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Abstract. Scarcity of labeled data has motivated the development of
semi-supervised learning methods, which learn from large portions of un-
labeled data alongside a few labeled samples. Consistency Regularization
between model’s predictions under different input perturbations, partic-
ularly has shown to provide state-of-the art results in a semi-supervised
framework. However, most of these method have been limited to clas-
sification and segmentation applications. We propose Transformation
Consistency Regularization, which delves into a more challenging set-
ting of image-to-image translation, which remains unexplored by semi-
supervised algorithms. The method introduces a diverse set of geometric
transformations and enforces the model’s predictions for unlabeled data
to be invariant to those transformations. We evaluate the efficacy of our
algorithm on three different applications: image colorization, denoising
and super-resolution. Our method is significantly data efficient, requir-
ing only around 10 – 20% of labeled samples to achieve similar image
reconstructions to its fully-supervised counterpart. Furthermore, we show
the effectiveness of our method in video processing applications, where
knowledge from a few frames can be leveraged to enhance the quality of
the rest of the movie.

1 Introduction

In recent past, deep neural networks have achieved immense success in a wide
range of computer vision applications, including image and video recognition
[19, 25, 24], object detection [17, 37], semantic segmentation [29, 8] and image-
to-image (I2I) translation [22, 48, 12]. However, a fundamental weakness of the
existing networks is that they owe much of this success to large collections of
labeled datasets. In real-world scenarios creating these extensive datasets is ex-
pensive requiring time-consuming human labeling, e.g. expert annotators, as in
case of medical predictions and artistic reconstructions. As we enter the age
of deep learning, wide-spread deployment of such models is still constrained for
many practical applications due to lack of time, expertise and financial resources
required to create voluminous labeled datasets.

Codes are made public at https://github.com/aamir-mustafa/Transformation-CR
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Conceptually situated between supervised and unsupervised learning, Semi-
Supervised Learning (SSL) [7] aims at addressing this weakness by leveraging
large amounts of unlabeled data available alongside smaller sets of labeled data
to provide improved predictive performance. Lately extensive research has been
done in SSL and has shown to work well in the domain of image [4, 5, 32, 39,
40] and text classification [44]. However, it would be highly desirable to create
I2I translation networks that can take advantage of the abundance of unlabeled
data while requiring only a very small portion of the data to be labeled. For
example, to colorize a black and white movie, we may want an artist to colorize
only 1–5% of the frames and rest is done by the network. For capturing video in
low light, we may want to capture a few reference frames on a tripod with long
exposure times (therefore low noise) and use those to remove noise from the rest
of the video. We may also want to design a camera, which captures only every
n-th frame at a higher resolution (as the sensor bandwidth is constrained) and
use those frames to enhance the resolution of the rest of the video. Unsupervised
I2I translation methods have shown to generate compelling results, however,
although unpaired, they still require large datasets from both the input and
output domains to train the network [28, 51, 20, 13, 38, 31, 45]. For example to
train an unsupervised super-resolution model we still require huge amounts of
high resolution images as in [46, 6]. On the contrary an SSL method would require
only low-resolution images and a few low-high resolution image pairs for training.

In this work, we draw insights from Consistency Regularization (CR) – that
has shown state-of-the art performance in classification tasks – to leverage unla-
beled data in a semi-supervised fashion in a more challenging setting i.e. image-
to-image translation. CR enforces a model’s prediction to remain unchanged for
an unsupervised sample when the input sample is perturbed [3, 39, 26]. However,
applying CR in I2I domain is not straightforward, because images with varied
transformations should have different predictions, unlike in the case of image
classification. We derive our motivation for our approach from a) smoothness
assumption, which in the case of image classification states that if two sample
points are close enough to each other in the input space, then their predicted la-
bels must be same and b) manifold assumption, which states that natural images
lie on a low-dimensional manifold [52].

This paper introduces a regularization term over the unsupervised data
called Transformation Consistency Regularization (TCR), which makes sure the
model’s prediction for a geometric transform of an image sample is consistent
with the geometric transform of the model’s reconstruction of the said image. In
other words, we propose a modification to the smoothness assumption [52] for
image reconstruction models postulating that if two input images x, x́ ∈ X that
are geometric transformations of each other and close by in the input space, then
their corresponding predictions y, ý must be equally spaced in the output man-
ifold. Our training objective is inspired by the transformation invariance loss
[14] introduced to design stable CNNs aiming at removing temporal inconsis-
tencies and artifacts in video sequences. Our method is, however, fundamentally
different, since the proposed loss formulation and the notion of using unlabeled
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Fig. 1: An illustration of our training scheme using the Transformation Consis-
tency Regularization (Lus) over the unlabeled data for image colorization. The
same method is used for Image Denoising and Single Image Super Resolution.

data in designing near perfect mapping functions (CNNs) have not been previ-
ously explored for image-to-image translation settings. The proposed TCR over
unlabeled data works jointly with the model’s supervised training to effectively
reconstruct better and visually appealing images than its supervised counterpart.
To the best of our knowledge this is the first work to study the applicability of
semi-supervised learning in an image-to-image setting.

The main contributions of this paper are as follows:

1. Through extensive empirical evaluations, we show the efficacy of our semi-
supervised training scheme in regularizing model’s predictions to be invariant
to input transformations for three image-to-image translation problems, viz.
image colorization, denoising and single image super-resolution.

2. We hypothesize that addition of unsupervised data during training makes a
model generic enough to better remap images from one image manifold to
other. We provide validation for our manifold assumption (see Sec. 5).

3. We provide analysis of how much unsupervised data is ideal for training a
semi-supervised model in contrast to its supervised counterpart per batch.

4. Using less than 1% of labeled data, we perform colorization, denoising and
super-resolution of movie clips. Our semi-supervised scheme achieves an ab-
solute average gain of 6 dB in PSNR than its supervised counterpart, which
uses the same percentage of labeled data.

2 Related Work

To set the stage for Transformation Consistency Regularization we introduce
related existing methods for SSL, particularly focusing on the class of meth-
ods that propose addition of an additional loss term while training the neural
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network, leaving the scheme for training on supervised data unchanged. Con-
sistency Regularization (CR) is one such method which enforces the model’s
prediction to be consistent if realistic perturbations are added to the input data
points [2, 44, 32, 39, 9]. This involves minimizing d(fθ(u), fθ(ú)), where ú is a per-
turbed counterpart of an unlabeled sample u and d(·, ·) is a distance metric that
measures the offset between the model’s predictions. Generally the distance mea-
sure used in various works is mean squared error [26, 5], Kullback-Leibler (KL)
divergence [44] or the cross-entropy loss. This simple method leverages the un-
labeled data to find a low-dimensional manifold on which the dataset lies and
has shown to provide state-of-the art performance in image classification tasks.
Different CR techniques choose different forms of perturbations added to unla-
beled data, most common form include domain-specific data augmentation [44,
39, 5, 26]. More recently, Unsupervised Data Augmentation (UDA) [44], ReMix-
Match [4] and FixMatch [40] enforce consistency among strongly augmented
image samples making use of artificial labels generated for weakly augmented
samples. Virtual Adversarial Training [32] adds small amounts of input noise
a.k.a adversarial perturbations, which are carefully crafted to significantly alter
the models predictions. [26, 41, 35] used dropout noise as a noise injection mod-
ule to enforce consistency between the model’s output predictions. Grandvalet
et al. introduced Entropy Minimization [18] making use of unlabeled data to
ensure that classes are well separated by adding an additional loss term mak-
ing sure the model outputs confident (low-entropy) predictions for unsupervised
samples. Interpolation Consistency Training [42] builds on this idea and enforces
the predictions at an interpolation of unlabeled images to be consistent with the
interpolation of the model’s predictions for those images. This achieves the deci-
sion boundary to lie on low density regions of the class distribution. MixMatch
[5] combined the ideas of entropy minimization and consistency regularization
for better generalization. Self training is another such technique that uses the
labeled data to initially train a model, which is then used to generate pseudo-
labels for unlabeled data. If the model’s prediction for an unlabeled sample (u)
is above a certain threshold, then the sample and its pseudo-label are added
to the training set as supervised samples [43, 7, 33, 47]. However, the method
relies heavily on the threshold value; a larger value results in a small set of
pseudo-labeled samples, preventing model’s performance to reach its full poten-
tial, whereas a smaller threshold may harm the performance with significant
amount of erroneous labels. Most of these noise injection methods, however, are
designed for image classification problems, with very little work being done in
more challenging settings like image-to-image translation.

We in our work broaden the scope of CR to image-to-image translation, which
remains untouched by current SSL algorithms. Our aforementioned regulariza-
tion term and geometric transformations bear closest resemblance to Eilertsen
et al’s [14] work on colorization of video sequences in designing temporally sta-
ble CNNs. They enforce temporal stability by regularizing the various types of
motion artifacts that occur between frames in a fully supervised fashion. Our
method is, however, fundamentally different, since the proposed loss formula-
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tion and the notion of using unlabeled data in designing near perfect mapping
functions (CNNs) have not been previously explored for I2I translation settings.

3 Our Approach

3.1 Fully Supervised Perspective

In a traditional supervised image-to-image learning protocol, we are provided
with a finite collection of B image pairs Ds = {(xi, yi) : i ∈ (1, . . . , B)} per
batch, where each data point xi ∈ X is sampled from an input distribution X
and yi ∈ Y belongs to a separate target space Y. The goal is to train a regression
model, say a Convolutional Neural Network (CNN) fθ(·) parameterized by θ,
which promotes an accurate mapping between the input images x and the ground
truth images y by minimizing the loss:∑

i

L
(
fθ(xi) , yi

)
(1)

The loss used to train a CNN could be mean squared error (L2), L1 loss or
perceptual loss based on the main objective of the network.

3.2 Transformation Consistency Regularization

In semi-supervised learning, we are provided with an additional set of data
points, sampled from the same input distribution X . Let Dus = {(ui) : i ∈
(1, . . . , rB)} be a batch of rB unlabeled data, where r is the ratio of unlabeled
to labeled data per batch used in training and is a hyper-parameter.

Our goal is to leverage the unsupervised data to learn more about the inherent
structure of this distribution and thereby regularize the image-mapping network
fθ(·). We propose a modification to the smoothness assumption, postulating
that if two input images x, x́ ∈ X are close enough in the input space, then
their corresponding predictions y, ý must be equally spaced. Our approach is also
motivated by manifold assumption [52], which states that natural images lie on a
low-dimensional manifold. These assumptions form the basis of semi-supervised
learning algorithms in image classification domain [15]. If natural images lie
on a low-dimensional manifold, this explains why low-dimensional intermediate
feature representations of deep networks accurately capture the structure of real
image datasets. Image-to-image translation models, such as an image denoising
network, approximate the input image manifold and help in remapping them to
the output natural image manifold. Fig. 2 shows a low dimensional manifold of
noisy and recovered images. Noisy image samples of real world datasets sampled
from a distribution X , can be considered to lie on a separate manifold. A trained
image denoising model learns to map these data samples to an output natural
image manifold. However, insufficient amount of data results in some output
images that lie off the manifold. In this work we propose that using additional
unlabeled images can go a long way in learning a near perfect mapping function



6 A. Mustafa et al.

Mapping Function
(Supervised 10%)

Noisy Image Manifold

Off the Manifold

Mapping Function
Ours (10% Supervised)

Noisy Image Manifold

Natural Image Manifold

Natural Image Manifold

𝑢!

𝑢"

!
𝑇(𝑢")

𝑇

Training

Testing

Training

Testing

Fig. 2: The figure illustrates the mapping of image samples from noisy to original
image manifold while training and testing. Model trained using only labeled
data provides imperfect mapping resulting in reconstructed images lying off-
the natural image manifold. Making use of large chunks of unlabeled data for
training the same underlying model can provide a better mapping function.

resulting in remapping off-the-manifold output images. We provide a detailed
validation for our proposition in Sec. 5

The foundation of our semi-supervised learning algorithm are the following
propositions:

Proposition 1: Since both labeled and unlabeled data are sampled from the same
underlying data distribution p(x) over the input space, unlabeled data can be used
to extract information about p(x) and thereby about the posterior distribution
p(y|x).

Proposition 2: The unsupervised data Dus provides additional insights about
the shape of the data manifold, which results in better reconstruction of images
in an image-to-image setting.

Proposition 3: In an image-to-image translation setting, for a diverse set of
geometric transformations T (·), if a model predicts a reconstructed image ûi
for an ith unlabeled input sample ui ∈ Dus, then the model’s prediction for its
transformation T (ui) must be T (ûi).

In other words, we propose that a model’s output predictions in an image-
to-image setting should be transformed by the same amount as the input image
is transformed before being fed to the CNN. The loss function for our semi-
supervised learning protocol includes two terms a) a supervised loss term Ls
applied on the labeled dataDs and b) a transformation consistency regularization
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(TCR) term Lus applied on the combination of Ds and Dus.
1 For illustration

see Fig. 1. Specifically, Ls is the mean-squared loss on the labeled examples:

Ls(x, y) =
1

B

B∑
i=1

‖ fθ(xi)− yi ‖22 (2)

During the training process, each mini-batch includes both labeled and unla-
beled images. The labeled data is trained using a typical I2I translation approach.
Additionally, we introduce TCR on both labeled as well as the unlabeled data.
We make use of a series of geometric transformations T (·) to enforce consis-
tency between the reconstructed images for a given unlabeled data sample ui.
Specifically our loss function is given by:

Lus(u) =
1

rB

rB∑
i=1

( 1

M

M∑
m=1

‖Tm(fθ(ui))− fθ(Tm(ui)) ‖22
)

(3)

Here fθ(·) is a parametric family of I2I mappings and is a non-linear function,
therefore Tm(fθ(ui)) and fθ(Tm(ui)) will indeed have different values. Here r is
the ratio of amount of unlabeled data per mini-batch to that of labeled data. The
loss function in Eq. 3 leverages unsupervised data and thereby helps regularize
the model’s predictions over varied forms of geometric transformations. The loss
in Eq. 3 can appear similar to data augmentation with a random transforma-
tion but it should be noted that it is fundamentally different. The loss in data
augmentation is measured between the outputs and their corresponding ground
truths and is typically expressed as ‖Tm(fθ(xi))− (Tm(yi)) ‖. TCR loss on the
other hand enforces consistency between the predictions of transformed inputs
without any knowledge of the ground truth.

The overall loss is composed of the original objective of the CNN and our
transformation consistency regularization term as:

L = Ls(x, y) + λ
(
Lus(u) + Lus(x)

)
(4)

The scalar λ is to control the weight given to the regularization term. Our pro-
posed semi-supervised approach is, however, not restricted to L2 loss and works
equally well for L1 and perceptual loss [16, 23] (see supplementary material).

3.3 Transformations

In a traditional consistency regularization (CR) framework for image classifica-
tion, a noise operation is employed that adds perturbations to the input image
u to generate its counterpart ú. An additional regularization term then aims at
minimizing the L2 loss, cross entropy loss or KL divergence between the output
predictions fθ(u) and fθ(ú) [26, 32, 41, 44]. These noise injection methods include

1 We include all labeled data, without using their labels, alongside the unlabeled data
in our transformation consistency regularization term.
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random augmentations, adversarial perturbations, Gaussian noise, dropout noise
etc [10, 11]. CR has shown to provide state-of-the art performance in classifica-
tion domain by enforcing that u and ú lie on the same image manifold [34].

However, choosing the noise operations in an image-to-image translation
model is a challenging task as the output predictions for an unsupervised image
sample and, say, its augmented version are no longer same. In this paper we
generate unsupervised image pairs using a series of geometric transformations
T (·) that capture the occurrences in real world scenarios. These include rotation,
translation, scaling and horizontal flipping. We choose a specified range for the
degree of transformations so as to prevent images going off their natural mani-
fold. The degree of rotation is uniformly drawn from a range of values between
−45◦ and 45◦. For translation and zooming the range is set between −30 px and
30 px and between 0.9× and 1.1× respectively.

For a particular geometric transformation Tm, unlike image classification, the
model’s predictions for an input image pair ui and Tm(ui) require modifications
to be equivalent. The additional loss term for TCR is computed between the
model’s prediction for Tm(ui), denoted by fθ(Tm(ui)) and the transformation of
model’s output for ui, i.e. Tm(fθ(ui)). These transformations over unsupervised
data regularize the model and force the reconstructed images to lie on the output
image manifold (see Fig. 2).

4 Experiments

In this section, we evaluate the efficacy of TCR on a variety of image-to-image
translation tasks where CNNs are employed. Specifically, we perform experi-
ments with varying amounts of labeled data for image colorization, image de-
noising and single image super-resolution. For all the cases, we provide results for
baseline models (using only supervised data), models trained with addition of our
TCR over labeled data and finally the models trained using our semi-supervised
paradigm. The codes used for our experiments are based on PyTorch. In our
experiments, both the supervised and unsupervised data are supplied together
in each mini-batch. To maintain their ratio r (see Equation 2 and 3), we use
separate data loaders for labeled and unlabeled data.

In the following sections we provide details about the dataset, model and
training schemes employed in different image-to-image translation applications.
Finally in Sec. 5, we provide validation for our manifold assumption that is
built on the hypothesis that unsupervised data, sampled from the same data
distribution as supervised data, can be leveraged to learn a generic image-to-
image mapping function.

4.1 Image Colorization

To begin, we compare our semi-supervised method on image colorization. For
this, we train the architecture introduced by Iizuka et al. [21] with varying
amounts of labeled data (image pairs) from the Places dataset [50]. We use the
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(a) Image Colorization (b) Image Denoising on Set 14 (c) Image Denoising on BSD

(d) Image SR on BSD Legend

Fig. 3: The plots provide results for baseline models (using only supervised data),
models trained with addition of our TCR but using only labeled data i.e. TCR
(Ds), models trained with image augmentation over the supervised data i.e. Aug-
mented (Ds) and finally the models trained using our semi-supervised paradigm
i.e. TCR (Ds + Dus). The addition of unsupervised data while training provides
substantial improvement in image reconstruction.

SGD with Nestrov momentum optimizer for all our experiments. The models
are trained for 45 epochs with the initial learning rate set to 0.1 with scheduling
by a factor of 10 after epoch 30. The momentum parameter was set to 0.9. We
achieved the best results when the ratio of supervised to unsupervised data per
batch was set at 1:10. Fig. 4a shows qualitative results for three image sam-
ples incrementing the percentage of labeled data used for training the model.
In Fig. 3a we compare the performance of our semi-supervised method with the
baseline models by means of PSNR and Feature Similarity Index (FSIMc) [49].
We use FSIMc, rather than SSIM, as it is a more modern metric that was shown
to correlate much better with subjective image quality assessment data [36] and
can operate on both gray-scale and color images.

4.2 Image Denoising

Next, we test our semi-supervised method on image denoising application. For
this, we train the DnCNN architecture introduced by Zhang et al. [48] using
the Berkeley Segmentation Dataset (BSD) [30]. The noisy images are generated
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by adding Gaussian noise with the noise level chosen from the range [0,55]. We
use SGD with a weight decay of 0.0001 with Nestrov momentum optimizer for
training all our models. The models are trained for 50 epochs with exponential
learning rate scheduling from 1e− 1 to 1e− 4. The momentum parameter is set
to 0.9. We achieve the best results when the ratio of supervised to unsupervised
data per batch was set at 1:10. We choose Set14 data and BSD test data for
evaluating of the models efficacy. Fig. 4b shows qualitative results for three
image samples incrementing the percentage of labeled data used for training the
model. In Fig. 3b and Fig. 3c we compare the performance of our semi-supervised
method with the baseline models on Set 14 and BSD datasets by means of PSNR
and FSIM [49] respectively.

4.3 Image Super-Resolution

Finally, we evaluate the efficacy of our SSL technique on a challenging image-to-
image translation method – Single Image Super-Resolution (SISR). The task of
SISR is to estimate a High Resolution (HR) image given a Low Resolution (LR)
image. The LR image is first generated by downsampling the original HR image
by a factor of τ . For this application we use state-of-the art SISR architecture –
Enhanced Deep Super-Resolution (EDSR) proposed by [27], which uses a hier-
archy of such residual blocks. We train the models on BSD 500 dataset, choosing
400 images for training and 100 for testing. The upscaling factor τ is chosen to be
3. Each model is trained for 500 epochs with an initial learning rate of 0.01 with
gradual scheduling. We use the PSNR and FSIM [49] as performance metrics
to compare the performance of our SSL scheme with its supervised counterpart
(see Fig. 3d). Additional results are included in the supplementary material.

4.4 Results and Discussions

Comparisons: The goal of our TCR is to reconstruct better images using the
combination of Ds and Dus, than what have been obtained using only Ds. This
is a very common scenario in I2I translation as we typically have abundance of
input images, but much fewer corresponding (labeled) output images. As illus-
trated in Fig. 3, we show a substantial performance boost across all applications.
We report an absolute PSNR gain of 3.1 dB and 3.0 dB for image colorization
and denoising using our semi-supervised scheme with only 10% of labeled data.
A similar trend can be observed for FSIM results, suggesting a substantial gain
in the perceived quality of translation. We compare the performance of our SSL
method for three applications with the supervised baseline, which uses only the
labeled data and the same underlying models for training. We further evaluate
the performance of our TCR loss term when applied on the labeled data only,
as done in [14]. This is shown as green lines with triangle markers in Fig. 3. We
observe that TCR improves the reconstruction quality even when trained only
on the labeled data. Finally, we compare all tested approaches to data augmen-
tation, shown as blue lines with pentagon markers in Fig. 3. We used the same
set of transformations for data augmentation as for TCR. The results show that
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(a) Image Colorization for three image samples from Places dataset

(b) Image Denoising for three image samples from Set 14 dataset
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Fig. 4: Results showing comparison between reconstructed images using our
model and supervised baseline models. The column title indicates the percentage
of data used for training. The last column shows our results where we use only
10% of the entire dataset as labeled and rest in an unsupervised fashion.

augmentation improves the performance as compared to the baseline, however,
its still inferior to performance achieved using TCR under supervised settings.

Movie Applications: In this section, we show the potential of our SSL method
in applications like movie colorization and movie super-resolution. In movie col-
orization, we use Blender Foundation’s open source short film ‘Big Buck Bunny’
[1]. We divide the movie into train and test set with each comprising of 510 and
43 seconds respectively. In our SSL setting, we make use of only 1% of the total
training frames in supervised fashion, while rest were fed into the TCR term. We
compare our method with its supervised counterpart (using 1% of total training
frames), and achieve an absolute gain of 6.1 dB in PSNR. Following a similar
setting, we further evaluate the efficacy of TCR for denoising and enhancing the
resolution of video clips in our experiments.
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We believe our semi-supervised learning technique can go a long way in col-
orization of old movie clips requiring an artist to colorize only a few frames. In
a similar fashion, we can take advantage of the abundance of unlabeled data in
removing noise and enhancing the quality and resolution of movie clips.

5 Manifold Assumption Validation

In this paper we propose that input image samples (e.g. a noisy image) and their
reconstructed counterparts (e.g. denoised image) lie on different manifolds and
large portions of unsupervised data can better help in regularizing the remapping
function fθ(·). Addition of this data while training promotes the reconstructed
image to be mapped to the natural image manifold as illustrated in Fig. 2.

To validate this assumption for image denoising, we fine-tune an ImageNet
pre-trained Inception-v3 model as a binary classifier using 10,000 pairs of clean
(class 0) and noisy (class 1) images, 299× 299 pixels each, drawn from ILSVRC
validation set. The noisy samples are generated using two kinds of distributions
namely, Gaussian and Poisson. For Gaussian noise we randomize the standard
deviation σ ∈ [0, 50] for each image. For Poisson noise, which is a dominant
source of noise in photographs, we randomize the the noise magnitude λ ∈ [0, 50].
With the learning rate reduced by a factor of 10, we retrain the top-2 blocks
while freezing the rest. The global average pooling layer of the model is followed
by a batch normalization, drop-out and two dense layers (1024 and 1 nodes,
respectively). This model now efficiently leverages the subtle difference between
clean images and their noisy counterparts and separates the two with a very
high accuracy (99.0%). To validate our manifold assumption we test the denoised
images generated using a) supervised model using 10% labeled data and b) model
trained using TCR with same percentage of labeled data in semi-supervised
fashion. The classifier labels only 44.3% of the denoised images generated using
the supervised model as clean, whereas 97.9% of denoised images generated using
our method are labeled as clean. This confirms that vast majority of the images
restored using our method are remapped to the clean image manifold.

Figure. 5a, shows a plot of the features extracted from the penultimate layer
of the binary classifier to visualize our manifold assumption validation. We em-
ploy t-SNE to reduce the dimensionality of features to 3 for visualization.

To perform a similar validation for image colorization, we use an ResNet-
50 model2 pre-trained on the Places 365 dataset [50] to test the efficacy of
our colorization model compared to the supervised counterpart. We convert 100
image samples into gray-scale from a particular class of the validation set (houses
in our case) and generate colored images using both the aforementioned methods.
In Fig. 5b, we plot the features extracted after the Global Pooling Layer of the
classifier to visualize our manifold assumption validation. We employ t-SNE to
reduce the dimensionality of features from 1024 to 3. The plots show that TCR
helps to project images in each class to the ground truth manifold.

2 https://github.com/CSAILVision/places365
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(a) Image Denoising

(b) Image Colorization

Supervised Baseline

Proposed SSL

Ground Truth

Fig. 5: Manifold Assumption Validation for Denoising and Colorization. On the
top we show 3D t-SNE plots of the intermediate features extracted from denoised
images generated using our semi-supervised model (blue) and the baseline su-
pervised model (red) compared with the ground truth noise-free images (green).
The bottom plots show the features extracted from colored images. The plots
clearly show that our method provides an accurate mapping of images back onto
the the natural i.e. the ground truth image manifold than the baseline model.

6 Ablation Studies

To achieve the best performance, we need to select the values for the hyper-
parameters: ratio of unsupervised to supervised data per batch (r), and the
weight of the regularization term (λ). We show that the optimal values of both
hyper-parameters are consistent across the problems and datasets.

6.1 The amount of unsupervised data we need

First, we study the effect of the ratio of unsupervised to supervised data per
batch (r) of training in a semi-supervised learning settings. In Fig. 6a, we plot
the PSNR values of the reconstructed images versus different ratios for image
colorization and denoising. We perform an ablation study using 10% and 20%
of the total data as labeled. We observe a significant increase in the quality of
images by using large amounts of unlabeled data. Our proposed SSL technique
has maximum impact across all applications when the the amount of unlabeled
data is 10 times that of labeled data in each mini-batch. This helps the model to
learn over all possible distributions thereby resulting in a near perfect mapping
function using only a small fraction of labeled data.
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Fig. 6: Ablation Study over two hyper-parameters for colorization and denoising.

6.2 Lambda

We conduct a hyper-parameter search over the scalar λ used to control the weight
given to our unsupervised loss term (see Equation. 4). We searched over values
in {10−1, 100, 101, 102, 103, 104}. Fig. 6b plots the PSNR value versus λ for image
colorization and denoising. Again in the above settings only 10% and 20% of the
total data is labeled. In our experiments we found the maximum performance
boost of our technique for λ = 10.

7 Conclusions

There has been an immense surge in semi-supervised learning techniques, how-
ever, none of the methods have addressed image-to-image translation. We intro-
duce Transformation Consistency Regularization, a simple yet effective method
that fills in this gap and provides great boosts in performance using only a small
percentage of supervised data. The strategy proposes an additional regulariza-
tion term over unlabeled data and does not require any architectural modifica-
tions to the network. We also show the efficacy of our semi-supervised method
in colorization, denoising and super-resolution of movie clips by using only a few
frames in supervised fashion, while rest been fed to our unsupervised regular-
ization term while training. On the whole, we believe that our method can be
used in diverse video applications where knowledge from a few frames can be
effectively leveraged to enhance the quality of the rest of the movie.
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