
Learning to Separate: Detecting
Heavily-Occluded Objects in Urban Scenes

Chenhongyi Yang1[0000−0003−3895−6895], Vitaly Ablavsky2[0000−0003−2703−7666]?,
Kaihong Wang1[0000−0002−0637−9862], Qi Feng1[0000−0001−6342−3228], and Margrit

Betke1[0000−0002−4491−6868]

1 Boston University
{hongyi,kaiwkh,fung,betke}@bu.edu

2 University of Washington
vxa@uw.edu

Abstract. While visual object detection with deep learning has received
much attention in the past decade, cases when heavy intra-class occlu-
sions occur have not been studied thoroughly. In this work, we propose
a Non-Maximum-Suppression (NMS) algorithm that dramatically im-
proves the detection recall while maintaining high precision in scenes
with heavy occlusions. Our NMS algorithm is derived from a novel em-
bedding mechanism, in which the semantic and geometric features of the
detected boxes are jointly exploited. The embedding makes it possible
to determine whether two heavily-overlapping boxes belong to the same
object in the physical world. Our approach is particularly useful for car
detection and pedestrian detection in urban scenes where occlusions of-
ten happen. We show the effectiveness of our approach by creating a
model called SG-Det (short for Semantics and Geometry Detection) and
testing SG-Det on two widely-adopted datasets, KITTI and CityPersons
for which it achieves state-of-the-art performance. Our code is available
at https://github.com/ChenhongyiYang/SG-NMS.

1 Introduction

Recent years have witnessed significant progress in object detection using deep
convolutional neural networks (CNNs) [1,2,3]. The approach taken by many
state-of-the-art object detection methods [4,5,6,7,8] is to predict multiple bound-
ing boxes for an object and then use a heuristic method such as non-maximum
suppression (NMS) to remove superfluous bounding boxes that stem from du-
plicate detected objects.

The Greedy-NMS algorithm is easy to implement and tends to work well in
images where objects of the same class do not significantly occlude each other.
However, in urban scenes, where the task is to detect potentially heavily occluded
cars or pedestrians, Greedy-NMS does not perform adequately. The decrease in
accuracy is due to the fundamental limitation of the NMS algorithm, which uses

? Work performed at Boston University.

https://github.com/ChenhongyiYang/SG-NMS


2 C. Yang et al.

SG
E

SG
E

obj1   obj2   obj3   obj4   obj5     obj1      obj2      obj3     obj4

Fig. 1: Learned Semantics-Geometry Embedding (SGE) for bounding boxes pre-
dicted by our proposed detector on KITTI and CityPersons images. Heavily over-
lapped boxes are separated in the SGE space according to the objects they are
assigned to. Thus, distance between SGEs can guide Non-Maximum-Suppression
to keep correct boxes in heavy intra-class occlusion scenes.

a fixed threshold to determine which bounding boxes to suppress: The algorithm
cannot suppress duplicate bounding boxes belonging to the same object while
preserving boxes belonging to different objects, where one object heavily oc-
cludes others. Soft-NMS [9] attempts to address this limitation by not removing
overlapping boxes but instead lowering their confidence; however, all overlapping
boxes are still treated as false positives regardless of how many physical objects
are in the image.

The limitation of NMS could be circumvented with an oracle that assigns
each bounding box an identifier that corresponds to its physical-world object.
Then, a standard NMS algorithm could be applied per set of boxes with the same
identifier (but not across identifiers), thus ensuring that false positives from one
object do not result in suppression of a true positive from a nearby object.

To approximate such an oracle, we can try to learn a mapping from boxes
into a latent space so that the heavily overlapping boxes can be separated in
that space. Naively, this mapping can be implemented by learning an embed-
ding for every box based on its region features, e.g., the pooled features after
RoIPooling [7]. However, the usefulness of such an embedding would be limited
because heavily overlapping boxes tend to yield similar region features, thus
would map to nearby points in the embedding space. In this paper, we demon-
strate that by considering both the region features and the geometry of each
box, we can successfully learn an embedding in a space where heavily overlap-
ping boxes are separated if they belong to different objects. We call the learned
embedding Semantics-Geometry Embedding (SGE). We also propose a novel
NMS algorithm that takes advantage of the SGE to improve detection recall.

We visualize the concept of a Semantics-Geometry Embedding (SGE) in
Fig. 1, where boxes belonging to the same object are mapped to a similar SGE
and boxes belonging to different but occluded objects are mapped to SGEs
that are far away. Although the embedding algorithm may assign boxes in dis-
parate parts of an image to similar SGEs, this does not negatively impact our
SG-NMS algorithm because these boxes can be easily separated based on their
intersection-over-union (IoU) score. The SGE is implemented as an associative
embedding [10] and learned using two loss functions, separation and group loss.
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To train the SGE with the object detector end-to-end, we propose a novel Serial
Region-based Fully Convolutional Network (Serial R-FCN), where the geometric
feature of each detected box is precisely aligned with its semantic features. We
combine this network with the Semantics-Geometry Non-Maximum-Suppression
(SG-NMS) algorithm in a model we call SG-Det (short for Semantics and Ge-
ometry Detection). In summary, we make three main contributions:
1. A bounding-box-level Semantics-Geometry Embedding (SGE) is proposed,

and a Non-Maximum Suppression algorithm, called Semantics-Geometry
Non-Maximum-Suppression (SG-NMS), based on this embedding, is derived.
The algorithm markedly improves object detection in scenarios with heavy
intra-class occlusions.

2. A serial R-FCN with self-attention in each head is presented that not only
provides the ability to learn the above-mentioned SGE end-to-end, but also
improves object detection accuracy.

3. The model SG-Det is proposed, which combines the serial R-FCN and the
SG-NMS algorithm. SG-Det achieves state-of-the-art performance on the
tasks of car detection for the KITTI [11] dataset and pedestrian detection
for the CityPersons [12] dataset by dramatically improving the detection
recall in heavily-occluded scenes.

2 Related Works

Object Detection. CNN-based object detectors can be divided into one-stage
and two-stage approaches. One-stage detectors [4,5,13] directly predict the ob-
ject class and the bounding box regressor by sliding windows on the feature
maps. Two-stage object detectors [7,8,14,15], first compute regions of interest
(RoIs) [8,16,17,18,19] and then estimate the class label and bounding box co-
ordinates for each RoI. Although the two-stage approaches often achieve higher
accuracy, they suffer from low computational efficiency. R-FCN [14] addresses
this problem by replacing the computation in fully-connected layers with nearly
cost-free pooling operations.

Non Maximum Suppression. NMS is widely used in modern object de-
tectors to remove duplicate bounding boxes, but it may mistakenly remove boxes
belonging to different objects. Soft-NMS [9] was proposed to address this prob-
lem by replacing the fixed NMS threshold with a score-lowering mechanism.
However, highly-overlapping boxes are still treated as false positives regardless
of the semantic information. In Learning-NMS [20], a neural network is used
to perform NMS, but the appearance information is still not considered. The
Adaptive-NMS approach [21] learns a threshold with the object detector, but
when the threshold is set too high, false positives may be kept. The relation of
bounding boxes can also be used to perform NMS by considering their appear-
ance and geometric features [22], but this does not handle intra-class occlusion.
The localization quality of each box can be learned to help NMS with keeping
accurate boxes [23,24,25,26].

Other Occlusion Handling Approaches. There are many other methods
designed to handle occlusion, including both intra-class or inter-class occlusion.
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Fig. 2: (a) Overview of our proposed model SG-Det. An input image is first
processed by a backbone CNN to yield feature maps. A Region Proposal Net-
work (RPN) [8] is used to extract regions of interests (ROIs). The RoIs will first
be refined by the regression head and then fed into the classification head to
produce detection scores, making the whole pipeline serial. A novel Semantics-
Geometry Module, parallel to the classification head, is added to learn the
SG embedding for each refined box. Finally, the detected box, detection scores,
and SG embeddings are fed into the SG-NMS algorithm to produce final detec-
tions. (b) All heads (orange boxes in Fig. 2(a)) share a similar architecture. The
feature map computed by the backbone network is processed by two branches
to yield two score maps. Then a Position Sensitive RoI-Pooling [14] is applied
to produce two grids of k2 position-sensitive scores – a task-specific score and
an attention score. A softmax operation transforms the attention score into a
discrete distribution over the k2 grids. Finally the k2 task scores are aggregated
by the attention distribution to yield the final output scores.

Most of them focus on detecting pedestrians in crowd scenes. Repulsion loss [27]
was proposed to prevent boxes from shifting to adjacent objects. The occluded
person is detected by considering different body parts separately [17,28,29,30,31].
A novel expectation-maximization merging unit was proposed to resolve overlap
ambiguities [32]. Additional annotations such as head position or visible regions
have been used [33,34,35] to create robust person detectors. Although these
approaches have been shown to be effective in detecting occluded persons, it is
difficult to generalize them to other tasks like car detection.

3 Methodology

In this section, we first introduce the proposed Semantics-Geometry Embedding
(Section 3.1), then the Semantics-Geometry NMS algorithm (Section 3.2), and
finally the proposed Serial R-FCN (Section 3.3). The overview of the combined
proposed model SG-Det is shown in Figure 2.
See also http://www.cs.bu.edu/fac/betke/research/SG-Det.

http://www.cs.bu.edu/fac/betke/research/SG-Det
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3.1 Semantics-Geometry Embedding

Our key idea for separating occluded objects in an image is to map each putative
detection to a point in a latent space. In this latent space, detections belonging
to the same physical object form a tight cluster; detections that are nearby in
the image plane, but belong to different physical objects, are pushed far apart.

To implement this idea, we design an embedding for each bounding box that
takes the form of a dot-product

e = sT · g, (1)

where g is the geometric feature and s is the semantic feature. The geometric
feature has a fixed form g = (x, y, w, h)T with center coordinates (x, y) and width
and height (w, h) of the bounding box. We tried different kinds of geometric
features (e.g., [22]) and feature vectors with higher dimensions produced by a
fully-connected layer, but found that such complexity did not provide further
significant improvement.

Unlike the geometric feature, the semantic feature s is a weight output by a
function that yields a vector compatible with g; the function is implemented as a
neural network, as shown in the Semantics-Geometry Head in Fig. 2. Note that
the SGE is computed by the linear transformation of the geometric feature taking
the learned semantic feature as a weight. An interpretation is that the neural
network automatically learns how to distinguish the bounding boxes belonging to
different objects. Note that a similar idea was proposed that combined geometric
and semantic features in a Relation Network [22], but our approach is much
simpler and can handle intra-class occlusion effectively.

We train the SGE using the loss function defined in Eq. 1. The training is
carried out end-to-end, jointly with the object-detection branch using the loss
function defined later (Eq. 6).

The loss function is derived for the SGE by extending the notion of an as-
sociative embedding [10,36]. Specifically, we use a group loss to group the SGEs
of boxes belonging to the same object, and use a separation loss to distinguish
SGEs of boxes belonging to different objects. For one image, the ground-truth
boxes are denoted by B∗ = {b∗1, b∗2, ..., b∗M}. For each refined box bi in the re-
fined box set B = {bi}, let b∗j be the ground truth box with the largest IoU. If
IoU(bi, b

∗
j ) > θ, box bi would be “assigned” to b∗j . Thus the refined bounding

boxes are divided into M + 1 sets: B = B1 ∪ B2 ∪, ...,∪ BM+1, where BM+1 is
the set of refined boxes that are not assigned to any ground truth box. Then the
group and separation losses are defined as:

Lgroup({ei}) =

M∑
j=1

∑
bi∈Bj

|ei − ej∗|, (2)

Lsep({ei}) =
∑
i

p∗i max(0, σ − |ei − ẽi|), (3)

where ej
∗ is the SGE of ground truth box b∗j , b̃∗i is the ground truth box with the

second largest IoU with respect to bi, and its SGE is ẽi. We use σ to stabilize the
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Algorithm 1: The proposed Semantics-Geometry NMS.

Input: B = {bi}: List of detection locations (boxes),
V = {vi}: List of detection scores,
E = {ei}: List of SGEs,
Nt: IoU threshold,
Φ(·): R→ R, a monotonically increasing function

begin
D←− {}; W←− {} // set D as detected boxes and W as their scores

while B 6= ∅ do
m←− arg maxi∈{1...N} V
D←− D ∪ {bm}; W←−W ∪ {sm}
B←− B \ {bm}; V←− V \ {vm}
for bi in B do

τ ←− IoU(bm, bi)
// compare not only IoU but also the embedding distance

if τ ≥ Nt and d(em, ei) ≤ Φ(τ) then
B←− B \ bi; V←− V \ vi

return D, W

training process by preventing the distances between embeddings to be infinite.
We found that the model performance is not sensitive to the actual value of σ.
In the definition of the separation loss, p∗i is a indicator variable which is 1 only
if bi /∈ BM+1 and IoU(bi, b̃∗i ) > ρ.

Some readers may confuse our loss functions with the Repulsion Loss (RL) [27],
which is completely different. The RL was proposed to improve bounding box
regression so that the detected bounding boxes better fit ground-truth objects.
In contrast, our method does not affect the bounding box regression. The em-
bedding trained through the two loss functions is used to determine if two over-
lapping boxes belong to the same object. Another difference is that the RL is
performed in the box-coordinate space, while our group and separation losses
are performed in the latent embedding space.

3.2 Semantics-Geometry Non-Maximum Suppression

We now derive our simple, yet effective NMS algorithm, SG-NMS, which takes
advantage of the Semantics-Geometry Embedding. Its pseudo code is given in
Algorithm 1.

SG-NMS first selects the box with the highest detection score as the pivot box.
For each of the remaining boxes, its IoU with the pivot box is denoted by τ , and
the box will be kept if the τ < Nt. When τ > Nt, SG-NMS checks the distance
between its SGE and the SGEof the pivot box. If the distance is larger than
Φ(τ), the box will also be kept. Here Φ(·) is a monotonically increasing function,
which means that, as τ increases, a larger distance is required to keep it. In
this work, we consider three kinds of SG-NMS algorithms: SG-NMS-Constant,
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SG-NMS-Linear and SG-NMS-Square, which respectively correspond to:

Φ(τ) = tc, Φ(τ) = tl · τ, and Φ(τ) = ts · τ2, (4)

where tc, tl, and ts are hyper-parameters.

3.3 The proposed Serial R-FCN

In order to compute SGEs that can capture the difference between geometric fea-
tures of boxes belonging to different objects, we need to align extracted semantic
features strictly with the refined boxes after bounding box regression. However,
this cannot be achieved by normal two-stage CNN-based object detectors where
the pooled feature is aligned with the RoI instead of the refined box because of
the bounding-box regression.

To address this problem, we propose Serial R-FCN, see Fig. 2 (a). In Serial
R-FCN, the classification head along with the SG module is placed after the class-
agnostic bounding box regression head [7]; thus, the whole pipeline becomes a
serial structure. The classification head and the SG module use the refined boxes
for feature extraction rather than the RoIs. Thus, the pooled features are strictly
aligned with the refined boxes.

A light-weight self-attention branch is added into each head, as in Fig. 2
(b). The output of the attention head is a discrete distribution over the k2

position-sensitive grid. The position-sensitive scores are then aggregated through
a weighted sum based on that distribution. There are two reasons why we intro-
duced the self-attention in each head: 1). The self-attention helps the network to
capture the semantic difference between heavily overlap-ping boxes and hence
the SGE can be learned effectively. 2) we suggest that merging the position-
sensitive scores by averaging (as done previous work [14]) could be sub-optimal,
while adding the self-attention module helps the model to learn how to merge the
score better. The idea of our Serial R-FCN is similar to a Cascade R-CNN [15].
However, while Cascade R-CNN stacks multiple classification and regression
heads, we here only use one regression head and one classification head, thus
do not introduce an extra parameter. Although the serial structure can be used
by any two-stage detector, it suits the R-FCN best since no extra operation is
added, and so the computation of the refined box is nearly cost free.

Placing the classification head after the regression head can bring us another
benefit: It enables us to train the classification head using a higher IoU threshold.
This yields more accurate bounding boxes. Without the serial structure, setting
the IoU threshold to a very high value would result in the shortage of positive
samples. However, in practice, we find that simply adopting the serial structure
could easily yield a network that overfits on the training data. The reason is
that as training progresses, the regression head becomes more and more power-
ful so that the classification head cannot receive enough hard negative examples
(i.e., boxes whose IoU with the ground truth box is slightly smaller than the
training threshold). The result is that the model cannot distinguish these ex-
amples and true positives when the model is tested. To alleviate the overfitting
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Fig. 3: Detection recall of the proposed SG-NMS and competing NMS algorithms
on the KITTI validation set for different levels of occlusion, denoted by the max-
mutual-IoU (MMIOU) among ground-truth boxes.

problem, we propose the simple but effective approach to add some noise to the
refined bounding box so that the classification head continues to obtain hard
false examples. Formally, during training, a box b = (x, y, w, h) is transformed
to b′ = (x′, y′, w′, h′) to train the classification head and the SG module:

x′ = σxw + x, y′ = σyh+ y,

w′ = w · exp(σw), h′ = h · exp(σh), (5)

where σx, σy, σw, σh are noise coefficient drawn from a uniform distribution∏j=k
j=1 (−ζk, ζk) where the four dimensions correspond to x, y, w, h respectively.

In practice we set ζx = ζy = 0.05 and ζw = ζh = 0.2.
The whole pipeline is trained end-to-end with the loss functions

Ltotal = Lrpn + αLdet + βLSGE, (6)

Lrpn = Lcls-anchor + Lreg-anchor, (7)

Ldet = Lcls-rbox + Lreg-roi, (8)

LSGE = Lgroup-rbox + Lsep-rbox, (9)

where the Lrpn is the commonly used loss to train the Region Proposal Network
(RPN) [8], Ldet is object detection loss [7] and LSGE is the loss to train SGE as
described in Sec. 3.1. We use two hyper-parameter α and β to balance between
losses (Eq. 6). The RPN classification and regression losses are applied to the
anchor boxes (Eq. 7), the regression loss to RoIs (Eq. 8), and the classification,
group, and separation losses to the refined boxes (Eq. 9).

4 Experiments

We conducted quantitative experiments on two commonly used urban scenes
datasets: KITTI [11] and CityPersons [12]. To show the advantage of our SG-
Det model and also to give deep insights into our approach, we first conducted
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several experiments using different settings on the KITTI validation set. We then
compared our approach with other state-of-the-art methods on the KITTI test
set, and finally we show the performance on the CityPersons datasets. Results
demonstrate the effectiveness of SG-Det to detect heavily-occluded cars and
pedestrians in urban scenes. See also www.cs.bu.edu/∼betke/research/SG-Det.

4.1 Datasets

KITTI contains 7,481 images for training and validation, and another 7,518
images for testing. We evaluated our methods on the car detection task where
intra-class occlusions tend to happen the most. The dataset has a standard
split into three levels of difficulty: Easy, Moderate, and Hard, according to the
object scale, occlusion level, and maximum truncation. To further demonstrate
how our methods handles intra-class occlusions, we proposed a new difficulty
split that divide the dataset into disjoint subsets based on the max-mutual-IoU
(MMIoU), denoted by MMIoU, between ground-truth boxes. The max-mutual-
IoU of a ground-truth box is defined by its maximum IoU with other ground-
truth boxes in the same category. We separate the validation set into three
levels: Bare (0 < MMIoU ≤ 0.2), Partial ( 0.2 < MMIoU ≤ 0.5) and Heavy (
0.5 < MMIoU). Average Precision (AP) is used to evaluate performance [11].
Following prior work [37], we randomly held out 3,722 images for validation
and use the remaining 3,759 images for training, in which a simple image L2

similarity metric was adopted to differentiate training and validation images.
CityPersons contains 5,000 images (2,975 for training, 500 for validation,

and 1,525 for testing). The log-average Miss Rate (MR) is used to evaluate
performance. Following [27], we compare the detection log-average Miss Rate
(MR) in different occlusion degrees. Following prior work [27], we separated the
data into four subsets according to occlusion degree.

4.2 Implementation Details

We implemented our Serial R-FCN in TensorFlow [38] and trained it on a Nvidia
Titan V GPU. For KITTI, we chose a ResNet-101 [2] based on a Feature Pyramid
Network (FPN) as the backbone and set the batch size to 4. The model was
trained for 100,000 iterations using the Adam [39] optimizer with learning rate
of 0.0001. For CityPersons, we chose a ResNet-50 [2] as the backbone network
and trained the model for 240,000 iterations with batch size of 4, and the initial
learning rate was set to 0.0001 and decreased by a factor of 10 after 120,000
iterations. In all experiments, OHEM is adopted to accelerate convergence [14].
For both datasets, we set θ, σ, ρ to 0.7, 0.3, and 1.0, respectively, and set α and
β to 1. Our code is available https://github.com/ChenhongyiYang/SG-NMS.

4.3 Effectiveness of SG-NMS

We report the performance of different NMS algorithms on the KITTI validation
set applied to the same initial boxes so that a fair comparison is ensured (Ta-
ble 1). For Soft-NMS, we only report the results of the linear version because we

http://www.cs.bu.edu/fac/betke/research/SG-Det
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Algorithm Easy Moderate Hard ↑
Greedy-NMS 97.98 95.16 90.21

Soft-NMS 97.72 95.13 91.15

SG-Constant 97.56 95.35 92.31
SG-Linear 97.69 95.41 92.54
SG-Square 97.52 95.14 92.38

Table 1: Average precision (AP) in % of the proposed SG-NMS algorithm and
other commonly-used NMS algorithms on the KITTI validation set.

Greedy SG-Constant SG-Linear SG-Square
Nt Bare Partial Heavy c Bare Partial Heavy tl Bare Partial Heavy ts Bare Partial Heavy ↑
soft 94.63 84.62 54.62 1.2 93.77 84.49 57.21 2.0 93.74 85.14 58.72 3.0 93.65 85.23 60.36
0.3 94.33 76.56 35.10 1.1 93.73 84.65 58.74 1.9 93.72 85.19 59.17 2.9 93.62 85.16 60.24
0.4 94.03 83.38 40.58 1.0 93.46 84.33 60.02 1.8 93.70 85.11 59.81 2.8 93.61 85.14 60.83
0.5 93.63 85.15 50.63 0.9 93.58 84.52 60.05 1.7 93.68 85.10 60.19 2.7 93.59 85.17 61.48
0.6 91.56 82.85 55.49 0.8 93.46 84.33 60.02 1.6 93.64 85.06 60.24 2.6 93.58 85.09 62.08
0.7 46.25 27.24 57.21 0.7 93.31 83.83 59.05 1.5 93.60 84.97 61.08 2.5 93.55 84.98 62.03

Table 2: AP (in %) of NMS algorithms with different thresholds and occlusion
levels (highest AP per level in red).

find its performance is consistently better than the Gaussian version. All three
SG-NMS algorithms outperform the Greedy-NMS and Soft-NMS on the Mod-
erate and Hard levels. In particular, SG-NMS-Linear outperforms Greedy-NMS
and Soft-NMS by 2.33 pp and 1.39 pp, respectively, on the Hard level where
heavy intra-class occlusions occur. We also explored the efficacy of the Relation
Network [22] in occlusion situations, but found that it did not work well due to
generating numerous false positive detections in crowded scenes.

We report the detection recall on different MMIoU intervals and show the
results in Fig. 3. When MMIoU is less than 0.5, the tested NMS algorithms
achieve similar recall scores. When there is severe intra-class occlusion, i.e.,
MMIoU > 0.5, the recall of Greedy-NMS and Soft-NMS drops significantly.
However, all three SG-NMS keep a relatively high recall. When MMIoU > 0.5,
the difference in recall among the three SG-NMS algorithms is caused by the
different slope of their Φ(·) function. This result indicates that our SG-NMS im-
proves the detection by promoting detection recall for objects in crowded scenes.

We report how the hyper-parameter t, introduced by our SG-NMS, affects
detection performance (Table 2). Overall, the variants of SG-NMS outperform
Greedy-NMS and Soft-NMS for the Heavy and Partial occlusion levels, while
maintaining high performance for the Bare level. For the Heavy level, the best
result, 62.08%, is achieved by SG-NMS-Square, which is 4.87 percent points (pp)
higher than the best result of Greedy-NMS and Soft-NMS. Although Greedy-
NMS can achieve an AP of 55.49% for the Heavy level (when Nt = 0.6), the AP
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Model SG Noise Attention Easy Moderate Hard Bare Partial Heavy ↑
R-FCN (FPN) - - - 95.57 95.08 88.66 92.41 81.83 45.96

Our SG-Det

94.77 94.44 89.30 92.35 80.94 44.03
X 95.84 94.55 90.10 93.27 84.87 47.79

X 95.04 95.12 90.01 93.11 83.28 43.98
X 94.62 94.50 89.54 92.45 81.56 52.62

X X 97.98 95.16 90.21 93.63 85.15 50.63
X X 97.80 95.24 91.86 93.15 82.71 51.58
X X 95.25 94.50 92.30 93.21 84.62 58.43
X X X 97.52 95.14 92.38 93.59 85.17 61.48

Table 3: AP for different settings for the proposed SG-Det model and a baseline
R-FCN model on car detection on the KITTI validation set. SG stands for SG-
NMS; Noise stands for box noise, Attention stands for the self-attention branch
used in each head.

in the Bare and Partial levels drops significantly due to the false-positive boxes
it generates.

4.4 Ablation Study

We conducted an ablation study that demonstrates how the different model com-
ponents affect the overall detection performance (Table 3). Our SG-Det model
is proposed for detecting occluded objects, thus the analysis is focused on the
detection of objects at the Hard difficulty (in the official split) and the Heavy
occlusion level.

When the self-attention and bounding box noise are removed from our Serial
R-FCN, we obtain a baseline Serial R-FCN that achieves an AP of 89.30% on the
Hard and 44.03% on the Heavy occlusion level. When SG-NMS is included, the
detection AP on the Heavy level is improved by 8.59 pp. When the self-attention
branch is added into each head, the detection AP in the Hard and Heavy levels
is lifted by 0.8 pp and 3.76 pp, respectively, compared to the baseline Serial R-
FCN. This verifies our assumption that the learnable score aggregation enabled
by the self-attention is superior to the naive average aggregation. By adding
SG-NMS, the APs are further improved to 92.3% and 58.43%, which indicates
that the self-attention head is important in capturing the semantic difference
between heavily overlapping boxes. By adding box noise during training, the
detection APs for all settings are improved, except for the heavy occlusion level.
This means that the box noise can improve the detection precision by alleviating
the overfitting problem in the Serial R-FCN, but it cannot help with improving
the detection recall for heavily occluded objects. By combining self-attention,
box noise, and SG-NMS, the full SG-Det model achieves APs of 92.38% and
61.48% on the Hard difficulty and Heavy occlusion level, respectively.

To conclude, we note that self-attention is useful to capture the semantic
difference between heavily overlapping boxes. The box noise can alleviate the
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Embedding Bare Partial Heavy ↑
SE 93.31 83.95 55.60
GE 94.11 78.53 38.12

SGE 93.59 85.14 61.48

Table 4: Comparison of AP between the proposed Semantics-Geometry Em-
bedding (SGE) , the pure Semantic Embedding (SE) and the pure Geometric
Embedding (GE) on the KITTI validation set.

ρ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Bare 93.92 94.03 92.50 94.24 93.28 93.68 92.98 93.56 93.17 93.07
Partial 81.73 82.89 83.75 84.06 85.70 85.10 84.89 82.38 83.24 83.52
Heavy 53.42 54.73 58.37 57.08 60.05 60.19 58.93 56.05 55.11 53.25

Table 5: Comparison of AP using different ρ during training.

overfitting problem so that the detection precision is improved and the SG-NMS
algorithm can improve the detection performance for heavily occluded objects.

4.5 Discussion

The importance of Semantics and Geometry. We explored the importance
of the semantic and geometric features by removing them from the embedding
calculation. We first removed the semantic features by computing a Geometric
Embedding (GE) for each box, where the GE is computed using a fixed ŝ that is
the mean of all the s vectors in the validation set. The performance of GE, shown
in Table 4, is inferior than our SGE in occlusion situations, demonstrating the
benefit of computing semantic features adaptively. Then we tested the purely-
semantic model: for every box, a 1D Semantic Embedding (SE) is computed
directly from its pooled region feature (Table 4). Our SGE performs better than
the SE for all three occlusion levels. In fact, the two loss functions, defined in
Sec. 3.1 for the SE, produce very unstable results during training. This means it
is difficult for the neural network to learn such an embedding based on semantic
features only, and it reveals the benefit of including geometric features.

How to set ρ when training SGE? We use a hyper-parameter ρ to determine
occlusion during training (Sec. 3.1): For a detected box b, if its second largest IoU
with any ground-truth box is larger than ρ, we assert b is occluded or occludes
another object. Thus, the value of ρ becomes critical to the performance. In
Table 5, we report the AP on different ρ using SG-NMS-Linear with tl = 1.7.
The results show that the performance on the bare difficulty level does not
depend on ρ, which is reasonable because our SGE and SG-NMS do not affect
objects without occlusion. The best ρ for the partial and heavy difficulty levels
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Model Runtime ↓ Easy Moderate Hard ↑
RRC [37] 3.60 s 95.68 93.40 87.37

SenseKITTI [40] 4.50 s 94.79 93.17 84.38
SDP+RPN [41] 0.40 s 95.16 92.03 79.16

ITVD [42] 0.30 s 95.85 91.73 79.31
SINet+ [43] 0.30 s 94.17 91.67 78.6

Cascade MS-CNN [15] 0.25 s 94.26 91.60 78.84
LTN [44] 0.40 s 94.68 91.18 81.51

Aston-EAS [45] 0.24 s 93.91 91.02 77.93
Deep3DBox [46] 1.50 s 94.71 90.19 76.82

R-FCN(FPN) [14,47] 0.20 s 93.53 89.35 79.35

Ours 0.20 s 95.81 93.03 83.00

Table 6: Runtime and AP (%) on the KITTI test set as reported on the KITTI
leaderboard. All methods are ranked based on Moderate difficulty.

are 0.25 and 0.3, so we suggest to use a ρ of 0.27. A different value for ρ leads
to a decrease in performance. To explain this, we suggest that a low value of ρ
brings too much noise into the computing of the group loss, while a high value of
ρ results in the model failing to capture the semantic difference of overlapping
boxes that belong to different objects.

4.6 Comparison with Prior Methods

We compared our model with other state-of-the-art models on the KITTI car
detection leaderboard (Table 6). Our Serial R-FCN and SG-NMS are ranked at
the third place among the existing methods. The respective APs on the Moderate
and Hard level are 1.00 pp and 3.84 pp higher than the fourth-place values [41].
Although RRC [37] and sensekitti [40] are ranked higher than ours, the speed
of our method is more than ten times faster than theirs. A reason is that our
main contribution focuses on the post-processing step rather than the detection
pipeline.

4.7 Experiments on CityPersons

We compare miss rates of NMS algorithms on the CityPersons validation set
for different occlusion degrees in Table 7. We also compare our model with ex-
isting methods. The NMS hyper-parameters are obtained from a grid search,
and we report the best result for each algorithm. With Greedy-NMS, our Se-
rial R-FCN achieves miss rates of 11.7% (reasonable difficulty level) and 52.4%
(heavy). Using Soft-NMS yields a slight improvement. SG-NMS-Linear and SG-
NMS-Square yield 0.2 and 0.7 pp improvements (reasonable difficulty), but using
SG-NMS-Constant harms the performance for this level because a single thresh-
old cannot handle the various complex occlusion situations. All three SG-NMS
improve performance on the heavy and partial occlusion levels. Especially, the
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(a) Proposed SG-NMS (b) Greedy-NMS (c) Soft-NMS

Fig. 4: Visualization of results with true positive (green), false positive (blue)
and missed (red) detections. Two failure cases of SG-NMS are shown with a
false positive detection ((a) middle), and a missed detection ((a) bottom).

Model Reasonable Bare Partial Heavy ↓
Adapted FasterRCNN [12] 12.8 - - -

Repulsion Loss [27] 11.6 7.0 14.8 55.3
OR-CNN [17] 11.0 5.9 13.7 51.3

Adaptive-NMS [20] 10.8 6.2 11.4 54.0

SR-FCN+Greedy-NMS 11.7 7.5 11.0 52.4
SerialR-FCN+Soft-NMS 11.4 7.1 10.9 51.8

SR-FCN+SG-Constant 11.5 7.4 11.2 52.3
SR-FCN+SG-Linear 11.3 7.3 10.8 51.6
SR-FCN+SG-Square 11.0 7.2 10.7 51.1

Table 7: The miss rate (%) on the CityPersons validation set.

SG-NMS-Square improves the respective miss rate to 10.7% and 51.1% on the
partial and heavy occlusion levels, making our methods superior to the state of
the art on those two levels. This means our method excels at handling occlusions.

5 Conclusion

In this paper, we presented two contributions, a novel Semantics-Geometry Em-
bedding mechanism that operates on detected bounding boxes and an effective
Semantics-Geometry Non-Maximum-Suppression algorithm that improves de-
tection recall for heavily-occluded objects. Our combined model SG-Det achieves
state-of-the-art performance on KITTI and CityPersons datasets by dramatically
improving the detection recall and excelling in a low run time.
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