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Abstract. Imaging in the dark environment is important for many real-
world applications like video surveillance. Recently, the development of
Event Cameras raises promising directions in solving this task thanks to
its High Dynamic Range (HDR) and low requirement of computational
sources. However, such cameras record sparse, asynchronous intensity
changes of the scene (called events), instead of canonical images. In this
paper, we propose learning to see in the dark by translating HDR events
in low light to canonical sharp images as if captured in day light. Since
it is extremely challenging to collect paired event-image training data,
a novel unsupervised domain adaptation network is proposed that ex-
plicitly separates domain-invariant features (e.g. scene structures) from
the domain-specific ones (e.g. detailed textures) to ease representation
learning. A detail enhancing branch is proposed to reconstruct day light-
specific features from the domain-invariant representations in a residual
manner, regularized by a ranking loss. To evaluate the proposed ap-
proach, a novel large-scale dataset is captured with a DAVIS240C camera
with both day/low light events and intensity images. Experiments on this
dataset show that the proposed domain adaptation approach achieves
superior performance than various state-of-the-art architectures.

Keywords: Domain Adaptation · Event Camera · Image Reconstruc-
tion · Low Light Imaging

1 Introduction

Event cameras [23, 5], a kind of bio-inspired vision sensors that mimic the hu-
man eye in receiving the visual information, have gained more and more atten-
tion in computer vision community. Different from traditional cameras capturing
intensity frames at a fixed rate, event cameras transmit the changes of scene in-
tensities asynchronously, which are called events. Endowed with microsecond
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Fig. 1: Motivation of the proposed approach. (a) In low light the conventional camera
fails to capture the scene clearly. (b) Event cameras, on the other side, can perceive the
scene due to its high dynamic range, though with noisy measurements. (c) In low light,
even the state-of-the-art event-to-image translation approach [31] fails reconstructing
a clean image. (d) Despite the large domain gap, the proposed domain adaptation ap-
proach learns to reconstruct high-quality day-light image by observing low-light events.
(e)(f) Domain translation results of strong baselines [39] and [29], respectively.

temporal resolution, low power assumption and a high dynamic range (e.g., 140
dB compared to 60 dB of most consumer-level standard cameras), event cameras
have promising applications in various scenes with broad illumination range.

Reconstructing canonical images from asynchronous events has been explored
in various research [33, 27, 21, 31]. Early works, which were primarily inspired by
the physical formation model of events, are prone to real-world imperfectness and
often generate noisy reconstructions. Recent deep reconstruction model [31] has
demonstrated impressive performance through being trained on large amounts
of simulated image/event pairs. Despite their successes, few works pay sufficient
attention to event-based imaging in low-light environment. Like conventional
cameras, events in low light have their own distributions. The sparity and nois-
iness of low-light events render their distribution rather different with that in
normal light. As a result, even the state-of-the-art event-to-image translation
approach [31] fails generating clean reconstruction due to the domain gap, as
shown in Fig. 1 (c). Besides, collecting large datasets with events and reference
sharp images in low light is hardly practical.

Motivated by recent advances of deep domain adaptation methods [11, 24,
17, 16, 29] and the HDR property of event cameras, a novel domain adaptation
method is proposed to tackle the problem of generating clear intensity images
from events in the dark. Specifically, features are extracted from the low-light
event domain and transferred to the day-light one, in which the reference sharp
images are much easier to collect. To this end, previous domain adaptation meth-
ods usually project features from different domains into a common feature space,
which can be supervised with available rich labels [16, 29, 9, 35]. In this manner,
discriminative cross-domain attributes are preserved while the distractive ones
are neglected. While this is fine for high-level downstream tasks such as classifi-
cation and segmentation, it may not be the best choice for the proposed task. In
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fact, the domain-specifc “distractors”, such as the high frequency scene details
and textures, largely affects the reconstruction quality and should be comple-
mentary to the domain-shared attributes (e.g. scene structrues). Therefore, we
propose distangled representation learning: we decompose the day-light domain
features into a domain-shared part and a domain-specific part. The domain-
shared part is expected to encode scene-level information such as structures,
intensity distributions, etc., which could also be perceived from the low-light
events. The domain-specific part contains day-light exclusive patterns, e.g. high-
frequency details, which may not be easily recovered from low-light events. A
dedicated residual detail enhancing network is incorporated to recover plausible
day-light details from the common representations in a generative manner. We
show that such decomposition can be regularized with a simple ranking loss. To
evaluate the proposed approach, we capture a large dataset with real-world low-
light/day-light events and images, with a DAVIS240C camera [5]. Experiments
on this dataset show that the proposed architecture outperforms various state-
of-the-art domain adaptation and event-based image reconstruction approaches.

Our contributions are: 1) we propose a novel domain-adaptation approach for
event-based intensity image reconstruction in low light. Our approach achieves
the best reconstruction quality among various state-of-the-art architectures; 2)
we propose to learn decomposed representations to smooth the adaptation pro-
cess, which can be regularized by a simple ranking loss; 3) a large dataset with
low-light/day-light events and images of various real-world scenes is compiled,
and will be made publicly available to facilitate future research.

2 Related Work

Intensity image reconstruction from events. Dynamic Vision Sensors (DVS)
[23, 5] are a kind of biology inspired sensors which sends signals when the scene
exhibits illumination changes. An “on” signal is generated when the pixel bright-
ness goes up to a certain degree, or an “off’ signal otherwise. The signals, often
referred as events, can be denoted with a tuple (u, v, t, p), where u, v are the pixel
coordinates of the event, t is the timestamp, and p ∈ {−1,+1} is the polarity,
i.e, representing “on” and “off” states.

Early attempts on reconstructing the intensity image from events are inspired
by their physical imaging principles. Generally, the spatiotemporal formation of
events are formulated with various forms of pixel tracking models. For example,
Kim et al. [20] estimate scene movements and gradients, and integrate them in a
particle filter to generate final intensity reconstructions. Barua et al. [2] employs
patch-based sparse dictionary learing on events to address image reconstruction.
Bardow et al. [1] integrates optical flow estimation with intensity reconstruction
into a cost function with various spatiotemporal regularizations. Scheerlinck et
al. [33] updates each pixel location with incoming events via a complementary
ordinary differential equation filter.

Recent research directs to learning deep event-to-image translation models
from data [21, 31]. Generally, these approaches achieve much improved recon-
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structions due to deep networks. However, a challenge is how to collect clean
training pairs of events and reference images. Wang et al. [21] captures such
data with off-the-shelf hybrid event camera simultaneously recording events and
images with time calibration. Rebecq et al. applies a carefully designed event
simulator [30] to synthesize event data from existing large-scale image datasets.
However, in low-light scenario, while the former fails due to the limited dynamic
range of image sensor, the latter may not well model real noise distributions.

Unsupervised domain adaptation. To overcome the above difficulty, we
treat low-light image reconstruction from events as an unsupervised domain
adaptation task. Unsupervised domain adaptation has been widely adopted for
image classification [24, 34, 36, 4, 11, 13], segmentation [16, 9] and synthesis [3,
29, 15]. In the line of pixel-level adaptation networks, Hoffman et al. [15] pro-
poses an early attempt that obtains domain-agnostic features. Ghifary et al. [13]
and Murez et al. [29] develop further constraints (e.g. decodable shared fea-
tures, cycle-consistent mapping originating from [39]), to further improve the
robustness of adaptation. Based on these constraints, further extensions are pro-
posed [35, 9] by exploring structural cues, tailored for segmentation. However,
restricting the inference on domain-shared features may neglect domain-specific
high-frequency information, which is not problematic or even desired for high-
level tasks such as classification, but may sacrifice the sharpness and realistics
for image generation. Bousmalis et al. [4] propose to explicitly decompose the
features into domain-shared and domain-specific ones. However, their purpose
is to obtain more discriminative and clean domain-shared features for classifi-
cation, instead of leveraging domain-specific high-frequency details to improve
reconstruction.

Deep image enhancement. Recently, impressive results were shown for
training deep image enhancing models on enhancing bayer raw [7, 8] and HDR [19,
25, 12, 38, 6] images. However, collecting the reference aligned images for low-
light events are extremely difficult. A widely adopted alternative is unpaired
training, via modality translation paradigm [17, 39, 10, 18]. Nevertheless, the pro-
posed task involves modality translation as a task (i.e. event-to-image transla-
tion), in two separate domains (i.e. low light and day light). In addition, the
domain difference in the proposed task involves various factors like color, noise,
scene textures and details. This introduces further challenges as opposed with
existing success, for which domain difference often lies in color distribution [10,
18]. In fact, we find that existing domain translation approaches cannot well
address the proposed task, as illustrated in Fig. 1 and our experimental section.

3 The Proposed Approach

Our approach assumes that a dataset with events and their reference intensity
images are given in day light environment, while events and images are time-
calibrated. Such data could be easily collected with mordern off-the-shelf hybrid
cameras with calibrated sensors, e.g. DAVIS240C [5]. In addition, a set of cap-
tures of events in the target low-light environment are also required, but this
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Fig. 2: Events and intensity images of the same scene in day-light and low-light envi-
ronment, captured with the DAVIS240C camera in a lab room with controlled lighting.
The first two columns show events (a) and corresponding intensity image (b) in day-
light, respectively. The last two columns (c) (d) illustrate them in the dark.

time the reference images are allowed absent. The scene coverage in day light
and low light do not need to be aligned. On this dataset, our objective is to train
an event-to-image translation model that generalizes to the target domain. We
start with introducing the high-level design of the proposed architecture, then
goes into the technical details of each component.

3.1 Learning Architecture

As described previously, event cameras capture changes of scene intensities on
each pixel location. Therefore, the distributions of events are closely related
to lighting conditions, like standard frame-based cameras. In Fig. 2 we shown
sample events and the corresponding image captures of the same scene. We
can observe that 1) the low-light and day-light events distributions differ in a
number of aspects including noise, event density and the sharpness of details.
The events captured in low light are obviously much noisier and less sharper;
2) however, due to the high dynamic range of event camera, the coarse scene
structures are still preserved in different lightings. Therefore, an ideal domain
adaptation approach should be capable of 1) extracting the shared scene-level
features in two domains; 2) “hallucinating” plausible day light-specific details
that are missing in the low-light domain. While the former has been verified as a
common rule for domain adaptation methods [29], the latter and how it can be
integrated into the whole pipeline for image reconstruction, is still less explored.

Keeping this in mind, we propose a novel training architecture for domain-
adapted low-light event-to-image translation, as summarized in Fig. 3. It consists
of a day light-specific private encoder Ep, a domain-shared encoder Ec, a shared
decoder R for image reconstruction, a domain discriminator D, and a detail
enhancing branch Te which will be explained shortly after.

Given a source (day-light) domain event representation xs, we concatenate it
with a spatial noise channel z, and feed them into the source-private encoder Ep,
obtaining domain-private features xf

p = Ep (xs, z;θp). Conditioning on both the
real samples and a noise channel helps improve the generalization of the model,
which is verified in previous works [16] and our experiments. Meanwhile, the
source events xs itself also go through the domain-shared encoder Ec, yielding
domain-public features xf

c = Ec (xs;θc). On the other side, the target domain
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Fig. 3: The proposed framework. The day-light events and low-light events are fed
into a shared encoder Ec to extract their representations xf

c and xf
LE . Meanwhile, the

day-light events are also fed into a private encoder Ep along with a noise channel,
yielding source domain-specific residuals xf

p . By adding operation, the modulated day-

light features xf
DE = xf

c + xf
p and the low-light features xf

LE lie in a domain-shared
feature space, guaranteed by adversarial training with a discriminator D. The detail en-
hancement branch Te reconstructs day-light domain-specific residuals from the shared
features. Finally, a shared decoder R reconstructs the intensity images using both the
domain-specific and shared representations.“R/F” respresents Real or Fake logits.

(low-light) event representation xt
LE is sent to the same shared encoder to get

its encoding xf
LE = Ec (xt

LE ,θc). Here, θp and θc are trainable parameters.

We expect that the domain-private features xf
p encode day-light exclusive

patterns such as high-frequency details, which may not be easily captured by
the shared features xt

LE extracted from the low-light events. On the other hand,
the domain-public features xf

c from day-light events may still contain source-
domain relevant attributes. We perform an “add” operation between xf

c and xf
p ,

obtaining a modulated feature xf
DE = xf

c + xf
p , which lies in a shared feature

space with xf
LE as if extracted from the low-light domain. In this manner, xf

p

can be deemed as the “negative” complementary features of source domain. To
guarantee the desired behavior, we feed xf

LE and xf
DE to a domain discriminator

D (·;θD), which serves to distinguishing between the transformed feature map

xf
DE from the day-light domain, and the features xf

LE extracted from the real
low-light domain.

The features xf
DE projected into the domain-shared space can be then fed

into the decoder R (·;θR) to get the reconstruction result ȳ, which can be di-
rectly supervised with source-domain labels. However, following the above anal-
ysis, the shared features may not preserve high-frequency source-domain rele-
vant details, leading to suboptimal reconstruction. To address this limitation,
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a detail enhancing branch Te is proposed. It aims to inversely recovering the
removed source domain-specific features xf

p in conditional generation manner,

taking as input the domain-shared features xf
DE and the identical noise channel:

∆y = −xf
p ≈ Te

(
xf
DE , z;θt

)
. The full day-light features are then constructed

by adding ∆y to xf
DE in residual way. The recovered features are finally fed into

the decoder R to get an improved reconstruction ŷ.
To train the proposed architecture, we employ the following adversarial train-

ing objective:

min
θg,θr,θt

max
θd

αLD(D,G) + LR(G,Te,R), (1)

where α balances the interaction of different terms, and is set to 0.1. For the
domain loss LD(D,G), we define it as a common logistic loss in training GANs:

LD(D,G) =Ext [log D(xt;θd)]+

Exs,z[log(1−D(G(xs, z,θg);θd))],
(2)

where E denotes expectation over distribution.
Our reconstruction related loss LR can be decomposed into three terms:

LR(G,Te,R) = Lp(ŷ, ȳ,yg) + βLt(∆y,xf
p) + γLr(ŷ, ȳ,yg), (3)

where ȳ and ŷ are the reconstructions from shared and inversely recovered fea-
tures (see Fig. 3), yg is the groundtruth reconstruction available on the source
day-light domain. The balancing weights β and γ are empirically set to 0.1.

The first term is the `1 photometric reconstruction loss:

Lp(ŷ, ȳ,yg) =
1

|Is|

Is∑
i=1

(‖ŷi − ygi ‖1 + ‖ȳi − ygi ‖1) , (4)

in which Is denotes the set of all the image pixels in source domain.
With the second term, we train the detail enhancing branch to regress the

source domain-specific residuals:

Lt(∆y,xf
p) =

1

|Fs|

Fs∑
i=1

‖∆yi + (xf
p)i‖1. (5)

The set Fs denotes all the pixel locations on the immediate feature maps xf
p . Note

that the target labels in (5) are not fixed but dynamically changed with network
training. To avoid contaminating representation learning in early training stage,
gradients from Lt to the private encoder Ep is blocked, as illustrated in Fig. 3. It
effectively cancels the loops in information flows and gets rid of mode collapse.

Finally, we add further regularizations between ȳ, the reconstructions from
the shared-space features xf

DE , and ŷ, reconstructions from the recovered domain-
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specific features xf
DE + ∆y. We employ a ranking loss, preferring stronger per-

formance for the latter:

Lr(ŷ, ȳ,yg) = max

(
1

|Is|

Is∑
i=1

‖ŷi − ygi ‖1 −
1

|Is|

Is∑
i=1

‖ȳi − ygi ‖1 + ε, 0

)
, (6)

where ε > 0 is a predefined margin. Eqn. (6) encourages the reconstruction ŷ to
have a lower loss compared with that of ȳ so as to probe a better reconstruction.
This is somewhat counter-intuitive, since that (6) can achieve the same minimizer
by degrading ȳ instead of improving ŷ. The rationale behind this regularization
is that the domain loss LD and the reconstruction loss LR in (1) do not al-
ways have consistent objectives, especially in perceptual image synthesis tasks.
Actually, as advocated by recent studies [35, 26], adversarial generation and do-
main adaptation without regularization tends to align the most discriminative
(instead of many) modes of two distributions. To this end, it may underplay
important distortion-critic features, which are often not the most discriminative
ones between domains but crucial for reconstruction quality. It shares with a
similar finding from GAN-based image superresolution [22, 37]. Including GAN
objective may damages distortion-based metrics (though perceptual quality can
be improved by training on carefully created, high-quality clean datasets). In
our setting, the large distribution gap between day-light and low-light domains
can readily guide the discriminator to focus on several main differences, e.g.
noise and texture distributions, divating from reconstructing other details and
damages reconstruction quality. Through the regularization (6), it would be not
a great issue if this happens, as the detail enhancing branch can encode the
lost less discriminative but important information to promote a better recon-
struction. In the experimental section, we show that such regularization indeed
improves the results in both quantitative and subjective comparisons.

In Fig. 4 we visualize the reconstructed images with and without the ranking-
based regularization. Without the ranking loss, the reconstruction in Fig. 4 (a)
comes from the shared feature representations. In this case, the inter-domain
adversarial loss dominates the training process, which focuses on discriminative
distributional differences but neglects tiny scene details. Adding the ranking
loss guides the detail enhancing network to recover such details while leaving the
discriminative adaptation unaffected. As the loss itself does not increases network
capacity, it serves as self-regularization that smooths the training process by
distangling representation learning for different network components.

3.2 Implementation Details

Event representation. Events are asynchronous signals that cannot be triv-
ially processed by image-specialized networks like CNN. To overcome this issue,
we employ the stacked event frame representations [21]. Specifically, we divide
the events captured from a scene into equal-size temporal chunks. In each chunk,
we sum up event polarities triggered in the time interval of this chunk at per



Learning to See in the Dark with Events 9

a b c d e

Fig. 4: Effectiveness of rank regularization. Reconstruction without and with rank reg-
ularization are visualized in (a) and (b), respectively. (c) The reference image. Recon-
struction error maps of (a) and (b) are shown in (d) and (e).

pixel level. For each pixel p, this writes to

Φ(p) =
∑

e=(ep,et,el)∈E

1(ep = p ∧ et ∈ [t, t+ τ ]) · el, (7)

where ep and et represent the pixel location and time stamp when the event is
triggered, and el ∈ {−1, 1} denotes the polarity of event. The indicator function
1(·) takes 1 if the input condition holds, or 0 otherwise. In our implementary,
we employ 4 chunks, where the time length τ of each chunk spans across 1.25
miliseconds. In addition, we concatenate the time stamps of the events (normal-
ized into [0, 1]) with the event frames, resulting into a 8-channel representation.

Noise channel. The noise channel is a 1-dimensional map with the same
spatial resolution with that of event frames. Values of this noise map are ran-
domly sampled from a spatial Gaussian distribution whose mean is zero and
standard deviation is 1.

Layer configurations. The encoder and decoder forms the generator that
aims to synthesizing plausible real-like images. Thus, they are implemented with
residual networks. For encoder Ep and Ec in Fig. 3, the concatenated event
frames and noise map go through a 7 × 7 convolution without striding, and
two 3 × 3 convolutions with stride = 2. The feature dimensions are scaled up
to 32, 64 and 128, sequentially. These features are then fed into 9 identical
residual blocks, which has two 3 × 3 convolutions. For the decoder R, it has 9
the same residual blocks, then upsample the features with two 3×3 deconvolution
layers. The feature dimension reduces from 128 to 64 and 32 during upsampling.
Finally a 7× 7 convolution layer fuses the features to a single output map. The
discriminator D consists of three 5×5 convolutions with stride = 2 and two 5×5
convolutions with stride = 1. The feature dimensions go up to 32, 64, 128 and
256, finally fused to a single output logit channel. Average pooling is taken to
compute final score. All the convolution and deconvolution layers are interleaved
with Instance Normalization and Leaky ReLU activation.

The detail enhancing branch Te consumes encoded feature maps and the
same noise channel as input of the private encoder Ep. To make spatial dimen-
sions consistent, the noise map individually goes through three 3×3 convolution
layers with 32 output dimensions. The output are then concatenated with the
input features, followed by a 3 × 3 processing convolution layer and 9 resid-
ual identity blocks. Again, instance normalization and ReLU (or leaky ReLU)
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activation are used for interleaving the convolution layers. Please refer to our
supplementary material for more detailed layer/parameter configurations.

Testing on low-light events. In testing phase, low-light event represen-
tations are passed through the shared encoder Ec to get xf

LE . A noise channel

is sampled then combined with xf
LE , which are fed into the detail enhancing

branch Te to get the residual features ∆y. Finally, the shared decoder R con-
sumes xf

LE+∆y to obtain the final reconstruction. Note that the private encoder
Ep and the discriminator D are not involved in testing phase.

4 Experiments

4.1 Experimental Settings

Data collection. To the best of our knowledge, there does not exist a mature
dataset for evaluating event-based low-light imaging. Thus, we introduce a large
novel dataset to evaluate the proposed approach. The dataset is captured by
a DAVIS240C camera [5], which has an Active Pixel Sensor (APS) to record
intensity image sequences as well as an event sensor recording event streams.
These two modalities are calibrated in spatial and temporal axis. The dataset
consists of image scenes of urban environment at resolution 180× 240, captured
in both day-light and low-light conditions with various kinds of camera/scene
movement. In summary, there are 8820 scenes captured in day time, and 8945
ones in the night. For each scene, the event stream spans across roughly 100ms.
Note that in day light, the reference scenes and lightings are carefully chosen to
avoid saturated pixels (though some still remains in high-light area), so that the
images captured by APS sensors can serve as groundtruth. In the night, however,
we do not control lighting and there is no high-quality reference images available.
Across the experiments, this dataset is referred as DVS-Dark.

Baseline settings. To compare the proposed domain adaptation framework
with state-of-the-art frameworks, we carefully choose and implement 4 represen-
tative baselines, as described as follows:

1) Pix2Pix [17, 21]. Pix2Pix is a successful conditional generative framework
for image-to-image translation, while Wang et al. [21] extend it to event-to-
image translation. We carefully follow Wang et al. [21] to set this baseline,
and train it on the day-light event/image pairs. The trained network can be
applied to low-light test. Thus, no adaptation is performed in this baseline.

2) CycleGAN [39]. The milestone unpaired domain translation framework is
proposed by Zhu et al. [39]. We adapt this framework to translate between
low-light events and day-light images. However we find the naive implemen-
tation hardly working in practice, potentially due to the large domain gap
between low-light events and day-light images. Thus, we intead adopt a mod-
ification in semi-supervised setting: the paired events and images are used
in supervised manner to train the forward/backward mapping networks, to-
gether with unpaired domain translation.
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Fig. 5: Illustration of baseline architectures. The red, blue, and green graphics denote
the encoder, decoder, and discriminator, respectively. Symbols “D” and “L” represents
day-light and low-light, while “E” and “I” refer to events and intensity images.

3) I2I [29]. In the image-to-image translation architecture proposed by Murez
et al. [29], the day-light and low-light events are projected into a shared
feature space. A decoder then learns to reconstruct day-light images from
the shared features, which are directly supervised by paired day-light events
and images. Besides, two domain-specific decoders (weights are not shared)
are involved, responsible for reconstructing the shared features to the original
event representations.

4) SDA [16]. The structured domain adaptation framework proposed by Hong et
al. [16] is originally for semantic segmentation, which we tailor to address im-
age reconstruction. In this framework, the source samples are passed through
a source-private encoder to learn source-specific residuals, and also through
a shared encoder to get immediate shared features. The immediate shared
features then cancels the residuals, yielding domain-shared features that lie
in the same space with the features extracted from the target domain. Note
that compared with our architecture, SDA does not address detail recovery,
and the final reconstruction still comes from the shared feature space.

An illustration of baseline architectures except Pix2Pix is referred to Fig. 5.
In addition, we also compare with state-of-the-art event-based image reconstruc-
tion approaches CIE [33] and RIRM [28] and E2V [31]. They directly reconstruct
intensity images from events via physical or learning-based rules.

Training details. We train the network for 200 epochs, using a mini-batch
of 4 images and 10−4 as initial learning rate. The learning rate linearly decays to
zero from the 100th to the 200th epoch. As for CIE, RIRM and E2V, we directly
adopts the author’s open source code.

4.2 Comparisons with State-of-the-Art Models

Quantitative evaluation through simulated experiments. Since groundtruth
is only available for day-light data, we perform simulated experiments by artifi-
cially translating a random half of day-light subset to low light to conduct quan-
titative analyss. In details, we apply a pixel-valued S-shape tone curve to adjust
the day-light image brightness. This curve globally shrinks the pixel brightness
by roughly 50%, and further shrinks high-light pixels by 60%. To account for
event distribution gap between lightings, we discard the captured day-ight events
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Table 1: PSNR and SSIM numbers on simulated data.

RIRM CIE E2V E2V+ CGAN Pix2Pix I2I SDA Ours

PSNR 11.28 13.30 12.16 17.15 14.20 22.65 23.36 24.93 26.03
SSIM 0.29 0.45 0.33 0.63 0.27 0.68 0.69 0.75 0.77

Table 2: Inception scores(higher is better) and Frechet Inception Distance(lower is
better) on real low-light data. Numbers in the parentheses denote standard deviation.

CIE RIRM E2V CGAN Pix2Pix I2I SDA Ours

IS
3.36 2.28 3.21 2.89 3.86 2.44 3.75 3.87

(±0.47) (±0.37) (±0.61) (±0.15) (±0.24) (±0.15) (±0.24) (±0.21)
FID 267.8 208.5 210.42 163.28 109.08 177.59 110.18 104.21

and regenerate them with the ESIM simulator [30] for day-light and artificially
created low-light images. We use 20% data for testing, and the left for training.

In Table 1 we summarize PSNR and SSIM numbers of different approaches.
We note that since RIRM, CIE and E2V all reconstruct intensity frames purely
from events, they are not aware of dataset-specific color distributions thus their
PSNRs and SSIMs are not meaningful. For fair comparison we propose the vari-
ant E2V+, which is obtained by finetuning E2V on the day-light images of DVS-
Dark, using a similar process as described in [31] to simulate events. However,
it still falls behind our approach in training and testing phase. Among domain
translation/adaptation approaches, the proposed approach achieves much im-
proved performance by additionally considering detail recovery from the shared
feature space. In contrast, conventional reconstruction-from-shared-space paradigm,
as adopted by I2I and SDA, gets worse results.

Comparisons on real low-light data. Due to the lack of groundtruth ref-
erence images in low light, we measure the performance via two widely adopted
perceptual measures, the Inception Scores (IS) [32] and the Frechet Inception
Distance (FID) [14], as summarized in Table 2. The event-based reconstruction
approaches CIE, RIRM and E2V do not get satisfactory perceptual score. Among
domain adaptation approaches, the proposed approach still achieves the best
performance in both metrics, with the best perceptual quality. In Fig. 6, we pro-
vide representative results generated by different approaches. The event-based
reconstruction methods CIE, RIRM and E2V recover plenty of scene details, but
tend to be noisy. The domain adaptation approaches effectively addresses the
noise but may miss tiny details/structures of the scene. The proposed approach
preserves scene details best while successfully suppressing the noise.

4.3 Performance Analysis

Analysing different components. We analyse the contributions of differ-
ent network components on the simulated datasets, as summarized in Table 3.
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Fig. 6: Representative reconstruction results generated by different approaches from
real low-light event data on the DVS-Dark dataset. More results are referred to our
supplementary material. Best viewed in color with zoom.

noise. detail. rank. PSNR SSIM

7 7 7 20.69 0.63
3 7 7 21.24 0.66
3 3 7 24.91 0.75
3 3 3 26.03 0.77

Table 3: Ablation studies of different
network components.

（a） （b）

Fig. 7: PSNR as function of the weight
(a) and margin (b) of ranking loss.

Here, “noise.”, “detail.” and “rank.” denote the noise map augmentation, detail
enhancing branch, and ranking mechanism, respectively. From the results, we
observe that incorporating noise channel improve the results significantly as it
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a b c d

Fig. 8: Effectivenss of rank regularization. (a) w/o regularization; (b) w/ regularization,
γ = 5.0; (c) w/ regularization, γ = 1.0; (d) reference image.

implicitly augments the data by introducing randomness into the inputs. The de-
tail enhancing branch restores domain-specific details that are not well-modelled
in shared feature learning, and leads to a substantial improvement. By further
combining the rank regularization, the network is guided to learn both domain-
discriminative and domain-exclusive features to promote better reconstruction.

Effectiveness of the rank regularization. The ranking loss (6) can ef-
fectively regularize the domain adaptation process of the proposed network.
However, improper parameters may overwhelm the contribution of other loss
terms, deteriorating the reconstruction quality in order to satisfy the ranking
constraints. Fig. 7 shows that the optimal choices of the loss weight and margin
on the DVS-Dark dataset are 1.0 and 0.5 respectively.

Besides recovering small details as analysed in Sect. 3.1, the rank regular-
ization also leads to more smooth reconstruction. As shown in Fig. 8, without
regularization, the discriminative adaptation would dominate the training pro-
cess. The results are sharp, but with false textures. With over-regularization
(γ = 5.0), false textures vanish but the results tend to be blurry. Proper strength
of regularization (γ = 1.0) leads to sharp and clean results.

5 Conclusion

We present in this work a deep domain adaptation method for intensity image
reconstruction from events captured in low light. The model explicitly learns the
shared representation inter domains and domain-specific features via novel detail
enhancing mechanism regularized by relative ranking. Our method outperforms
related existing methods of image generation from events and unsupervised do-
main adaptation methods, in both quantitative and qualitative comparisons.
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