setup

4.1 Datasets

Retopologized scans: We collected 94 scans, then manually retopologized
them into our template. We then split 85 for training, 2 for validation and 7 for
testing. These 85 scans were used to learn a global skinning weight in section 3.1.
For neural skinning weights, we fit joint transformation with hand-painted skin-
ning weights for 3k iterations, and saved these joint transformations on interme-
diate iterations. We did not use every iteration because if the iterations were too
closed, the joint transformation had similar values. We then fit the global skin-
ning weights across all the scans and refit joint transformations, then repeated
the process for 5 cycles, resulting in 8k joint transformations. We sparsely per-
turbed them by 5% for 3 more times to collect 32k joint transformations in total.
We fit skinning weights on these joint transformations until converge on each of
the corresponding retopologized scan. We split these 32k skinning weights into
29k training set, 680 validation set, and 2.4k test set.

Separate testing scans For external comparison, we evaluate the identity part
of our model on BU-3DFE [47] 100 neutral scans, and evaluate the expressiveness
of our model on 480 BU-3DFE scans (10 male and 10 female with all the scans
except neutral). We setup a small rig with 1 Microsoft Azure Kinect (for depth)
and 3 point grey cameras (for high-quality texture) and used it to collect, fit and
visualize 70 scans to test the effectiveness of our model.
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4.2 Evaluation Metric

We use point-to-point error on the retopologized test set as we already have the
correspondences between predicted mesh and ground-truth scan. For BU-3DFE,
we follow scan-to-mesh distance from FLAME. Unlike FLAME, our joint-based
model automatically aligns with the root as part of fitting, so we do not need
an extra alignment process.

4.3 Training Configuration

Our joint-based model was created by adding joints and painting skinning weights
to a generic base mesh in Blender. We exported the model to .npz file and fit
the parameters on Tensorflow. We use AdamOptimizer throughout the training.
We fit joint transformations using a learning rate of 10~ for 3k iterations. We
fit the global skinning weights across the training set using a learning rate of
10~* and batch size of 85 for 3k iterations. We fit joint transformations and
skinning weights iteratively for 5 cycles. On a single Nvidia V100, fitting joint
transformations took 1 minute per scan (~1.5 hours on training set), and fitting
the skinning weights for 5 cycles took ~20 hours. Neural skinning weights were
trained using a learning rate of 1072 during the first phase of training the au-
toencoder, and learning rate of 10™* during the second phase of fine-tuning the
decoder with a batch size of 85 for 30k iterations. It took ~40 hours to train neu-
ral skinning weights on a V100 GPU. At test time, we built the correspondence
on point clouds using NICP. We fit identity by fitting joint transformation for
500 iterations and Z for 500 iterations for 2 cycles, then fit expressions for 500
iterations, then repeated the iterative fitting between identity and expressions
for 2 cycles. The fitting took ~2 minutes with a Nvidia 1080Ti.

4.4 Neural Skinning Weight Architecture

Our neural skinning weights consists of encoder, decoder and discriminator
(Fig.2). The basic building block is fc layer and swish activation. We use both
fc layer weight and bias on the encoder and discriminator, but only use fc layer
weight on the decoder. We remove fc layer bias from the decoder because if we
initialize the input noise Z as zero, our block will always output zero. We then
designed the final skinning weights to be a summation between learned linear
skinning weights from section 3.1, and the residual from our neural network. At
test time, we first set Z to zero and fit joint transformations to convergence, then
fit Z to generate a new skinning weight and repeat the cycle. Another reason for
removing fc layer bias is to decrease the network size by half.

As we do not use encoder and discriminator during the testing, they can be
large. Each fc layer in our encoder reduces the dimensions by half from 8990 to
50. Our discriminator dimension goes from 50 to 256 in 4 layers, and another 4
layers to decrease the dimension to 1. The decoder contains 6 layers where the
first 3 fc layers increase the dimension from 50 to 250, and the last 3 group-wise
fc layers dimensions are 500 (n=2), 1100 (n=>5) and 8990 (n=10), where n is the
number of groups.
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Fig. 3. External comparison on BU-3DFE. Our model is much more compact than the
counterpart model with about the same scan-to-mesh error. The improvement of each
skinning weight learning step also holds true.

5 Results

5.1 Ablation Study

Known Correspondence We conduct our experiments in a control environ-
ment on high quality scans with known correspondence to eliminate external
factors. Table 1 shows that, in this control environment, hand-painted skinning
weight already achieves a reasonable error (i.e. 0.41mm), while learning the lin-
ear skinning weight across training scans generalizes to the test set and further
reduces the error. However, with our learned neural skinning, the error is reduced
drastically from 0.41 to 0.11, which indicates that our neural skinning indeed
increases joint-based model capacity very significantly. This is because each of
the scan can have their personalized skinning weight, instead of just a single
skinning weight that is shared across all the scans. This is a clear conclusion on
high quality, known correspondence dataset.

Table 1. Point-to-point error on known correspondence test set. Our learned skinning
weights demonstrate improvement of model capacity on every step.

Model Error (mm)
(1) Hand-painted skinning | 0.41 £+ 0.02
(2) Learned Linear skinning| 0.34 £+ 0.02
(3) Learned Neural skinning| 0.11 £ 0.01

Unknown Correspondence To compare to external methods, we study our
model on BU-3DFE scans which are noisier than our training set. The corre-
spondence is not known, so it could introduce correspondence error from ICP.
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Nevertheless, Fig.2,3 show that the improvement gap between our proposed skin-
ning weights still hold true. For neutral face fitting, thanks to the novel joint
based representation, even with human manual design and no training data,
hand-painted skinning weight performs better than Facewarehouse [12]. With
linear skinning weight that learned from only 85 scans, we can achieve compa-
rable performance with FLAME 49 while being 30x more compact (Table. 2),
which is equivalent to only 1.6 PCA basis. With our neural skinning weight (solid
blue curve), although the model size increases, it is still 20x more compact than
FLAME 300 while having similar capacity (Fig.4).

On expressive scans, the error increases across all the face model due to the
non-rigid deformation of human face, and the increase of scan noise, especially
on the surface inside the mouth of surprise scans. In spite of error increase, we
observe similar improvement on our propose skinning weight (Table 3 and Fig.3).
Our neural skinning model supports 6 expression in BU-3DFE out of the box and
can achieve 0.239mm error. Adding expression blendshapes improves the error
to be comparable with FLAME 300 while remaining 10x more compact. We
also outperform Nonlinear 3DMM [43] on BU-3DFE with Chamfer distance of
0.00083, 0.00075, 0.00077 for Nonlinear 3DMM, FLAME and ours respectively.

Table 2. Model size and RMS error on BU-3DFE neutral scans. Our neural skinning
model is comparable to FLAME 300 with 20x smaller model size. We only count the
identity part of the model in #Float.

Model #Float|vs (3)|vs (1)|Error (mm)
(1) FLAME 300 [31] 452M [0.16x | 1x |0.158 & 0.172
(2) FLAME 49 [31] 738K 1x 6.1x -

(3) Facewarehouse [13] 1.73M | 0.43x | 2.61 |0.437 + 0.474
(4) BFM full [4] 31.8M | 0.02x | 0.14x N

(5) Hand-painted skinning | 24.7K | 29.9x | 183x [0.375 + 0.387
(6) Learned linear skinning | 24.7K | 29.9x | 183x |0.338 + 0.346
(7) Learned neural skinning| 225.4K | 3.3x | 20.1x |0.153 £ 0.206

Table 3. Model size and RMS error on BU-3DFE expressive scans. Our neural skinning
model is comparable to FLAME 300 with 10x smaller model size.

Model #Float|vs (1)|Error (mm)
(1) FLAME 300 [31] 6.03M | 1Ix |0.211 £ 0.261
(2) Facewarehouse [13] 79.42M | 0.08x |0.558 + 0.670
(3) Hand-painted skinning | 401.7K | 15x [0.432 £ 0.518
(4)
(%)

4) Learned linear skinning | 401.7K | 15x [0.405 + 0.494
5) Learned neural skinning| 602.4K | 10x |0.218 £ 0.289
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5.2 Applications

As we proof the effectiveness and compactness of our model in the section 5.1,
in this section, we show our results in real world applications.

Noisy Depth Fitting We demonstrate our result on consumer rig. We use
depth from a single Microsoft Azure Kinect [1] which suffers from multipass is-
sue (cause the nose to shrink), missing parts due to IR absorbant material, and
the depth itself is noisy. As our model can recover the full head from single depth
map (the missing area will be automatically imply from the joint-based model
prior), we use 3 point-grey cameras only for extracting full frontal texture. Fig.6
illustrates the effectiveness of our fitting result. Capturing the subject takes a
split second and fitting takes 2 minutes on our setting.

RGB Image Fitting Like any previous face models, our model also supports
2D image based 3D face reconstruction. We conducted such an experiment on
RGB images from Facewarehouse [13]. We use 2D landmarks as the only loss to
fit the geometry. Fig.7 shows a few fitting results. As we can see, our model can
fit reasonably well for even large facial expressions.

5.3 Model Benefit

Editing & Accessorizing As our model is designed with comprehensible list
of joints, artist can tweak the joints to edit facial mesh. Adding accessory (e.g.,
hat, glass) is also possible, as most of the industrial computer graphic software
(e.g., Blender, Maya) supports skinning weight transfer in just a few click. The
artist can bind the new accessory to one of our joint and transfer skinning weight
from the closest vertex. Changing hairstyle, attaching teeth, beard, whisker and
mustache are also doable as well. The pipeline figure for adding accessories, and
more demo video can be found in supplemental material.

Retargeting As our joints and expression blendshapes have semantic meaning,
we can transfer the expression and pose into puppet (Fig. 7) or other face scans.

6 Conclusion

We propose a new 3D face representation by using joint-based face rig as the face
model. We designed our model to be very compact, yet, preserve strong capacity
by learning neural skinning weights. We evaluate our model on retopologized
scans, BU-3DFE, visualize on Azure Kinect, and 2D images. Our model enjoy
the benefit of facial mesh editing and accessorizing. As we can reasonably fit
our face model to point cloud and 2D image, our future work will be learning a
neural network to directly predict face model parameters [15], so that it could
be possible to speed up our reconstruction for real-time applications.
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Fig. 4. Visual comparison between FLAME and neural skinning model on BU-3DFE.

Scan Hand-painted Skin Learned Linear Skin Neural Skin Scan Hand-painted Skin Learned Linear Skin Neural Skin

Fig. 5. Visualization of each step of improvement. Top 2 rows are BU-3DFE (top row
scans are female), last row is our retopologized scan (right is female).

Fig. 6. Top: result on expressive scan from BU-3DFE (scan, result, error map). Bottom:
result on Azure Kinect with point-grey cameras. Images are RGB (only for texture),
depth (from Kinect), our fitted geometry, raycasted texture on our fitted geometry.

Fig. 7. 3D face fitting from single 2D image by 2D landmark loss. Note that scan is
only used for evaluation. The order is input, result, error map, and retargeting.
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