
Towards causal benchmarking of bias
in face analysis algorithms

Guha Balakrishnan1,3, Yuanjun Xiong3, Wei Xia3, and Pietro Perona2,3

1 Massachusetts Institute of Technology
2 California Institute of Technology

3 Amazon Web Services

Abstract. Measuring algorithmic bias is crucial both to assess algo-
rithmic fairness, and to guide the improvement of algorithms. Current
bias measurement methods in computer vision are based on observa-
tional datasets, and so conflate algorithmic bias with dataset bias. To
address this problem we develop an experimental method for measuring
algorithmic bias of face analysis algorithms, which directly manipulates
the attributes of interest, e.g., gender and skin tone, in order to reveal
causal links between attribute variation and performance change. Our
method is based on generating synthetic image grids that differ along
specific attributes while leaving other attributes constant. Crucially, we
rely on the perception of human observers to control for synthesis inac-
curacies when measuring algorithmic bias. We validate our method by
comparing it to a traditional observational bias analysis study in gender
classification algorithms. The two methods reach different conclusions.
While the observational method reports gender and skin color biases,
the experimental method reveals biases due to gender, hair length, age,
and facial hair. We also show that our synthetic transects allow for more
straightforward bias analysis on minority and intersectional groups.

Keywords: Faces, fairness, bias, causality, counterfactuals, image synthesis,
generative adversarial networks (GANs).

1 Introduction

Automated machine learning methods are increasingly used to support deci-
sions in industry, medicine and government. While their performance is often
excellent, accuracy is not guaranteed, and needs to be assessed through careful
measurements. Measuring biases, i.e., performance differences, across protected
attributes such as age, sex, gender, and ethnicity, is particularly important for
decisions that may affect peoples’ lives.

The prevailing technique for measuring the performance of computer vision
algorithms is to measure error frequencies on a test set sampled in the wild [9,
7, 26, 30] that hopefully mirrors the application domain. Each test image is an-
notated for attributes of interest, and split into groups that have homogeneous
attribute values. Comparing error rates across such groups yields predictions
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Fig. 1. Algorithmic bias measurements are test set dependent. (Left) Gen-
der classification error rates of three commercial face analysis systems (System A–C)
on the Pilot Parliaments Benchmark (PPB) [9] of portrait pictures. Error rates for
dark-skinned females were found to be significantly higher than for other groups. We
observed the same qualitative behavior when replicating the study with a standard
classifier (ResNet-50) on two public face datasets (CelebA, FairFace). (Right) Our ex-
perimental investigation using our synthetic Transects dataset, where faces are matched
across attributes, reveals a different picture of algorithmic bias (see Fig. 8 for a more
complete analysis).

of bias. As an example, Fig. 1-left shows the results of a recent study of algo-
rithmic bias in gender classification of face images from the Pilot Parliaments
Benchmark (PPB) dataset. This type of study is called observational, because
the independent variables (e.g., skin color and gender) are sampled from the
environment, rather than controlled by the investigator.

One reason to measure bias is to determine the actions one should take to re-
move it. For example, based on the results of Fig. 2-left, engineers of systems A-C
may decide that incorporating more training examples of dark-skinned women is
needed. In this case, measuring bias has one main goal: revealing causal connec-
tions between attributes of interest and algorithmic performance. Unfortunately,
observational studies are ill-suited for drawing such conclusions. When one sam-
ples data in the wild, hidden variables that correlate with the variable of interest
may have an influence on the performance of the algorithm. As the saying goes,
“correlation does not imply causation.”

For example, in PPB very few males have long hair and almost no light-
skinned females have short hair (Fig. 7, and [37]). The fact that hair length
(a variable that may affect gender classification accuracy) is correlated in PPB
with skin color (a variable of interest) complicates the analysis. Furthermore,
the test dataset used to measure bias is often not representative of the pop-
ulation of interest. E.g., the middle-aged Scandinavians and Africans of PPB
are not representative of, say, the broad U.S. Caucasian and African-American
population [33]. While observational methods do yield useful information on
disparate impact within a given test set population, generalizing observational
performance predictions to different target populations is hit-or-miss [51] and
can negatively impact underrepresented, or minority populations [35, 48]. One
would want a method that systematically identifies algorithmic bias independent
of the peculiarities of specific test sets.
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Fig. 2. Method overview. A GAN Generator is used to synthesize “transects,” or
grids of images along selected attributes by traversing the latent space in specific direc-
tions. Human annotations on the transects provide ground truth to be compared with
algorithm output to measure errors. Attribute-specific bias measurements are obtained
by comparing the algorithm’s predictions with human annotations as the attributes
are varied. The depicted example may study the question: Does hair length, skin tone,
or any combination of the two have a causal effect on classifier errors?

A powerful approach to discovering causal relationships is the experimental
method, used in other disciplines like medicine and social sciences, which involves
manipulating the variable of interest while fixing all the other inputs [5, 39]. In
this work, we offer a practical way forward to systematically measure bias in com-
puter vision algorithms using the experimental method. Our approach (Fig. 2)
generates the test images synthetically, rather than sampling them from the
wild, so that they are varied selectively along attributes of interest. This is en-
abled by recent progress in controlled and realistic image synthesis [22, 23], along
with methods for collecting large amounts of accurate human evaluations [8] to
quantify the perceptual effect of image manipulations. Our synthesis approach
can alter multiple attributes at a time to produce grid-like matched samples
of images we call transects. We quantify the image manipulations with detailed
human evaluations which we then compare with algorithm output to estimate
algorithmic bias.

We evaluate our methodology with experiments on two gender classification
algorithms. We first find that our transect generation strategy creates signif-
icantly more balanced data across key attributes compared to “in the wild”
datasets. Next, inspired by [9], we use this synthetic data to explore the ef-
fects of various attributes on gender classifier errors. Our findings reveal that
the experimental method can change the picture of algorithmic bias (Fig. 8),
which will affect the strategy of algorithm improvement, particularly concerning
groups that are often underrepresented in training and test sets. This work is
a first step to developing experimental methods for algorithmic bias testing in
computer vision, and so much remains to be done both in design and experimen-
tation to achieve broadly-applicable and reliable techniques. In Sec. 5 we discuss
limitations of the current method, and next steps in this research area.
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2 Related Work

Benchmarking in computer vision has a long history [4, 6, 13] including face
recognition [30, 40–42, 15, 16] and face analysis [9]. Some of these studies examine
biases in performance, i.e., error rates across variation of important parameters
(e.g. racial background in faces). Since these studies are purely observational,
they raise the question of whether the biases they measure depend on algorithmic
bias, or on correlations in the test data. Our work addresses this question.

A dataset is said to be biased when combinations of features are dispropor-
tionately represented. Computer vision datasets are often found to be biased [44,
51]. Human face datasets are particularly scrutinized [2, 12, 26, 28, 29, 36] because
methods and models trained on these data can end up being biased along at-
tributes that are protected by the law [27]. Approaches to mitigating dataset
bias include collecting more thorough examples [36], using image synthesis to
compensate for distribution gaps [29], and example resampling [31].

Studies of face analysis systems [9, 26, 34] and face recognition systems [17, 30]
attempt to measure bias across gender and skin-color (or ethnicity). However, the
evaluations are based on observational rather than interventional techniques –
and therefore any conclusions from these studies should be treated with caution.
A notable exception is a recent study [37] using the experimental method to
investigate the effect of skin color in gender classification. In that study, skin
color is modified artificially in photographs of real faces to measure the effects of
differences in skin color, all else being equal. However, the authors observe that
generalizing the experimental method to other attributes, such as hair length,
is too onerous if one is to modify existing photographs. Our goal is to develop a
generally applicable experimental method, where any attribute may be studied
independently.

Recent work uses generative models to explore face classification system bi-
ases. One study explores how variations in pose and lighting affect classifier
performance [2, 28, 29]. A second study uses a generative model to synthesize
faces along particular attribute directions [11]. These studies rely on the strong
assumption that their generative models can modify one attribute at a time.
However, this assumption relies on having unbiased training data, which is al-
most always not practical. In contrast, our framework uses human annotations
to account for residual correlations produced by our generative model.

3 Method

Our framework consists of two components: a technique to synthesize tran-
sects, or grid-like constructs of synthesized images with control over semantic
attributes (Sec. 3.1), and a procedure using these synthesized images, along
with human annotators, to analyze biases of a classifier (Sec. 3.2).
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Fig. 3. 1D transects. 1 × 5 sample transects synthesized by our method for various
attributes. Orthogonalization was used (see Fig. ??).

3.1 Transects: A Walk in Face Space

We assume a black-box face generator G that can transform a latent vector
z ∈ RD into an image I = G(z), where p(z) is a distribution we can sample
from. In our study, G is the generator of a pre-trained, publicly available GAN,
“StyleGAN2” [22, 23]. We base our approach on a recent study [56] for single
attribute traversals in GAN latent spaces. That method trains a linear model
to predict a particular image attribute from z, and uses the model to traverse
the z-space in a discriminative direction. We generalize this idea to synthesize
image grids, i.e., transects, spanning arbitrarily many attributes, unlike related
work that operate on only one or two attributes at a time [11, 47, 49, 55, 56].

Estimating Latents-to-Attributes Linear Models. Let there be a list of Na image
attributes of interest (age, gender, skin color, etc.). We generate an annotated
training dataset Dz = {zi,ai}Nz

i=1, where ai is a vector of scores, one for each
attribute, for generated image G(zi). The score for attribute j, ai

j , may be con-

tinuous or binary. We sample a generous number of values of zi from p(z) and
obtain ai from human annotators.

For each attribute j, we use Dz to compute a (D − 1)-dimensional linear
hyperplane hj = (nj , bj), where nj is the normal vector and bj is the offset. For
continuous attributes like age or skin color, we train a ridge regression model [20].
For binary attributes we train a support vector machine (SVM) classifier [10].

Multi-attribute Transect Generation. Each hyperplane hj specifies the subspace
of RD with boundary values of attribute j, and the normal vector nj specifies
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Fig. 4. 2D transects. 5 × 5 transects varying simultaneously hair length and skin
tone. Multidimensional transects allow for intersectional analysis, i.e. analysis across
the joint distribution of multiple attributes. Orthogonalization was used (see Fig. ??).

a direction along which that attribute primarily varies. To construct a one-
dimensional, length-L transect for attribute j, we first start with a random
point zi and project it onto hj . We then query L− 1 evenly-spaced points along
nj , within fixed distance limits on both sides of the hj . Fig. 3 presents some
single transect examples (with orthogonalization, a concept introduced in the
next section). Further details on querying points are found in Sec. 3.1.

The 1D transect does not allow us to explore the joint space of several at-
tributes, or to fix other attributes in precise ways. We generalize toK-dimensional
transects to address this (see supplementary material for algorithm). The main
extensions are: (1) we project zi onto the intersection of K attribute hyperplanes,
and (2) we move in a K-dimensional grid in z-space (see Fig. 4).

Orthogonalization of Traversal Directions. The hyperplane normals {nj}Na
j=1 are

not orthogonal to one another. If we set the traversal direction vectors equal
to these normal vectors, i.e., vj = nj , we will likely observe unwanted correla-
tions between attributes. We reduce this effect by producing a set of modified
direction vectors such that vj ⊥ nk,∀k 6= j. See supplementary material for our
orthogonalization algorithm and image examples.

Setting Step Sizes and Transect Dimensions. We set L to small values to reduce
annotation cost. For example, L = 5 for the 1D transects in Fig. 3 and 2D
transects in Fig. 4, and L = 2 for the 3D transects in Fig. 5. For each attribute j,
we manually set min/max signed decision values with respect to hj , and linearly
interpolate Lj points between these extremes. We set per-attribute min/max
values so that transects depict a full dynamic range for most random samples.

3.2 Analyses Using Transects

An ideal transect will modify only selected attributes at a time, but in practice,
unintended attributes will be accidentally modified. In addition, the degree to
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which an attribute is altered varies across transects. To measure and control
for these factors we annotate each image of each transect, resulting in a second

dataset Dtransect = {Ii,ai}Nimages

i=1 of images and human annotations.

We assume a target attribute of interest, e.g., gender, and a target attribute
classifier C. We denote the ground truth gender of image Ii (as reported by
humans) by yi, and C’s prediction by ŷi. For ease of analysis, we discretize the
remaining attributes into bins, and assign an independent binary variable to
each bin [14]. We denote the vector of concatenated binary covariates for image
i by xi, and the classification error by ei = `(ŷi, yi), where `(·, ·) is an error
function.

Our first analysis strategy is to simply compare error rates across different
subpopulations [9, 7, 26, 30]. Let Es

j be the average error of C over test samples
for which covariate j is equal to s ∈ {0, 1}. If the data is generated from a
perfectly randomized or controlled study, the quantity E1

j − E0
j is a good esti-

mate of the “average treatment effect”(ATE) [3, 19, 38, 46] of covariate j on e,
a causal measure of the expected change in e when covariate j is flipped from
0 to 1, with other covariates fixed. Note that exactly computing the ATE from
an observational dataset is virtually never possible, because we do not observe
the counterfactual case(s) for each data point, e.g., the same person with both
light and dark skin tones. Though our transects come closer to achieving an
ideal study than real datasets do (see Sec. 4.3), there may still be confounding
between covariates (see Fig. 10 for an example).

Since any observable confounder may be annotated in Dtransect, our second
strategy is to use a covariate-adjusted ATE estimator [43, 45, 53]. One simple
adjustment approach is to train a linear regression model predicting ei from xi:
ei = εi + β0 +

∑
j βjx

i
j , where β’s are parameters, and εi is a per-example noise

term. βj captures the ATE, the average change in e given one unit change in xj

holding all other variables constant, provided: (1) a linear model is a reasonable
fit for the relationship between the dependent and independent variables, (2) all
relevant attributes are included in the model (i.e., no hidden confounders), and
(3) no attributes that are influenced by xj are included in the model, otherwise
these other factors can “explain away” the impact of xj . An experimenter can
never be completely sure that (s)he has satisfied these conditions but (s)he can
strive to do so through careful consideration.

Finally, when the outcome lies in a fixed range, as is the case in our ex-
periments with ei ∈ [0, 1], we use logistic instead of linear regression. βj then
represents the expected change in the log odds of e for a unit change in xj .

3.3 Human Annotation

We collect human annotations on the synthetic faces to constructDz andDtransect,
using Amazon Mechanical Turk [8] through the AWS SageMaker Ground Truth
service [1]. Annotators evaluated each image for seven attributes: gender, facial
hair, skin color, age, makeup, smiling, hair length and realism. Each attribute
was evaluated on a discrete scale. For complete details about our annotation
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Fig. 5. Examples of transects used in our experiments. We created 1,000 tran-
sects spanning pale-to-dark skin tones, short-to-medium hair lengths, and male-to-
female genders – two transects are shown here. Other face attributes are approximately
held constant. For each image we collected human annotations to measure the perceived
attributes. Intended attributes do not always agree with human perception (see Fig. 6,
below).
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Female Male Female MaleFemale FemaleMale Male

Humans:
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Fig. 6. Human perception of transect attributes. Humans label the first face as
a male, though we intended to produce a female. In all our experiments we used human
perception, rather than intended attributes, as the ground truth.

process, samples of our survey layouts and analysis, please see supplementary
material.

4 Experiments

We evaluate our method on benchmarking bias of gender classifiers. The Pilot
Parliaments Benchmark (PPB) [9] was the first wild-collected test dataset to
balance gender and skin color with the goal of fostering the study of gender
classfication bias across both attributes. The authors of that study found a
much larger error rate on dark-skinned females, as compared to other groups and
conjectured that this is due to bias in the algorithms, i.e., that the performance
of the algorithm changes when gender and skin color are changed, all else being
equal. Our method allows us to test this hypothesis.

4.1 Gender Classifiers

We trained two research-grade gender classifier models, each using the ResNet-
50 architecture [18]. The first was trained on the CelebA dataset [32], and the
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second on the FairFace dataset [21]. CelebA is the most popular public face
dataset due to its size and rich attribute annotations, but is known to have
severe imbalances [11]. The FairFace dataset was introduced to mitigate some of
these biases. See supplementary material for training details. We decided not to
test commercial systems for reproducibility reasons — models we test may be
re-implemented and retrained by other researchers, while commercial systems
are black boxes which may change unpredictably over time.

4.2 Transect Data

We used the generator from StyleGAN2 trained on Flickr-Faces-HQ (FFHQ) [22,
23]. We use the generator’s “style space” as the latent space in our method,
because we found it better suited for disentangling semantic attributes than the
input noise space. We trained linear regression models to predict age, gender, skin
color and hair length attributes from style vectors. For the remaining attributes
— facial hair, makeup and smiling — we found that binarizing the ranges and
training a linear SVM classifier works best.

We generated 3D transects across subgroups of skin color, hair length, and
gender as described in Sec. 3.1. We use a transect size of 2× 2× 2× 1, with grid
decision values (input c of transect generation algorithm in supplementary ma-
terial) spaced to generate pale-to-dark skin colors, short-to-medium hair lengths,
male-to-female genders, and adult ages. We set the decision values by trial-and-
error, and made them equal for all transects: (−1.5, 1.7) for skin color, (−0.5, 0)
for hair length, (−1.75, 1.75) for gender, and 0.5 for age. We generated 1000 such
transects, resulting in 8000 total images. Fig. 5 presents two example transects.

Not all synthesized images are ideal for our analysis. Some elicit ambiguous
human responses or are unrealistic, and others may not belong clearly to the
intended category of each attribute. See supplementary material for details on
how we prune non-ideal images.

4.3 Comparison of Transects to Real Face Datasets

Fig. 7-top analyzes attribute distributions for the CelebA-HQ, FFHQ and PPB
datasets, along with our transects, stratified by gender. The wild-collected datasets
contain significant imbalances across gender, particularly with hair length and
age. In contrast, our transects exhibit more balance across gender. They depict
more males with medium-to-long hair, and fewer females with very long hair. Our
transects also have a bimodal skin color distribution, and an older population by
design, since we are interested in mimicking those population characteristics of
PPB. All datasets are imbalanced along the “Beard” and “Makeup” attributes —
this is reasonable since we expect these to have strong correlations with gender.

In an ideal matched study, sets of images stratified by a sensitive attribute will
exhibit the same distribution over remaining attributes. Fig. 7-bottom stratifies
by skin color. We see correlations of hair length distributions and skin colors
in all the wild-collected data, while the synthetic transects exhibit much better
balance.
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Fig. 7. (Top) Attribute distributions (”violin plots”) by gender groups for different
datasets. Wild-collected datasets have greater attribute imbalances across gender than
synthetic transects, e.g., longer hair and younger ages for women. We designed our
transects to mirror PPB’s skin color and age distributions, while mitigating hair length
imbalance. (Bottom) Hair length distributions by gender and skin color groups. In the
wild-collected datasets hair length is correlated with skin color, when gender is held
constant. Transects may be designed to minimize this correlation.

4.4 Analysis of Bias

We now analyze the performance of the classifiers on PPB and our transects.
Our classifiers exhibit similar error patterns to the commercial classifiers already
evaluated on PPB [9]. Because PPB only consists of adults, we remove children
and teenagers (age < 0.4 in the normalized [0, 1] scale) from our transects to
make a more direct comparison, leaving us with 5335 total images.

Fig. 1 presents classification errors split by gender (M/F) and skin color
(L/D). We replicated the reported errors of the commercial classifiers in [9], and
report the errors of our classifiers on our in-house version of PPB. All classifiers
perform significantly worse on dark-skinned females. Fig. 8 presents classification
errors, stratified by gender/hair length/skin color combinations.

We can make a number of broad-stroke, qualitative observations. First, the
pattern of errors is similar across PPB and transects, with more errors on the
left (females) than on the right (males). Second, transect errors are either com-
parable or higher than in PPB, indicating that synthetic faces can be at least as
challenging as real faces. Most significantly, errors are nonzero on males, which
allows the study of relative difficulties when attributes are varied. Third, in
PPB, there are few males with long hair and few females with short hair and
light skin, making measurements unreliable for these categories. This is not a
problem with transects. Fourth, transect errors are higher when hair is shorter
for women. However, hair length has a negligible effect for males (see Fig. 10
for a possible explanation). Fifth, there is no consistent transect error pattern
in skin tone: within homogeneous groups changing skin tone does not seem to
affect the performance of either algorithm. Looking at PPB alone, we could not
make this observation, since skin tone is so strongly correlated with hair length.



Towards causal benchmarking of bias in face analysis algorithms 11

Transects

PPB

Fig. 8. Algorithmic errors, disaggregated by intersectional groups for wild-
collected (PPB, top) and synthetic (transects, bottom). Wilson score 95%
confidence intervals [54] are indicated by vertical bars, and the misclassification count
and total number of samples are written below each bar. PPB has few samples for
several groups, such as short-haired, light-skinned females and long-haired males (see
Fig. 7). Synthetic transects provide numerous test samples for all groups. The role of
the different attributes in causing the errors is studied in Sec. 4.4 and Fig. 9.

We investigated further by calculating covariate-adjusted causal effects us-
ing an L2-regularized logistic regression model to predict that classifier’s error
conditioned on all attributes. See supplementary material for details on how we
trained the regression models. Fig. 9 presents coefficients for both models, which
represent the change in log odds of the classifier’s error for a change of one unit
of each covariate (see Sec. 3.2). Facial hair, gender, makeup, hair length and age
all have significant effects on classification error, while skin color has a negligible
effect. We made a simplifying assumption that each covariate has an indepen-
dent, linear effect on classification error, which we know is not true. Please see
supplementary material for further discussion on this topic.

5 Discussion

Our synthesis-based experimental method offers a number of attractive prop-
erties over traditional observational methods. First, it generates approximately
matched samples along selected attributes, allowing for counterfactual synthesis.
Observational image data are almost never matched. Second, image synthesis al-
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Fig. 9. Logistic regression coefficient values. The regression model is trained to
predict absolute errors of the gender classifiers on our transect images given binary
attributes as input. Coefficients represent the change in log odds of the error for a
change of one unit of each attribute. Larger magnitudes indicate more important at-
tributes, and positive(red)/negative(green) values correspond to attributes that in-
crease/decrease classifier error. We order attributes here by large-to-small coefficient
magnitudes.

lows, to a greater degree, uniform sampling of the space of attributes of interest.
This is very difficult to do when one relies on images that are sampled from
in-the-wild distributions, where some groups are underrepresented. Third, bias
may be measured for intersectional groups defined by specific attribute com-
binations. Single-attribute analysis may conceal biases affecting groups defined
by the combination of multiple attributes [25]. Some such combinations are of-
ten vastly undersampled in natural data. Fourth, image synthesis is fast and
inexpensive, and crowdsourced image annotation is also relatively fast and af-
fordable. By contrast, assembling large datasets of natural images is laborious
and expensive. Thus, synthetic data has the potential to democratize testing for
bias. And finally, ethical and legal concerns are greatly reduced. Collecting real
face images in the wild requires great care to respect the privacy and dignity of
individuals, the rights of minors and other vulnerable groups, as well as copy-
right laws. By contrast, synthetic datasets are freer from such risks because they
do not depict real people.

The experimental analysis (transects) and traditional observational analysis
(using PPB) diverged most significantly on the effect of skin color, which the
observational study flagged as significant and the experimental method found
to be not significant in determining algorithmic bias. The experimental method
reveals a number of additional sources of bias: age, hair length and facial hair
(Fig. 9). The two methods agree on gender.
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Example 1 Example 2

Fig. 10. Correlated attribute modifications. We found that our method sometimes
adds a beard to a male face when attempting to only modify hair length. This is an
example of an imprecise intervention which can complicate downstream bias analyses.
This bias may be due to the training data itself (men with long hair tend to have facial
hair), or injected by the algorithm.

Males Females

Fig. 11. Hidden confounders. There may always be a hidden confounder lurking
in a dataset. As an example, we found that our method tends to add earrings when
transitioning from dark-skinned men to dark-skinned women, a cue that a gender
classifier might use to perform disproportionately well on the latter group. Interestingly,
one male in this image also has an earring; that earring becomes larger for his female
counterpart.

Bias measurements guide scientists and engineers towards effective corrective
measures for improving the performance of their algorithms. It is instructive to
view the different predictions of the two methods through this lens. The correla-
tional study based on PPB (Fig. 1) may suggest that, in order to reduce biases
in our classifiers, more images of dark-skinned women should be added to their
training sets. The experimental method leads engineers in a different direction.
First, more training images of long-haired men and short-haired women of all
races are needed. Second, correcting age bias requires more training images in
the child-teen and, possibly, senior age groups.

Finally, it is important to consider a rich number of attributes and attribute
combinations, besides the one(s) of immediate interest. This is for two reasons.
First, unobserved confounders can have strong effects and need to be included in
the analysis. Second, the combined effect of attributes can be strongly nonlinear
(see the interaction of age and gender in supplementary material), and therefore
an intersectional analysis [24, 9] is necessary. Selecting attributes combinations
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is as much of an art as a science, and therefore one has to rely on good judgment
and on a healthy multidisciplinary debate to progressively reveal missing ones.

6 Limitations and Future Work

Our method can not perfectly eliminate unwanted correlations with annotated
variables, nor can it account for hidden confounders [52], and one will need to
keep a sharp eye out for both. As an example of the first, we found that our
method often adds facial hair to male faces when increasing hair length (see
Fig. 10). This is likely a reason for why our classifiers did not have higher er-
ror rates for males with longer hair (see Fig. 8). As an example of the second,
we found that our method tends to synthesize earrings when modifying a dark-
skinned face to look female (see Fig. 11). Depending on culture, earrings may or
may not be relevant to the definition of gender. If this is an unwanted correlation,
one ought to add earrings to the annotation pipeline so that it may be “orthog-
onalized away” by the synthesis method. A significant advantage of an approach
that is based on synthetic images and human annotation is thus the following: as
soon as one residual correlation is discovered it may be systematically annotated,
compensated for in the analysis, and mitigated in the synthesis.

A number of refinements in face synthesis will make our experimental method
more practical and powerful. First, many of the faces we generated contained
visible artifacts (see supplementary material), which we eliminated by human
annotation – even subtle artifacts can affect classifier outputs, as revealed by
the literature on adversarial examples [50]. Second, we do not yet have tools
to estimate the sets of physiognomies and attribute combinations that can and
cannot be produced by a given generator. Current GANs are known to have
difficulties in generating data outside of their training distributions. Third, we
observed a bias of StyleGAN2 towards generating Caucasian faces when sampling
from its latent distribution. While our method can compensate for biases through
carefully oriented traversals calibrated by human annotations, it would be clearly
better to start from unbiased synthesis methods.

Our first-order technique for controlling synthesis can also be improved. A
better understanding of the geometry of face space will hopefully yield more
accurate global coordinate systems. These, in turn, will help reduce residual
biases in synthetic transects, which we currently mitigate by having transects
annotated by hand. Finally, extending our method beyond gender classification
to more complex tasks, such as face recognition, is not straightforward in practice
and will require further study.
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