SOLO: Segmenting Objects by Locations

Xinlong Wang', Tao Kong?, Chunhua Shen', Yuning Jiang?, and Lei Li?

1 The University of Adelaide, Australia
2 ByteDance AI Lab

Abstract. We present a new, embarrassingly simple approach to in-
stance segmentation. Compared to many other dense prediction tasks,
e.g., semantic segmentation, it is the arbitrary number of instances that
have made instance segmentation much more challenging. In order to
predict a mask for each instance, mainstream approaches either follow
the “detect-then-segment” strategy (e.g., Mask R-CNN), or predict em-
bedding vectors first then use clustering techniques to group pixels into
individual instances. We view the task of instance segmentation from
a completely new perspective by introducing the notion of “instance
categories”, which assigns categories to each pixel within an instance
according to the instance’s location and size, thus nicely converting in-
stance segmentation into a single-shot classification-solvable problem. We
demonstrate a much simpler and flexible instance segmentation frame-
work with strong performance, achieving on par accuracy with Mask
R-CNN and outperforming recent single-shot instance segmenters in ac-
curacy. We hope that this simple and strong framework can serve as a
baseline for many instance-level recognition tasks besides instance seg-
mentation. Code is available at https://git.io/AdelaiDet

Keywords: Instance segmentation, Location category

1 Introduction

Instance segmentation is challenging because it requires the correct separation of
all objects in an image while also semantically segmenting each instance at the
pixel level. Objects in an image belong to a fixed set of semantic categories, but
the number of instances varies. As a result, semantic segmentation can be easily
formulated as a dense per-pixel classification problem, while it is challenging to
predict instance labels directly following the same paradigm.

To overcome this obstacle, recent instance segmentation methods can be cat-
egorized into two groups, i.e., top-down and bottom-up paradigms. The former
approach, namely ‘detect-then-segment’, first detects bounding boxes and then
segments the instance mask in each bounding box. The latter approach learns
an affinity relation, assigning an embedding vector to each pixel, by pushing
away pixels belonging to different instances and pulling close pixels in the same
instance. A grouping post-processing is then needed to separate instances. Both
these two paradigms are step-wise and indirect, which either heavily rely on ac-
curate bounding box detection or depend on per-pixel embedding learning and
the grouping processing.

https://git.io/AdelaiDet

2 Wang et al.

FoN @

(a) Mask R-CNN (b) SOLO

;

0 i j NI

Fig. 1. Comparison of the pipelines of Mask R-CNN and the proposed SOLO.

In contrast, we aim to directly segment instance masks, under the supervi-
sion of full instance mask annotations instead of masks in boxes or additional
pixel pairwise relations. We start by rethinking a question: What are the funda-
mental differences between object instances in an image? Take the challenging
MS COCO dataset [I6] for example. There are in total 36;780 objects in the
validation subset, 98:3% of object pairs have center distance greater than 30
pixels. As for the rest 1:7% of object pairs, 40:5% of them have size ratio greater
than 1.5 . To conclude, in most cases two instances in an image either have dif-
ferent center locations or have different object sizes. This observation makes one
wonder whether we could directly distinguish instances by the center locations
and object sizes?

In the closely related field, semantic segmentation, now the dominate paradigm
leverages a fully convolutional network (FCN) to output dense predictions with
N channels. Each output channel is responsible for one of the semantic categories
(including background). Semantic segmentation aims to distinguish different se-
mantic categories. Analogously, in this work, we propose to distinguish object
instances in the image by introducing the notion of “instance categories”, i.e.,
the quantized center locations and object sizes, which enables to Segment Objects
by locations, thus the name of our method, SOLO.

Locations An image can be divided into a grid of S S cells, thus leading to
S2 center location classes. According to the coordinates of the object center, an
object instance is assigned to one of the grid cells, as its center location category.
Note that grids are used conceptually to assign location category for each pixel.
Each output channel is responsible for one of the center location categories, and
the corresponding channel map should predict the instance mask of the object
belonging to that location. Thus, structural geometric information is naturally
preserved in the spatial matrix with dimensions of height by width. Unlike Deep-
Mask [24] and TensorMask [4], which run in a dense sliding-window manner and
segment an object in a fixed local patch, our method naturally outputs accurate
masks for all scales of instances without the limitation of (anchor) box locations
and scales.

In essence, an instance location category approximates the location of the ob-
ject center of an instance. Thus, by classification of each pixel into its instance

SOLO 3

location category, it is equivalent to predict the object center of each pixel in the
latent space. The importance here of converting the location prediction task into
classification is that, with classification it is much more straightforward and eas-
ier to model varying number of instances using a fixed number of channels, at the
same time not relying on post-processing like grouping or learning embeddings.

Sizes To distinguish instances with different object sizes, we employ the
feature pyramid network (FPN) [I4], so as to assign objects of different sizes
to different levels of feature maps. Thus, all the object instances are separated
regularly, enabling to classify objects by “instance categories”. Note that FPN
was designed for the purposes of detecting objects of different sizes in an image.

In the sequel, we empirically show that FPN is one of the core components
for our method and has a profound impact on the segmentation performance,
especially objects of varying sizes being presented.

With the proposed SOLO framework, we are able to optimize the network in
an end-to-end fashion for the instance segmentation task using mask annotations
solely, and perform pixel-level instance segmentation out of the restrictions of
local box detection and pixel grouping. For the first time, we demonstrate a very
simple instance segmentation approach achieving on par results to the dominant
“detect-then-segment” method on the challenging COCO dataset [16] with di-
verse scenes and semantic classes. Additionally, we showcase the generality of our
framework via the task of instance contour detection, by viewing the instance
edge contours as a one-hot binary mask, with almost no modification SOLO can
generate reasonable instance contours. The proposed SOLO only needs to solve
two pixel-level classification tasks, thus it may be possible to borrow some of the
recent advances in semantic segmentation for improving SOLO. The embarrass-
ing simplicity and strong performance of the proposed SOLO method may predict
its application to a wide range of instance-level recognition tasks.

1.1 Related Work

We review some instance segmentation works that are closest to ours.
Top-down Instance Segmentation. The methods that segment object in-
stance in a priori bounding box fall into the typical top-down paradigm. FCIS [13]
assembles the position-sensitive score maps within the region-of-interests (ROIs)
generated by a region proposal network (RPN) to predict instance masks. Mask
R-CNN [9] extends the Faster R-CNN detector [25] by adding a branch for seg-
menting the object instances within the detected bounding boxes. Based on Mask
R-CNN, PANet [19] further enhances the feature representation to improve the
accuracy, Mask Scoring R-CNN [10] adds a mask-IoU branch to predict the qual-
ity of the predicted mask and scoring the masks to improve the performance.
HTC [2] interweaves box and mask branches for a joint multi-stage processing.
TensorMask [4] adopts the dense sliding window paradigm to segment the in-
stance in the local window for each pixel with a predefined number of windows
and scales. In contrast to the top-down methods above, our SOLO is totally box-
free thus not being restricted by (anchor) box locations and scales, and naturally
benefits from the inherent advantages of FCNs.

4 Wang et al.

Bottom-up Instance Segmentation. This category of the approaches gen-
erate instance masks by grouping the pixels into an arbitrary number of object
instances presented in an image. In [22], pixels are grouped into instances us-
ing the learned associative embedding. A discriminative loss function [7] learns
pixel-level instance embedding efficiently, by pushing away pixels belonging to
different instances and pulling close pixels in the same instance. SGN [I8] de-
composes the instance segmentation problem into a sequence of sub-grouping
problems. SSAP [§] learns a pixel-pair affinity pyramid, the probability that two
pixels belong to the same instance, and sequentially generates instances by a
cascaded graph partition. Typically bottom-up methods lag behind in accuracy
compared to top-down methods, especially on the dataset with diverse scenes.
Instead of exploiting pixel pairwise relations SOLO directly learns with the in-
stance mask annotations solely during training, and predicts instance masks
end-to-end without grouping post-processing.

Direct Instance Segmentation. To our knowledge, no prior methods directly
train with mask annotations solely, and predict instance masks and semantic cat-
egories in one shot without the need of grouping post-processing. Several recently
proposed methods may be viewed as the ‘semi-direct’ paradigm. AdaptIS [26]
first predicts point proposals, and then sequentially generates the mask for the
object located at the detected point proposal. PolarMask [28] proposes to use
the polar representation to encode masks and transforms per-pixel mask predic-
tion to distance regression. They both do not need bounding boxes for training
but are either being step-wise or founded on compromise, e.g., coarse parametric
representation of masks. Our SOLO takes an image as input, directly outputs
instance masks and corresponding class probabilities, in a fully convolutional,
box-free and grouping-free paradigm.

2 Our Method: SOLO

2.1 Problem Formulation

The central idea of SOLO framework is to reformulate the instance segmentation
as two simultaneous category-aware prediction problems. Concretely, our system
divides the input image into a uniform grids, 7.e., S S. If the center of an object
falls into a grid cell, that grid cell is responsible for 1) predicting the semantic
category as well as 2) segmenting that object instance.

Semantic Category For each grid, our SOLO predicts the C-dimensional out-
put to indicate the semantic class probabilities, where C is the number of classes.
These probabilities are conditioned on the grid cell. If we divide the input image
into S S grids, the output space will be S S C, as shown in Figure [2| (top).
This design is based on the assumption that each cell of the S S grid must
belong to one individual instance, thus only belonging to one semantic category.
During inference, the C-dimensional output indicates the class probability for
each object instance.

SOLO 5

Category Branch [T 1]
— . s

Semantic category

FCN

Input image Mask Branch

, k Instance
nstance mas| segmentation

Fig. 2. SOLO framework. We reformulate the instance segmentation as two sub-
tasks: category prediction and instance mask generation problems. An input image is
divided into a uniform grids, i.e., S S. Here we illustrate the grid with S = 5. If the
center of an object falls into a grid cell, that grid cell is responsible for predicting the
semantic category (top) and masks of instances (bottom). We do not show the feature
pyramid network (FPN) here for simpler illustration.

Instance Mask In parallel with the semantic category prediction, each positive
grid cell will also generate the corresponding instance mask. For an input image
I, if we divide it into S S grids, there will be at most S? predicted masks in
total. We explicitly encode these masks at the third dimension (channel) of a
3D output tensor. Specifically, the instance mask output will have H; W, S2
dimension. The k' channel will be responsible to segment instance at grid (i,
J), where Kk =1 S +J (with i and j zero—based)ﬂ To this end, a one-to-one
correspondence is established between the semantic category and class-agnostic
mask (Figure [2)).

A direct approach to predict the instance mask is to adopt the fully convolu-
tional networks, like FCNs in semantic segmentation [20]. However the conven-
tional convolutional operations are spatially invariant to some degree. Spatial
invariance is desirable for some tasks such as image classification as it introduces
robustness. However, here we need a model that is spatially variant, or in more
precise words, position sensitive, since our segmentation masks are conditioned
on the grid cells and must be separated by different feature channels.

Our solution is very simple: at the beginning of the network, we directly
feed normalized pixel coordinates to the networks, inspired by ‘CoordConv’ op-
erator [I7]. Specifically, we create a tensor of same spatial size as input that
contains pixel coordinates, which are normalized to [1;1]. This tensor is then
concatenated to the input features and passed to the following layers. By simply
giving the convolution access to its own input coordinates, we add the spatial
functionality to the conventional FCN model. It should be noted that Coord-
Conv is not the only choice. For example the semi-convolutional operators [23]
may be competent, but we employ CoordConv for its simplicity and being easy
to implement. If the original feature tensor is of size H W D, the size of new

3 We also show an equivalent and more efficient implementation in Section

6 Wang et al.

Fig. 3. SOLO Head architecture . At each FPN feature level, we attach two sibling
sub-networks, one for instance category prediction (top) and one for instance mask
segmentation (bottom). In the mask branch, we concatenate the x, y coordinates and
the original features to encode spatial information. Here numbers denote spatial res-
olution and channels. In the gure, we assume 256 channels as an example. Arrows
denote either convolution or interpolation. "Align' means bilinear interpolation. Dur-
ing inference, the mask branch outputs are further upsampled to the original image
size.

tensor becomesH W (D + 2), in which the last two channels are x-y pixel
coordinates. For more information on CoordConv, we refer readers to [17].
Forming Instance Segmentation. In SOLO, the category prediction and the
corresponding mask are naturally associated by their reference grid celi.e.,
k=1 S+ j.Based on this, we can directly form the nal instance segmenta-
tion result for each grid. The raw instance segmentation results are generated
by gathering all grid results. Finally, non-maximum-suppression (NMS) is used
to obtain the nal instance segmentation results. No other post processing op-
erations are needed.

2.2 Network Architecture

SOLO attaches to a convolutional backbone. We use FPN [14], which generates
a pyramid of feature maps with di erent sizes with a xed number of channels
(usually 256-d) for each level. These maps are used as input for each prediction
head: semantic category and instance mask. Weights for the head are shared
across di erent levels. Grid number may varies at di erent pyramids. Only the
last conv is not shared in this scenario.

To demonstrate the generality and e ectiveness of our approach, we instanti-
ate SOLO with multiple architectures. The di erences include: (a) the backbone
architecture used for feature extraction, (b) the network head for computing the

SOLO 7

instance segmentation results, and (c) trainingloss function used to optimize
the model. Most of the experiments are based on th&ead architecture as shown
in Figure 3. We also utilize di erent variants to further study the generality.
We note that our instance segmentation heads have a straightforward structure.
More complex designs have the potential to improve performance but are not
the focus of this work.

2.3 SOLO Learning

Label Assignment For category prediction branch, the network needs to give
the object category probability for each of S S grid. Speci cally, grid (i;j) is
considered as a positive sample if it falls into thecenter region of any ground
truth mask, Otherwise it is a negative sample. Center sampling is e ective in
recent works of object detection [27,12], and here we also utilize a similar tech-
nique for mask category classi cation. Given the mass centerd; ¢,), width w,
and height h of the ground truth mask, the center region is controlled by con-
stant scale factors : (c;cy; w; h). We set = 0:2 and there are on average 3
positive samples for each ground truth mask.

Besides the label for instance category, we also have a binary segmentation
mask for each positive sample. Since there ar8? grids, we also haveS? output
masks for each image. For each positive samples, the corresponding target binary
mask will be annotated. One may be concerned that the order of masks will
impact the mask prediction branch, however, we show that the most simple
row-major order works well for our method.

Loss Function We de ne our training loss function as follows:

L = Lecate + L mask; 1)

where L4 IS the conventional Focal Loss [15] for semantic category classi ca-
tion. Lmask is the loss for mask prediction:
1 X

Lmask = :I-fpi;j > 0gOmask (Mk; My);)

Npos
Here indicesi = bk=Sc;j = kmodS, if we index the grid cells (instance category
labels) from left to right and top to down. Np.s denotes the number of positive
samples,p and m represent category and mask target respectivelyl is the
indicator function, being 1 if p;; > 0 and 0 otherwise.

We have compared di erent implementations of dmask (;): Binary Cross En-
tropy (BCE), Focal Loss [15] and Dice Loss [21]. Finally, we employ Dice Loss
for its e ectiveness and stability in training. in Equation (1) is set to 3. The
Dice Loss is de ned as

Loice =1 D(p;q); (3)
where D is the dice coe cient which is de ned as
2 . .
D(piay= P2z Pesp) @

2 2 7
X; px;y + X; qX;y
y y

8 Wang et al.

Here pyy and qyy refer to the value of pixel located at (x;y) in predicted soft
mask p and ground truth mask q.

2.4 Inference

The inference of SOLO is very straightforward. Given an input image, we forward
it through the backbone network and FPN, and obtain the category scorep;

at grid (i;j) and the corresponding maskamy, wherek = i S+ j. We rst use

a con dence threshold of Q1 to lter out predictions with low con dence. Then
we select the top 500 scoring masks and feed them into the NMS operation. We
use a threshold of 05 to convert predicted soft masks to binary masks.
Maskness. We calculate maskness for each predicted maslﬁ which represents
the quality and con dence of mask prediction maskness =Ni iNf pi. Here N;
the number of foreground pixels of the predicted soft maskp, i.e., the pixels
that have values greater than threshold 05. The classi cation score for each
prediction is multiplied by the maskness as the nal con dence score.

3 Experiments

We present experimental results on the MS COCO instance segmentation bench-
mark [16], and report ablation studies by evaluating on the 5kval2017 split.
For our main results, we report COCO mask AP on thetest -dev split, which
has no public labels and is evaluated on the evaluation server.

Training details. SOLO is trained with stochastic gradient descent (SGD). We
use synchronized SGD over 8 GPUs with a total of 16 images per mini-batch.
Unless otherwise speci ed, all models are trained for 36 epochs with an initial
learning rate of 0.01, which is then divided by 10 at 27th and again at 33th epoch.
Weight decay of 00001 and momentum of @ are used. All models are initialized
from ImageNet pre-trained weights. We use scale jitter where the shorter image
side is randomly sampled from 640 to 800 pixels, following [4].

3.1 Main Results

We compare SOLO to the state-of-the-art methods in instance segmentation on
MS COCO test -dev in Table 1. SOLO with ResNet-101 achieves a mask AP
of 37.8%, the state of the art among existingtwo-stage instance segmentation
methods such as Mask R-CNN. SOLO outperforms all previousne-stagemeth-
ods, including TensorMask [4]. Some SOLO outputs are visualized in Figure 6,
and more examples are in the supplementary.

3.2 How SOLO Works?

We show the network outputs generated byS = 12 grids (Figure 4). The sub-
gure (i;j) indicates the soft mask prediction results generated by the corre-
sponding mask channel. Here we can see that di erent instances activates at dif-
ferent mask prediction channels. By explicitly segmenting instances at di erent

SOLO 9

Table 1. Instance segmentation mask AP (%) on the COCO test -dev. All entries
are single-model results. Here we adopt the \6 " schedule (72 epochs), following [4].
Mask R-CNN is our improved version with scale augmentation and longer training
time. D-SOLO means Decoupled SOLO as introduced in Section 4.

backbone AP AP 5o AP7s APs APy AP
two-stage:
MNC [5] Res-101-C4 24,6 44.3 248 4.7 259 43.6
FCIS [13] Res-101-C5 29.2 49.5 7.1 31.3 50.0
Mask R-CNN [9] |Res-101-FPN 35.7 58.0 37.8 15,5 38.1 52.4
MaskLab+ [3] Res-101-C4 37.3 59.8 39.6 16.9 39.9 535
Mask R-CNN Res-101-FPN 37.8 59.8 40.7 20.5 40.4 49.3
one-stage:
TensorMask [4] |Res-50-FPN 354 57.2 37.3 16.3 36.8 49.3
TensorMask [4] |Res-101-FPN 37.1 59.3 394 174 39.1 516
YOLACT [1] Res-101-FPN 31.2 50.6 32.8 12.1 33.3 47.1
PolarMask [28] |Res-101-FPN 30.4 519 31.0 134 324 4238
ours:
SOLO Res-50-FPN 36.8 58.6 39.0 159 39.5 52.1
SOLO Res-101-FPN 37.8 59.5 404 16.4 40.6 54.2
D-SOLO Res-101-FPN 38.4 59.6 41.1 16.8 41.5 54.6
D-SOLO Res-DCN-101-FPN|40.5 62.4 43.7 17.7 43.6 59.3

Table 2. The impact of grid number and FPN . FPN signi cantly improves the
performance thanks to its ability to deal with varying sizes of objects.

grid number | AP AP 5o AP 75|APs APy AP
12 27.2 44.9 27.6] 8.7 27.6 445

24 29.0 47.3 29.9/10.0 30.1 458

36 28.6 46.3 29.7| 9.5 29.5 45.2
Pyramid [35.8 57.1 37.8/15.0 38.7 53.6

positions, SOLO converts the instance segmentation problem into a position-
aware classi cation task. Only one instance will be activated at each grid, and
one instance may be predicted by multiple adjacent mask channels. During in-
ference, we use NMS to suppress these redundant masks.

3.3 Ablation Experiments

Grid number. We compare the impacts of grid number on the performance
with single output feature map as shown in Table 2. The feature is generated by
merging C3, C4, and C5 outputs in ResNet (stride: 8). To our surprise,S =12
can already achieve 27.2% AP on the challenging MS COCO dataset. SOLO
achieves 29% AP when improving the grid number to 24. This results indicate
that our single-scale SOLO can be applicable to some scenarios where object
scales do not vary much.

Multi-level Prediction. From Table 2 we can see that our single-scale SOLO
could already get 29.0 AP on MS COCO dataset. In this ablation, we show

10 Wang et al.

Fig. 4. SOLO behavior. We show the visualization of soft mask prediction. Here S =
12. For each column, the top one is the instance segmentation result, and the bottom
one shows the mask activation maps. The sub- gure (i;]) in an activation map indicates
the mask prediction results (after zooming out) generated by the corresponding mask
channel.

that the performance could be further improved via multi-level prediction using
FPN [14]. We use ve pyramids to segment objects of di erent scales (details in
supplementary). Scales of ground-truth masks are explicitly used to assign them
to the levels of the pyramid. From P2 to P6, the corresponding grid numbers are
[40; 36; 24; 16; 12] respectively. Based on our multi-level prediction, we further
achieve 35.8 AP. As expected, the performance over all the metrics has been
largely improved.

CoordConv. Another important component that facilitates our SOLO paradigm

is the spatially variant convolution (CoordConv [17]). As shown in Table 3, the
standard convolution can already have spatial variant property to some extent,
which is in accordance with the observation in [17]. As also revealed in [11], CNNs
can implicitly learn the absolute position information from the commonly used
zero-padding operation. However, the implicitly learned position information is
coarse and inaccurate. When making the convolution access to its own input co-
ordinates through concatenating extra coordinate channels, our method enjoys
3.6 absolute AP gains. Two or more CoordConvs do not bring noticeable im-
provement. It suggests that a single CoordConv already enables the predictions
to be well spatially variant/position sensitive.

Loss function. Table 4 compares di erent loss functions for our mask optimiza-
tion branch. The methods include conventional Binary Cross Entropy (BCE),
Focal Loss (FL), and Dice Loss (DL). To obtain improved performance, for Bi-
nary Cross Entropy we set a mask loss weight of 10 and a pixel weight of 2 for
positive samples. The mask loss weight of Focal Loss is set to 20. As shown,
the Focal Loss works much better than ordinary Binary Cross Entropy loss. It

