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Abstract. To understand movies, humans constantly reason over the di-
alogues and actions shown in specific scenes and relate them to the over-
all storyline already seen. Inspired by this behaviour, we design ROLL,
a model for knowledge-based video story question answering that lever-
ages three crucial aspects of movie understanding: dialog comprehension,
scene reasoning, and storyline recalling. In ROLL, each of these tasks is in
charge of extracting rich and diverse information by 1) processing scene
dialogues, 2) generating unsupervised video scene descriptions, and 3)
obtaining external knowledge in a weakly supervised fashion. To answer
a given question correctly, the information generated by each inspired-
cognitive task is encoded via Transformers and fused through a modality
weighting mechanism, which balances the information from the differ-
ent sources. Exhaustive evaluation demonstrates the effectiveness of our
approach, which yields a new state-of-the-art on two challenging video
question answering datasets: KnowIT VQA and TVQA+.
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1 Introduction

Robots may not dream of electric sheep yet,1 but in the last few years, arti-
ficial intelligence has shown significant progress towards human-like reasoning.
This has been made possible by emulating snippets of human intelligence in
constrained tasks [1,11], where machine performance is easily evaluated. Among
those tasks, video story question answering [35,17,5] emerged as a testbed to
approximate real-world situations, in which not only the spatial relationships
between objects are important, but also the temporal coherence between past,
present, and future events.

Video story question answering leverages the structure of video stories, such
as movies and TV shows, to formulate questions about specific scenes in a video.
Models, then, need to find the correct answer by reasoning over the scene and
its underlying plot. However, as the video story unfolds, the details of the plot
are often revealed to the spectator over multiple scenes, sometimes far apart
from each other. To understand the whole story, humans have the capacity to

1 ‘Do androids dream of electric sheep?’ (Philip K. Dick, 1968).



2 Garcia and Nakashima

Bernadette

AmyPenny

Table

Green 
shirt

Glass Bowl

Penny’s 
Apartment Penny, Bernadette, and 

Amy are sitting at a table at 
Penny’s Apartment. Penny 
is wearing a green shirt (...)

Unsupervised Video Description
Q1. Whose apartment are they in? Penny’s

Q2. Why are the girls together? Girls’ night

Q3. Who drank the bottle?  Penny

Q4. What is Penny wearing? A green shirtEpisode Plot Summary
The girls are having a girls' night in when Amy 
receives a text from Stuart asking if she'd like to 
get coffee with him sometime. Bernadette (...)

1. Input Video Clip 2. Video Extracted Information

Penny: Ladies, we killed the bottle. 
Amy: I had half a glass. 
Bernadette: I didn't have any. 
Penny: Okay, don't judge me. So, what do 
you wanna do? Go to the movies, go (...)

Subtitles

3. Question Answering

Fig. 1: ROLL performs video story question answering by generating unsuper-
vised descriptions from video scene graphs and obtaining episode summaries.

constantly relate past events with what is currently being shown, acquiring con-
textual information that forms their story knowledge. We argue that for a full
comprehension of video stories, not only what is happening in the current scene
has to be considered, but also the knowledge acquired in previous scenes. Some
examples are shown in Fig. 1; whereas the answer to Q1, Q3, and Q4 can be
guessed from the video scene (and its subtitles), Q2 can only be inferred when
the full context is known.

Previous work on video story question answering can be roughly divided into
two categories. On one hand, there are models that extract information from
the whole video story [35,23,20,14], and use attention mechanisms to find the
parts that are relevant to each question. These models obtain contextual rep-
resentations, which are used to answer general questions about the plot, but
barely capture details at the scene level. On the other hand, other models ex-
tract detailed information from specific scenes [17,13], without looking at the
whole video story. However, relying only on the content of short scenes is in-
sufficient to answer insightful aspects about the story, such as the characters’
motivations. To study multiple types of questions about video stories using both
contextual and scene-specific information, a knowledge-based video question an-
swering dataset has been recently introduced [5]. The proposed model combines
contextual information from external resources with multi-modal representa-
tions from specific scenes. However, the contextual data in [5] is obtained from
thousands of task-specific human-generated annotations, which are expensive to
obtain and difficult to generalise to other domains.

In this paper, we introduce ROLL, Read, Observe, and Recall, a model that
addresses knowledge-based video story question answering with both contextual
and scene-specific information using unsupervised scene descriptions and weakly-
supervised external knowledge. ROLL consists on a three-branch architecture
inspired by three areas of human cognition playing an important role in video
understanding: dialog comprehension (read branch), scene reasoning (observe
branch), and storyline recalling (recall branch). Whereas the scene-specific details
are summarised in the read and observe branches, the recall branch provides a
contextual overview about the story using free online resources. To predict the
correct answer, the three branches are lately fused through a modality weighting
mechanism, which balances the signal from the three different sources.
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Contributions: Our contribution is three-fold: 1) we propose a new unsuper-
vised video representation based on video descriptions generated from video
scene graphs; 2) we combine specific details from video scenes with weakly su-
pervised external knowledge for a deep understanding of video stories; and 3) we
incorporate a modality weighting mechanism to fuse data from different modal-
ities without information loss. Our model is evaluated on two challenging video
story question answering datasets: KnowIT VQA and TVQA+, outperforming
previous work by more than 6.3% and 1.3%, respectively.

2 Related Work

We develop a model for video story question answering that 1) takes advantage of
rich external knowledge sources, and 2) represents video content by generating
unsupervised video captions from scene graphs. In the following, we first re-
view work on video story question answering and visual reasoning with external
knowledge before discussing scene graphs and methods for video description.

Video Story Question Answering Video story question answering is a modal-
ity in video question answering in which questions are not only related to the
visual content of a video, but also to its plot. MovieQA [35] introduced a plot-
oriented dataset with questions generated from movie summaries. Most proposed
models [35,23,20,14] used frame-level features to represent the entire movie, ap-
plying attention mechanisms to find the relevant parts to each question. This
provides a high-level overview of the story, but does not consider the details of
each scene. Alternatively, PororoQA [15] and TVQA [17] formulated scene-level
questions about specific events in the video. Models addressing these datasets
described the details of each scene with features [40], captions [15] or visual con-
cepts [17,13,52], but without attending to the ongoing plot in the video story.
Recently, KnowIT VQA [5] introduced a combination of detailed questions about
scenes and knowledge-based questions about the story. The proposed model re-
lied on human-generated annotations to understand the insights of the plot.
On the contrary, our model exploits both specific and general story information
without task-specific annotations by using external knowledge bases.

Visual Reasoning with External Knowledge Using external knowledge
in visual reasoning extends the visual question answering task (VQA) to ad-
dress questions far beyond the visual content of images. Although the acquisi-
tion of knowledge depends on the task of interest, structured knowledge bases,
such as DBpedia [2] or ConceptNet [34], are commonly used in most methods
[45,42,41,25,24]. However, structured knowledge is usually represented as (sub-
ject, predicate, object) triplets, which is a hard constraint on the type of informa-
tion being processed. Generic solutions [31,22] proposed to exploit unstructured
resources in natural language, such as Wikipedia.2 Following this direction, our
model leverages unstructured online data to answer knowledge-based questions
about video stories.

2 https://www.wikipedia.org/

https://www.wikipedia.org/
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Scene Graphs Scene graphs [12] are structures that represent the objects de-
picted in an image and their relationships, providing a semantic description of
the image. Most scene graph methods consist on an object detector, an attribute
classifier and a relationship predictor [48,19,54,50,55,56]. Scene graphs have been
used in multiple vision and language tasks, including image captioning [51,7,54]
and VQA [36,32,46]. However, less attention has been paid to generating scene
graphs from videos, in which relationships are both spatial and temporal. So
far, video scene graphs have been mostly applied to cross-modal retrieval to find
video fragments [47,38]. In this work, we rely on video scene graphs to generate
unsupervised video scene descriptions.
Video Descriptions Video captioning aims to describe short video clips us-
ing natural language. Most approaches [53,26,3,21,39] use a sequential encoder-
decoder framework, in which the input are visual features from multiple frames
and the output is the generated sentence. For more detailed descriptions, dense
video captioning [16,58] generates multiple sentences describing all the relevant
events in the video. However, existing methods require to be trained on large-
scale annotated datasets [29,27] with thousands of video-description pairs. We
generate rich video scene descriptions in an unsupervised way using the semantic
information from video scene graphs.

3 Model Overview

The goal of video story question answering is to understand movies or TV shows
in a similar way as we humans do. We argue that there are at least three aspects
of human intelligence involved in this task: 1) comprehension of what is being
said, 2) comprehension of about what is being watched, and 3) recalling what
happened in the story before. Our proposed model, ROLL, emulates each of
those aspects in a three branch architecture, as shown in Fig. 2. Each branch in
ROLL (read, observe, and recall) represents as text data the information from a
different cognitive task, and encodes it through a Transformer with several self-
attention layers. Then, the outputs from each Transformer are fused through a
modality weighting mechanism to predict the correct answer.
Task definition We address video story question answering as a knowledge-
based multiple-choice task. For each sample, the input is: 1) a question, 2) Nca

candidate answers, 3) a video scene, and 4) the subtitles associated with the
scene. The output is the index of the predicted answer. As a knowledge-based
task, models can access external resources to retrieve contextual information.
Introduction to Transformers Transformers [37] are sequence-to-sequence
modelling architectures that entirely rely on self-attention mechanisms. They
have rapidly become the state-of-the-art in many natural language processing
tasks. ROLL incorporates three independent Transformers to model the language
data extracted from each branch, which is represented by the input string:

sm
c = [CLS] + contextm + [SEP] + choicem

c + [SEP], (1)

where m indicates the branch, contextm is an input sentence defined for each
branch, choicem

c is a sentence for the c-th candidate answer with c = 1, · · · , Nca,
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Penny: Ugh. Well, ladies, we killed the bottle.
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Fig. 2: ROLL overview. Each branch estimates a relevance score for each of the
candidate answers based on different information. The read branch relies on sub-
titles, the observe branch generates unsupervised video descriptions, and the re-
call branch obtains external knowledge as plot summaries. To predict the correct
answer, the three outputs are fused through a modality weighting mechanism.

[CLS] is the classification token used to obtain the output representation, [SEP] is
the separator token for differentiating sentences, and + is string concatenation.
For each sample, Nca input strings are generated, one per candidate answer.

The input string sm
c is tokenised into a sequence of n tokens xc = [x1, · · · , xn],

and fed into a Transformer network. For each token xi in xc, the Transformer
creates an input embedding, h0

i ∈ RDh with Dh hidden size, by adding the word,
segment, and position embeddings. For each self-attention layer l = 1, · · · , NL in
the Transformer, denoted by TBlockl(·), the contextualised word representation
for position i in the sequence is computed as:

hl
i = TBlockl(hl−1

i ) (2)

The encoded representation of the input string sm
c is then obtained as the output

of the position of the [CLS] token in the last layer:

ym
c = hL

0 ∈ RDh (3)

Our Transformers are the BERTBASE model [4] with NL = 12 and Dh = 768.

4 Read Branch

In the read branch, ROLL extracts information from the dialogues of the video
scene, which are obtained from the subtitles. The input string for this branch is:

sr
c = [CLS] + subs+ q + [SEP] + ac + [SEP], (4)

where subs are the subtitles, q the question, and ac with c = 1, · · · , Nca each of
the candidate answers. Each input string sr

c is fed into the Reading Transformer
to obtain yr

c, which is forwarded into a single output linear layer with wr weights
and br bias, to compute a read score per candidate answer:

αr
c = wr

> · yr
c + br (5)
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Fig. 3: Video scene graphs are gener-
ated from recognising the semantic el-
ements of the scene (characters VC ,
places VP , objects VO, relations VR,
and actions VA) and connecting them.

Penny is sitting on sofa/couch at Penny’s apartment. Chair, window, towel, 
pillow and curtain behind Penny. Shirt on Penny. Penny wearing sock, shoe 
and short. Penny at table. Penny has head, hand, hair and arm. Penny 
holding glass. Bottle and bag near Penny. Leg and face of Penny.

Scene Description

Scene Description
Sheldon, Leonard, Howard and Raj are sitting at a table at the Caltech 
cafeteria. Leonard wearing shirt, jacket and glass. Leonard holding bottle. 
Door behind Howard. Door, window and tree behind Sheldon. Pant, shirt, 
glass and short on Sheldon. Chair behind Raj. Shirt and jacket on Raj. (...)

Fig. 4: Examples of generated scene
description. Although not natural,
they accurately represents the seman-
tics in the video scene.

5 Observe Branch

In the observe branch, ROLL summarises the semantics of the video scene into
a video description. Generating descriptions from video is a challenging prob-
lem [49]. Standard video captioning models [3,21,39] require to be trained on
large-scale datasets with annotated video and description pairs. As video story
question answering datasets commonly do not provide such annotations, training
a model for our task is impractical. Similarly, relying on pre-trained models may
lead to poor results, as the generated descriptions will miss important informa-
tion about the story (e.g., character names or frequent locations). Alternatively,
we propose to generate unsupervised video descriptions by first creating a video
scene graph. The descriptions are then fed into the Observing Transformer to
predict a observe score for each candidate answer. Below, we first describe the
video scene graph generation process, then we provide the details for the unsu-
pervised video description, and finally we summarise the observing Transformer.

5.1 Video Scene Graph Generation

Fig. 3 shows the video scene graph generation process, which is built on top of
state-of-the-art image and video recognition techniques. We use four modules
to detect the most relevant details in the scene: character recognition, place
classification, object relation detection, and action recognition. The video scene
graph is then generated by building connections between the detected elements.
Character Recognition This module identifies the characters that appear in
the scene using a face recognition classifier trained with images from the cast.
We download about 10 images for each of the most common NCT

characters
based on IMDb.3 We extract f ∈ R128 face representations with FaceNet [30]

3 https://www.imdb.com/

https://www.imdb.com/
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and train a k-nearest neighbour (kNN) classifier, where k = NCT
. At test time,

the trained kNN classifier returns a score for the predicted character. If the score
is below a threshold, we assigned it to the unknown class. Finally, we apply a
spatio-temporal filter to remove mispredictions and duplicate characters. Details
are provided in the suppl. material. As output, we obtain a set of NC characters
appearing in the scene C = {Ci|i = 1, · · · , NC}, and their bounding boxes.

Place Classification The place classification module detects where the scene
is located. To learn the frequent locations in the video story, we fine-tune the
pre-trained Places365 [57] network with ResNet50 [8] backbone in a weakly su-
pervised way. To obtain place annotations, we use video transcripts from spe-
cialised websites.4 We extract the locations that appear at least 10 times in the
training set scripts, and include an unknown category for the rest. Training is
performed at the frame level, i.e., each frame is considered as an independent
image. For prediction, we accumulate the scores of the top 5 predicted classes
for each frame in a video scene and output the most scored place, P .

Object Relation Detection This module detects the objects in the scene and
their relations. We use the large-scale visual relationship understanding (VRU)
[55] pre-trained on the VG200 dataset [48], with 150 object and 50 relation cate-
gories. For each frame, VRU returns a list of subject-relation-object triplets, their
bounding boxes, and a prediction score for each triplet. We replace the objects
and subjects assigned to a person class5 with its corresponding character name by
finding the overlap between the bounding boxes. We only keep triplets assigned
to known characters and we filter out duplicates. After discarding the bounding
boxes and scores, we obtain a list of NT triplets, T = {Ti|i = 1, · · · , NT } with
Ti = (Si, Ri, Oi) and Si, Ri, and Oi as subject, relation, and object.

Action Recognition The action recognition module detects the main action
in the video scene. We use Long-Term Feature Banks (LFB) [44] pre-trained on
the Charades dataset [33] with 157 action categories. LFB extracts information
over the entire span of the video scene, improving performance with respect to
using short 2-3 second clips. We input the entire scene into the network, and we
obtain a predicted action as a result, A.

Graph Generation The video scene graph, G = (V,E), semantically describes
the visual contents of the scene by using a collection of nodes V , and edges E.
We consider the following types of nodes:

• Character nodes, VC ⊆ V , representing the characters in the scene. If C
do not contain any unknown character, VC = C. Otherwise, we remove the
unknown characters {unkC}, as Vc = C − {unkC}.
• Place nodes, VP ⊆ V , representing the location where the video scene occurs.
VP = {P} if P 6= unknown, otherwise VP = ∅.
• Object nodes, VO ⊆ V , representing the objects in the scene, which are ob-

tained from the subjects and objects in the triplets that are not a character,
as VO = Z − (Z ∩ C) with Z = S ∪O.

4 For example, https://bigbangtrans.wordpress.com/.
5 Boy, girl, guy, lady, man, person, player, woman.

https://bigbangtrans.wordpress.com/
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Table 1: Sentence generation from the video scene graph, G = (V,E) with V =
{VC , VP , VO, VR, VA}. We define eRk,O = {eRk,Oj

} with j ∈ [1, ..., |VO|]. eRk,C ,
eO,Rk

, and eC,Rk
are defined likewise.

Graph Condition Generated Sentence Example

|VC | = 0 & |VP | = 0 Someone is VA. Someone is lying on the floor.
|VC | = 1 & |VP | = 0 VC is VA. Leonard is smiling.
|VC | > 1 & |VP | = 0 VC1 , ..., VC|VC |−1

and VC|VC |
are VA. Penny and Amy are holding a bag.

|VC | = 0 & |VP | = 1 Someone is VA at VP . Someone is walking at the street.
|VC | = 1 & |VP | = 1 VC is VA at VP . Sheldon is smiling at the bedroom.
|VC | > 1 & |VP | = 1 VC1 , ..., VC|VC |−1

and VC|VC |
are VA at VP . Amy and Raj are talking at the room.

eCi,Rk ∈ E & eRk,Oj ∈ E & |eRk,O| = 1 VCi VRk VOj . Penny wearing shorts.
eCi,Rk ∈ E & eRk,Oj ∈ E & |eRk,O| > 1 VCi VRk VO1 , ..., VO|VO|−1

and VO|VO|
. Raj holding bottle and book.

eRk,Ci ∈ E & eOj ,Rk ∈ E & |eO,Rk | = 1 VOj VRk VCi . Board behind Sheldon.
eRk,Ci ∈ E & eOj ,Rk ∈ E & |eO,Rk | > 1 VO1 , ..., VO|VO|−1

and VO|VO|
VRk VCi . Chair, table and door behind Penny.

• Relation nodes, VR ⊆ V , representing the relation between subjects and
objects in the triplets, VR = R.

• Action nodes, VA ⊆ V , representing the action in the scene as VA = {A},
with |VA| = 1.

We use 6 types of directed edges:
• eP,A = (VP , VA) ∈ E between the place node VP and the action node VA.
• eA,Cj

= (VA, VCj
) ∈ E between the action node VA and each character VCj

.
• eCi,Rj

= (VCi
, VRj

) ∈ E between a character node VCi
and a relation node

VRj when VCi = Sk and VRj = Rk in the triplet Tk = (Sk, Rk, Ok).
• eRi,Cj = (VRi , VCj ) ∈ E between a relation node VRi and a character node
VCj

when VRi
= Rk and VCj

= Ok in the triplet Tk = (Sk, Rk, Ok).
• eOi,Rj

= (VOi
, VRj

) ∈ E between an object node VOi
and a relation node VRj

when VOi
= Sk and VRj

= Rk in the triplet Tk = (Sk, Rk, Ok).
• eRi,Oj = (VRi , VOj ) ∈ E between a relation node VRi and an object node VCj

when VRi = Rk and VCj = Ok in the triplet Tk = (Sk, Rk, Ok).
with i, j, and k being the index for a certain object in a set.

5.2 Scene Description Generation

Scene descriptions are generated from the video scene graph according to the set
of rules in Table 1 in an unsupervised manner. For each true condition in Table 1,
a single sentence is generated. The final scene description is the concatenation
of all the generated sentences, which serves as a representation of the semantic
content in the video scene. Examples are shown in Fig. 4.

5.3 Observing Transformer

The generated description, d, is used in the input string for the observe branch:

so
c = [CLS] + d+ q + [SEP] + ac + [SEP], (6)

Each so
c is fed into the Observing Transformer to obtain yo

c, which is forwarded
into a single output linear layer to compute the observe score:

αo
c = wo

> · yo
c + bo (7)
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6 Recall Branch

In the recall branch, ROLL emulates the human experience of watching a TV
show by recalling the events that occurred previously. This is inspired by the
human evaluation on [5], which provides some insights on human behaviour. In
[5], evaluators were asked to answer questions about a popular sitcom under
different conditions. Interestingly, the reported performance dropped dramati-
cally when humans were not exposed to the videos. We speculate that this is
because humans indirectly used the scene to remember the whole episode and
answer questions about the plot. The recall branch imitates this behaviour by
first identifying the video and then acquiring knowledge about the story plot.

6.1 Knowledge Acquisition

Differently from previous work [5], in which the external knowledge to answer
each question is specifically annotated by humans, we rely on publicly available
resources6 and build a knowledge base (KB) using plot summaries from the
Internet.7 Given a video scene, we first identify the video story it belongs to as
in video retrieval [6]. Frames are represented by the output of the second-to-last
layer of a pre-trained ResNet50 [8]. We compute the cosine similarity between
each frame representation in the scene and all frames in the dataset, keeping the
video of the most similar frame. As a result, we obtain an identifier of the most
voted video, which is used to query the KB and we obtain a document p with
the plot. In this way, ROLL acquires external knowledge about the video story
in an weakly supervised way as 1) the questions and the external knowledge base
have not been paired in any way during their generation, 2) the model does not
know if there is corresponding text in the external knowledge base that can be
useful for a given question, 3) the model is not directly trained with ground-truth
episode labels, and 4) the model is not trained with ground-truth text location.

6.2 Recalling Transformer

The document p is fed into the Recalling Transformer to predict a recall score
for each candidate answer. As many documents exceed the maximum number of
words the Transformer can take as input,8 we adopt a sliding window approach
[9,10] to slice p into multiple overlapping segments. To produce the segments kj
with j = 1, · · · , NsMAX

, we slide a window of length Wl with a stride r over the
document p, obtaining Ns = dLd−Wl

r e+ 1 segments, where Ld is the number of
words in the document. For training multiple samples in a minibatch, we set all
the documents to have the same number of segments NsMAX

, discarding segments

6 For example, https://the-big-bang-theory.com/
7 Generating video plot summaries automatically from the whole video story is a chal-

lenging task by itself and out of the scope of this work. However, it is an interesting
problem that we aim to study as a our future work.

8 In The Big Bang Theory, the longest summary contains 1,605 words.

https://the-big-bang-theory.com/
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if Ns > NsMAX
, and zero-padding if Ns < NsMAX

. We encode the plot segments
along with the question and candidate answers into multiple input strings:

sll
c
j = [CLS] + q + [SEP] + ac + kj + [SEP] (8)

Each sll
c
j is fed into the Recalling Transformer to obtain yll

c
j , which is forwarded

into a single output linear layer to compute a score for an answer-segment pair:

αll
c
j = wll

> · yll
c
j + bll (9)

Then, the final recall score for each of the candidate answers αll
c is:

αll
c = max(αll

c
j) with j = 1, · · · , NsMAX

(10)

7 Final Prediction

To output the final prediction score, the model concatenates the output of the
three branches into a score vector αc = [αr

c, αo
c, αll

c], which is input into a
single layer classifier. The predicted answer â is then:

ωc = wc
> ·αc + bc (11)

â = aargmaxc ω with ω = [ω1, · · · , ωNca ]> (12)

Modality Weighting Mechanism Wang et al. [43] have shown that multi-
modality training often suffers from information loss, degradating performance
with respect to single modality models. To avoid losing information when merg-
ing the three branches in ROLL, we use a modality weighting (MW) mechanism.
First, we ensure that each Transformer learns independent representations by
training them independently. The multi-class cross-entropy loss is computed as:

L(δ, c∗) = − log
exp(δc

∗
)∑

c exp(δc)
(13)

where c∗ is the correct answer, and δ = [δ1, · · · , δNca ] the vector with the
scores of the candidate answers. Next, the Transformers are frozen and the three
branches are fine-tuned together. To ensure the multi-modal information is not
lost, the model is trained as a multi-task problem with βr + βo + βll + βω = 1:

LMW = βrL(αr, c
∗) + βoL(αo, c

∗) + βllL(αll, c
∗) + βωL(ω, c∗)

8 Evaluation

Datasets We evaluate ROLL on the KnowIT VQA [5] and the TVQA+ [18]
datasets. KnowIT VQA is the only dataset for knowledge-based video story
question answering, containing 24,282 questions about 207 episodes of The Big



Knowledge-Based VideoQA with Unsupervised Scene Descriptions 11

Table 2: Evaluation on KnowIT VQA test set.
Data Accuracy

Method Encoder Dialog Vision Know. Vis. Text. Temp. Know. All

Rookies [5] - - - No 0.936 0.932 0.624 0.655 0.748
Masters [5] - - - Yes 0.961 0.936 0.857 0.867 0.896

TVQA [17] LSTM Subs. Concepts - 0.612 0.645 0.547 0.466 0.522
ROCK Img [5] BERT Subs. ResNet Human 0.654 0.681 0.628 0.647 0.652
ROCK Cpts [5] BERT Subs. Concepts Human 0.654 0.685 0.628 0.646 0.652
ROCK Faces [5] BERT Subs. Characters Human 0.654 0.688 0.628 0.646 0.652
ROCK Caps [5] BERT Subs. Captions Human 0.647 0.678 0.593 0.643 0.646

ROLL-human BERT Subs. Descriptions Human 0.708 0.754 0.570 0.567 0.620
ROLL BERT Subs. Descriptions Summaries 0.718 0.739 0.640 0.713 0.715

Bang Theory TV show. Questions in the test set are divided into four cate-
gories: visual-based, textual-based, temporal-based, and knowledge-based, and
each question is provided with Nca = 4 candidate answers. Accuracy is computed
as the number of correct predicted answers over the total number of questions.
Even though our model is specifically designed for leveraging external knowl-
edge, we also evaluate its generalisation performance on non knowledge-based
video story question answering. For this purpose, we use the TVQA+ dataset, in
which questions are compositional and none of them requires external knowledge.
TVQA+ contains 29,383 questions, each with Nca = 5 candidate answers.
Implementation Details We use the BERT uncased base model with pre-
trained initialisation for our three Transformers. The maximum number of to-
kens is set to 512. For the single branch training, transformers are fine-tuned
following the details in [4]. For the joint model training, we use stochastic gradi-
ent descent with momentum 0.9 and learning rate 0.001. In the observe branch,
we extract the frames for the Character Recognition, Place Classification and
Object Relation Detection modules at 1 fps, and for the Action Recognition
module at 24 fps. In total, we use 17 characters, 32 places, 150 objects, 50 re-
lations, and 157 action categories. In the recall branch, we use a window length
Wl = 200, stride r = 100, and maximum number of segments NsMAX

= 5. In
the modality weighting mechanism, we set βr = 0.06, βo = 0.06, βll = 0.08, and
βω = 0.80 unless otherwise stated.
Evaluation on KnowIT VQA We compare ROLL against the latest reported
results on the KnowIT VQA dataset: TVQA and four different models in ROCK.
TVQA [17] is based on a two-stream LSTM encoder for subtitles and visual
concepts, whereas ROCK [5] uses task-specific human annotations to inform a
BERT based model with external knowledge. ROCK reports results using four
different visual representations: ResNet features, visual concepts, list of charac-
ters, and generated captions. For a more complete comparison, we also report
results of ROLL using the human annotations from [5] as external knowledge
(ROLL-human). Results are found in Table 2. Main findings are summarised as:

1. Overall, ROLL outperforms previous methods in all the question categories
by a large margin, with 6.3% improvement on the overall accuracy with
respect to the best performing ROCK.
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Method Vision Lang. Acc

TVQA [17] Concepts LSTM 62.28

TVQA [17] Regional LSTM 62.25

STAGE [18] Regional GloVe 67.29

STAGE [18] Regional BERT 68.31

ROLL Description BERT 69.61

Table 3: Evaluation on the TVQA+
val set. No external knowledge is used.

Accuracy vs MW weights
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Fig. 5: ROLL accuracy according to βω
on KnowIT VQA test set.

2. When comparing the visual representations, our proposed video descrip-
tions contain more semantic information than previous methods, improving
visual-based questions by at least 6.4%. Specially, the boost in performance
in visual-based questions with respect to standard captioning (ROCK Cap-
tions) or visual concepts (ROCK Concepts, TVQA) validates our unsuper-
vised video descriptions as the best representation for this task.

3. Additional evidence of the superior performance of our proposed unsuper-
vised descriptions is shown when ROLL uses human annotations as external
knowledge. Although the overall performance is lower because ROLL-human
is not optimised to exploit this kind of information, on the visual-based ques-
tions our method improves best previous work by 5.4%. As the same source
of knowledge is used, the superior performance can only be due to the con-
tribution of our proposed visual representations.

4. On the knowledge-based samples, our method based on plot summaries out-
performs task-specific human annotations by 6.7%, even when less annota-
tions are required. This implies that the proposed slicing mechanism in the
recall branch successfully extracts the relevant information from the long
documents provided as external knowledge.

5. When compared against human performance, ROLL is 18% behind masters
accuracy (humans that have watched the show) and it is closer to rookies
non-knowledge accuracy (humans that have never watched the show). This
shows how challenging this task is, with still plenty room for improvement.

Evaluation on TVQA+ To show ROLL generalisation performance even when
external knowledge is not necessary, we additionally evaluate it on the TVQA+
dataset. For a fair comparison against previous work, 1) we remove the recall
branch in ROLL and only use the read and observe branches, i.e., no external
knowledge is used, and 2) we compare ROLL against models that use the answer
labels as the only supervision for training, i.e., no extra annotations such as
timestamps or spatial bounding boxes are used. Results are found in Table 3.
Consistent with the results on the KnowIT VQA dataset, ROLL based on scene
descriptions outperforms models based on other visual representations, such as
visual concepts or Faster R-CNN [28] regional features, by at least 1.3%.
Ablation study We perform an ablation study to measure the contribution of
each branch. Results when using one, two, or the three branches on the KnowIT
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Table 4: ROLL ablation study.
Branch Vis. Text. Temp. Know. All

Read 0.656 0.772 0.570 0.525 0.584
Observe 0.629 0.424 0.558 0.514 0.530
Recall 0.624 0.620 0.570 0.725 0.685
Read-Observe 0.695 0.732 0.570 0.527 0.590
Observe-Recall 0.712 0.601 0.628 0.704 0.691
Read-Recall 0.722 0.732 0.628 0.708 0.711
Full Model 0.718 0.739 0.640 0.713 0.715

Table 5: Fusion Methods Comparison.
Method Vis. Text. Temp. Know. All

Average 0.726 0.710 0.628 0.648 0.672
Maximum 0.685 0.757 0.593 0.678 0.686
Self-att 0.737 0.761 0.651 0.641 0.677
QA-att 0.736 0.743 0.605 0.637 0.670
FC w/o MW 0.728 0.743 0.616 0.637 0.669
FC w/ MW 0.718 0.739 0.640 0.713 0.715

VQA dataset are reported in Table 4. When a single branch is used, the observe
branch gets the worst overall accuracy and the recall branch performs the best.
This is consistent with the types of questions in the dataset, with 22% being
visual-based and 63% being knowledge-based. The read branch gets the best
performance in the text-based questions (i.e., about the subtitles), and the re-
call branch gets the best accuracy in the knwoledge-based questions (i.e., about
the storyline). When the observe branch is combined with other branches it con-
sistently contributes to improve the results. Again, this result strongly suggests
that the generated scene descriptions do contain meaningful information for the
task. The full model combining the three branches performs the best.

Fusion Methods Comparison We also study the performance of our proposed
MW mechanism and compare it against several fusion methods. Results are re-
ported in Table 5. Given the three prediction scores from each of the branches,
Average and Maximum compute the average and maximum score, respectively.
The Self-att method implements a self-attention mechanism based on the Trans-
former outputs, and the QA-att mechanism attends each of the modality predic-
tions based on the BERT representation of the question and candidate answers.
The FC w/o MW predicts the answer scores by concatenating the scores of the
three branches and feeding them into a linear layer, and FC w/ MW builds
our proposed MW mechanism on top. The results show that most of the meth-
ods fail at properly fusing the information from the three branches, i.e., the
overall performance is lower than the best single branch (recall, as reported in
Table 4). This is probably because the fusion of the different modalities incurs in
information loss. Our MW mechanism, in contrast, successfully balances the con-
tribution from the three branches. Fig. 5 compares different values of βω in the
MW against the best performing single modality, with βr, βo, and βll uniformly
distributed. When the MW is not used (βω = 1) the model obtains the worst
performance. Likewise, when the loss contribution from the final prediction is
too weak (βω < 0.6), the model is not able to fuse the information correctly.

Qualitative Results We visually inspect ROLL results to understand the
strengths and weaknesses of our model. An example of scene graph can be seen
in Fig. 7, whereas results on visual-based questions are provided in Fig. 6. ROLL
performs well on questions related to the general content of the scene, such as
places, people, or objects, but fails in detecting fine-grained details. Performance
of the individual video modules is reported in the supplementary material.
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Q: Where are Sheldon, Raj, Howard, and Leonard having a meal?
A1: In their car. A2: At their house.    
A3: In their lab.    A4: The Caltech lunch room.

Generated Description: Sheldon, Leonard, Howard and Raj are sitting 
at a table at the Caltech cafeteria. Leonard wearing shirt, jacket and glass. 
Leonard holding bottle. Hand, mouth, face and head of Leonard. Leonard 
has hair. Howard has hair and head. Door behind Howard. Howard at table. 
Shirt on Howard. Door, window and tree behind Sheldon. Pant, shirt, glass 
and short on Sheldon. Sheldon at table. Sheldon holding bottle. Sheldon has 
hand, hair, head and ear. Face of Sheldon. Chair behind Raj. Shirt and jacket 
on Raj. Raj wearing sock and glass. Raj has mouth, head, ear, face and hair. 

Generated Description: Penny and Sheldon are holding a cup/glass/
bottle of something at the main building. Door, sign, building and light 
behind Sheldon. Pant, shirt, glove and short on Sheldon. Sheldon wearing 
sock. Sheldon in room. Sheldon has hand, finger, hair and arm. Sheldon 
holding bottle, book, cup and handle. Head of Sheldon. Girl near Sheldon. 
Door behind Penny. Shirt on Penny. Penny wearing tie and short. Penny has 
eye, hair and head. Face of Penny. Penny holding flag. Penny near man.

Q: What is on Sheldon's sheets?
A1: The periodic table. A2: Batman.    
A3: Star Wars.    A4: Superman.

Fig. 6: ROLL visual results. Underline/colour for correct/predicted answers. The
relevant part for the question in the generated description is highlighted in blue.

Sheldon 
and 

Leonard’s 
apartment

Smiling

Sign

Shelf

Cabinet

Shirt

GlassArm Hair
Head

Face

Board

Lamp

Behind

On

Wearing

Near

Sheldon

Has

Sign

Cabinet

Shelf

Chair

Table

Behind

Book

Holding

Arm
Hair

Head

Penny

Hand

Has

ShirtOn

Of

Shelf

Behind

Shirt

Jacket

Pant

Glass

Coat

Hair
Sign Hand

Face

Head

Ear

On

Wearing
Has

Of

Leonard

Near

Door

Tie

Fig. 7: Generated scene graph. Solid for correct and bordered for incorrect nodes.

9 Conclusion

We introduced ROLL, a model for knowledge-based video story question an-
swering. To extract the visual information from videos, ROLL generates video
descriptions in an unsupervised way by relying on video scene graphs. This new
video representation led the model to an important increase of accuracy on
visual-based questions on two datasets. Moreover, unlike previous work, ROLL
leverages information from external knowledge without specific annotations on
the task, easing the requirements of human labelling. This came without a drop
in performance. On the contrary, as ROLL successfully fuses specific details from
the scene with general information about the plot, the accuracy in KnowIT VQA
and TVQA+ datasets was improved by more than 6.3% and 1.3%, respectively.
Finally, by incorporating a modality weighting mechanism, ROLL avoided the
information loss that comes from fusing different sources.
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