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Abstract. In augmented reality (AR) or virtual reality (VR) systems,
eye tracking is a key technology and requires significant accuracy as well
as real-time operation. Many techniques for detecting pupil centers with
error range of iris radius have been developed, but few techniques have
precise performance with error range of pupil radius. In addition, the con-
ventional methods rarely guarantee real-time pupil center detection in a
general-purpose computer environment due to high complexity. Thus, we
propose more accurate pupil center detection by improving the represen-
tation quality of the network in charge of pupil center detection. This is
realized by representation learning based on mutual information. Also,
the latency of the entire system is greatly reduced by using non-local
block and self-attention block with large receptive field, which makes
it accomplish real-time operation. The proposed system not only shows
real-time performance of 52 FPS in a general-purpose computer envi-
ronment but also provides state-of-the-art accuracy in terms of fine level
index of 96.71%, 99.84% and 96.38% for BioID, GI4E and Talking Face
Video datasets, respectively.
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1 Introduction

In general, the performance of computer vision applications such as AR and
VR highly depend on gaze estimation and eye tracking techniques. The pupil
center detection plays a crucial role in those applications. As a result, the real-
time operation and high accuracy of pupil center detection make the AR/VR
system more practical. Pupil center detection or tracking (PCT) methods are
divided into two categories, i.e., model-based and appearance-based approaches.
Model-based methods are limitedly used in equipments such as head-mounted
goggles. For example, user-specific calibrations were performed using eye geome-
try models and coordinate systems for accurate pupil center detection at a close
distance [1].

On the other hand, appearance-based methods [2–12] detect the pupil cen-
ter using a remote camera without head-mount goggles or user-specific calibra-
tions.In general, appearance-based methods consist of two steps: the eye region
extraction and the pupil center detection. The eye region extraction step is again
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composed of a face detection and an eye region extraction using features such as
landmarks. The pupil center detection methods can be prior knowledge-based
approach or context-based approach. Prior knowledge-based approaches adopt
a regression model designed based on generic eye appearance information [2,
4–11]. The context-based techniques separate a given eye region image into a
pupil center and a background using specific segmentation networks [12, 13].
Alternatively, [3] improved the performance of the regression model with the
hand-crafted features extracted from the pupil area.

Most of the latest PCT methods provide high accuracy in the error range
of iris radius, whereas their accuracy in the error range of pupil radius, a more
precise level, is not satisfactory yet. In addition, many previous techniques sel-
dom guarantee real-time PCT in a general purpose computer environment due
to high latency of eye region extraction modules [4, 10, 11].

This paper proposes a new appearance-based PCT to secure real-time oper-
ation as well as high accuracy even at the precise level. We propose the PCT
system to enable pupil center detection robust against glasses wearing, inspired
by [13]. First, representation learning using mutual information (MI) is applied
to the pupil center detection network so that the network can extract features
which have rich location information. Note that as the representation of the
network improves, the pupil center detection accuracy increases together. Next,
in order to realize consistent real-time processing of the PCT system, nonlocal
block (NLB) and self-attention block (SAB) are applied to face detection network
and glasses removal network, which are bottlenecks in terms of latency. Using
NLB and SAB, each network can obtain a low latency because large receptive
field effect is produced even with only a few layers. On the other hand, glasses
removal network tends to blur the eye region during erasing glasses. Therefore,
we propose a method to mitigate blur phenomenon by employing perceptual
loss, resulting in improvement of detection performance.

The main contribution points of the proposed PCT system are as follows.

• Overall pupil detection accuracy was increased by improving representation
quality of pupil detection network through representation learning using MI.

• The latency of the entire system was greatly reduced by the face detection
network and the glasses removal network which utilize the large receptive
field features of NLB and SAB. That is, it guarantees real-time operation.

• The spatial loss or blur due to the structural lightweighting of the glasses
removal network is compensated by employing perceptual loss.

• In terms of fine-level index [4], i.e., most precise accuracy level, the proposed
PCT system shows state-of-the-art(SOTA) performance of 96.71%, 99.84%,
and 96.38% for BioID, GI4E, and Talking Face Video datasets, respectively.

2 Related Works

Appearance-based Methods. [2], which is a representative appearance-based
method using prior knowledge, first detects a face from an input image through
the face detector of [14]. The eye area is then cropped using biometric statistics
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from the face. Next, the radial gradients for all the points on the iris contour are
computed. Finally, a pupil center is detected by using the prior knowledge that
the origin of the displacement vector with the maximum radial gradient is the
pupil center. One of the latest techniques using prior knowledge is based on cas-
cade regression model and circle fitting [4]. This algorithm trains three cascade
regression models: two regression models for eye corners and eye centers, and a
regression model for circle fitting.

On the other hand, appearance-based techniques considering the context have
been reported [12, 13]. For instance, [13] detects a face using [15], and then de-
termines whether there is glasses in the face. If glasses exist, an eye region is
detected after removing the glasses using CycleGAN [16]. Otherwise, the eye
region detection module is activated immediately. Finally, a pupil center is de-
tected by applying the semantic segmentation network to the detected eye region
so as to separate the pupil center from the background. [12] detects the eye cen-
ter by directly inputting the face image to the semantic segmentation network.
Note that [12] does not include any separate module for dealing with glasses.
Non-local Neural Networks. The most popular convolutional neural network
(CNN) is based on convolutional operations for local neighborhood. Therefore, a
deep network is required to secure a large receptive field. However, this approach
causes a gradient vanishing problem, making learning difficult and inefficient. In
order to solve this fundamental limitation, NLB was born in [17]. If NLB re-
ceives an embedded feature map, it measures point-to-point graphical relations
for all points in the feature map. The measured graphical relation can produce
a self-attention effect similar to [18]. This helps to solve a given task efficiently.
In addition, since the receptive field size of NLB is the same as that of the in-
put data, NLB generally has an effect of enlarging a receptive field. Therefore,
if NLB is applied to a network, the network can achieve a large receptive field
effect without stacking deep convolutional layers.

Thus, we apply NLB to the face detection network that is a bottleneck in
terms of latency so that overall latency can be decreased. In addition, SAB,
which has a structure similar to NLB, is applied to another bottleneck, i.e., the
glasses removal network, to maximize operational speed.
Perceptual Loss. In typical image processing tasks such as noise reduction,
super-resolution, and colorization, traditional pixel loss does not reflect percep-
tual characteristics well. With this in mind, [19] defines a loss in feature level,
i.e., perceptual loss. Then high level features are extracted by VGG-16 [20] that
is pre-trained with ImageNet [21]. The extracted features are used to induce
perceptual loss. Inspired by the image super resolution technique proposed in
[19], we add perceptual loss to the cycle consistency loss [16] defined for learning
the lightweight glasses removal network.
Mutual Information Maximization. In information theory, the mutual infor-
mation (MI) of two random variables indicates the mutual dependence between
the two random variables. More specifically, MI quantifies the amount of infor-
mation of one random variable through observing the other random variable.
Representation learning aimed at maximizing MI between target representation
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Fig. 1. The proposed pupil center tracking system.

and features or intermediate features has been studied for a long time [22–24].
Most recent studies focus on variational approach [24, 25]. This is because it is
very difficult to estimate the MI of continuous random variables in high dimen-
sional space. So the variational approach derives the tight lower bound of MI.
Recently, a few methods have proposed tight lower bounds of MI estimation by
using neural network [22, 23]. For example, [22] achieved high performance in
downstream tasks through representation learning using MI maximization. In-
spired by [22], we apply MI-based representation learning to the segmentation
network. This greatly improves the pupil center detection accuracy.

3 Method

Fig. 1 is the overview of the proposed PCT system (Sec.3.1). We designed the
entire system, inspired by [13], which combines glasses removal module with the
structure of a universal pupil center detection scheme. Even though we follow
the basic structure of [13], we propose a few novel methods for dramatically
improving the speed and accuracy of the PCT system. First, we present a low
latency face detection network using NLB (Sec. 3.2). Next, we propose a struc-
ture applying SAB for the low latency of the glasses removal module that is
the critical latency bottleneck of the entire PCT system in [13]. Plus, percep-
tual loss is introduced to mitigate the blur phenomenon (Sec. 3.3). Finally, we
propose a representation learning using MI maximization to improve the repre-
sentation quality of the segmentation network which has an absolute influence
on the overall accuracy of the PCT system (Sec. 3.4).

3.1 Overview

This section describes the purpose and operation of each module of the proposed
PCT system. As shown in Fig. 1, the proposed PCT system consists of an eye
region extraction stage and a pupil center detection stage. The face detection
network, the first step of the eye region extraction stage, is responsible for crop-
ping the face from an input image. Next, the glasses classifier determines whether
glasses exist in the face image. If it is determined that the glasses are worn, the
glasses removal network removes the glasses. Next, the landmarks are extracted
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Fig. 2. (a) FaceBoxes [26] (b) the modified face detection network. CNN is the encoder
network and extra layers are convolution layers designed to address multi-scale in [26]

from the face image, while glasses are removed selectively. The final step of the
eye region extraction stage is to extract the eye region in the face image using
landmark information. Subsequent pupil center detection stage is performed by
a segmentation network. Given an eye region image, the heat map is calculated
as shown in the lower right corner of Fig. 1. The glasses classifier and landmark
extractor of the proposed PCT system follow the methods of [13].

3.2 Face Detection Network

The face detection networks used in conventional PCT methods can have a high
accuracy, but requires a long latency to guarantee high precision. So we choose
a high-performance face detection network[26], and apply NLB to the network
to reduce the latency while maintaining reasonable accuracy.

Faceboxes of [26] effectively used context information through an inception
module[27] while properly coping with multi-scale like SSD [15]. So [26] is ro-
bust for scale and occlusion. However, since the inception module is basically
a concatenation structure, it can be a bottleneck when operating on GPU. To
remedy this problem, we introduce NLB that can apply context information,
which secures a large receptive field with only a few layers. In detail, the in-
ception module is replaced with the NLB having two convolutional layers, as
shown in Fig. 2(b). As a result, the modified FaceBoxes network provides high
face detection performance with low latency (see the results in Section 4).

3.3 Glasses Removal Network

This section describes how to lighten the glasses removal network, which was pro-
posed in [13]. Also, how to mitigate the blur phenomenon during light-weighting
is given.

The CycleGAN[16] was used to refine landmark information as the glasses
removal network[13]. But the CycleGAN generator used in [13] has a structural
problem. Since the encoder has only two down-sampling layers as shown in Fig.
3 (a), it faces with a critical problem that the computational cost varies depend-
ing on the resolution of an input image. In addition, constructing a network by
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Fig. 3. (a) The glasses removal network in [13] (b) the proposed glasses removal network
(c) the illustration of how to calculate perceptual cycle consistency loss.

just stacking nine residual blocks in a high level layer is an inefficient config-
uration[18]. To address the computational cost problem caused by the above-
mentioned structural factor of the existing glasses removal network, we attempt
the following approach. First, add a down-sampling layer and an up-sampling
layer to the encoder and decoder as shown in Fig. 3(b) to reduce the spatial size
of the feature map for the transformation stage to 1/4. Also, the transformation
stage is configured to have a comparable receptive field to the generator of Cy-
cleGAN by using one self-attention block [28] and two residual blocks.

However, this structural approach causes additional spatial loss in encoding
process. So, we address the spatial loss problem by utilizing the method pro-
posed in [19]. Since CycleGAN basically learns using unpaired datasets, there
is no high resolution (HR) reference for the domain translated image. Thus, we
propose the cycle consistency loss in feature-level as shown in Fig. 3(c). We call
this perceptual cycle consistency loss (PCCL), which is defined as Eq. (1).

LPCCL = Eu∼Pdata(U)

[
5∑

i=1

|φi(F (G(u)))− φi(u)|1

]
+

Ev∼Pdata(V )

[
5∑

i=1

|φi(G(F (v)))− φi(v)|1

] (1)

where U and V mean different domains. G and F denote a generator for remov-
ing the glasses and a generator for restoring glasses, respectively. In addition,
φi(·) stands for the feature map of the last layer per unit of five convolution
blocks of VGG-16[20]. By integrating GAN loss LGAN of [16] and LPCCL, total
GAN loss LTotal

GAN is defined as Eq. (2).

LTotal
GAN = LGAN + LPCCL (2)

As a result, we construct the glasses removal network with significantly lower
computational cost than [13] through the proposed light-weighting strategy.
Since PCCL compensates for the spatial loss due to the light-weighting, we
can keep the performance comparable to the glasses removal network of [13].
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3.4 Segmentation Network

This section proposes a method to improve the accuracy of the proposed PCT
system. We enhance the representation quality of the pupil center detection net-
work, i.e., the segmentation network, through representation learning using MI
maximization. [13] showed that low-level feature transfer to decoder through
skip connection can improve pupil center detection performance. Also, the pupil
center detection performance was further improved by enhancing the represen-
tation of latent features through an auxiliary network of auto-encoder structure.
Therefore, we found that the representation quality of the pupil center detection
network greatly influences the overall pupil center detection performance.

On the other hand, in [22], the MI between the local feature and the represen-
tation of the auto-encoder was measured, and then unsupervised representation
learning was conducted by maximizing the MI. [22] showed that the learned en-
coder provides high performance in classification, that is a kind of downstream
task such as semantic segmentation task.

Based on the results of [13] and [22], in order to maximize the pupil cen-
ter detection performance of the segmentation network, we propose a method
of enhancing the representation quality through MI maximization only during
training. First, the low-level feature X1 and latent feature X2 of the segmen-
tation network and the feature map Y of the decoder are extracted, as shown
in Fig. 4. We define X1 and X2 as local features and Y as the representation
of segmentation network. Then, to calculate the MI regardless of the spatial di-
mensions of X1 and X2, we transform Y into a feature vector Ỹ through the
vectorization network. Ỹ is input to the shuffle and concatenation module to-
gether with X1 and X2. Next, the concatenated feature maps are produced for
computing the conditional entropy (CE) and marginal entropy (ME) estimates.
If the CE and ME estimates enter two discriminators D1 and D2, the MI is
calculated according to Eq. (3).

I(Xk; Ỹ ) = EP⊗P′ [sp(Dk(C(X
′

k)))]− EP[−sp(Dk(C(Xk, Ỹ )))] (3)

where sp indicates the softplus operator and C means the concatenation oper-
ation. And P is the distribution of an input local feature Xk. X

′

k is the local
feature processed by batch-wise shuffle as in Fig. 4, and P′

is the distribution of
X

′

k (k=1,2). Finally, by adding MI to the segmentation loss LSeg [13] based on
pixel-wise mean squared error, the total loss function Ltotal of the segmentation
network is defined by Eq. (4).

Ltotal = Lseg − (I1(X1; Ỹ ) + I2(X2; Ỹ )) (4)

The operation of the proposed segmentation network is summarized as fol-
lows:

• Define local features(X1, X2) and representation(Y ) suitable for segmentation
network.

• In order to compute MI irrespective of the spatial dimensions of X1 and X2

transform Y into Ỹ through the vectorization network.
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Fig. 4. The representation learning framework for semantic segmentation network.

• Based on the loss function using the computed MI, learn the segmentation
network.

4 Experiments

We performed three experiments to verify the proposed system. First, we evalu-
ated the accuracy of pupil center detection by the proposed method. The quan-
titative evaluation metric of accuracy is defined by Eq. (5).

e =
max(dl, dr)

d
(5)

where dr,dl denote Euclidean distance between the detected pupil center and
Ground Truth (GT) in the right and left eyes, respectively, and d denotes Eu-
clidean distance between the GT centers of two eyes calculated. In addition,
FLoating point Operations Per second(FLOPs), the number of parameters, and
latency were measured to evaluate the light-weighting level of the face detection
network and glasses removal network. Second, the qualitative test was performed.
Third, an ablation study was conducted using the fine level index to evaluate
each module’s contribution in performance. In order to make a fair comparison,
we compared the proposed method with some prior knowledge-based methods
and other context-based methods, respectively.

Except landmark extractor and VGG-16, we trained other models from scratch.
We used five-point landmark extractor provided by dlib[29] and VGG-16 pre-
trained on ImageNet.

4.1 Datasets and Experimental Environment

We used four public datasets : WIDER FACE[30] BioID[31], GI4E[32], Talking
Face Video[33]. Also, we collected a dataset to train the glasses classifier and
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glasses removal network through web crawling. More detail information of each
dataset is as follows.
BioID. This is a dataset consisting of 1,521 low-resolution images from various
subjects. The image resolution is 384x286. Images in this dataset are negatively
affected by varying illumination, head-poses and occlusion by glasses, and even
include eyes closed. That is, a very challenging dataset.
GI4E. It is a dataset consisting of 1,236 images from various subjects. Most of
the images in this dataset have a larger resolution (800x600) than BioID and
consist of frontal face images.
Talking Face Video(TFV). It is a dataset consisting of a total of 5000 images
of just one subject. The image resolution is 720 x 576. This dataset was taken
while the subject was talking, including various head poses and eyes closed.
WIDER FACE. It is a dataset with annotated face location information of
people in various event images. The dataset consists of 393,703 face images with
various scales, head poses and occlusions.
Customized Dataset. We collected 1,700 images of glasses wearers and 1,700
images of non-wearers through web crawling and annotated them.

We composed whole training datasets and evaluation datasets as follows. We
composed a training dataset for the proposed face detection network by randomly
selecting 12,880 images from 60 event classes in WIDER FACE dataset. And
color distortion, random cropping, scale transformation, and horizontal flipping
were used as data augmentations for face detection network training. In case
of glasses classifier and glasses removal network, we used 3,224 images of the
customized dataset as a training dataset and 176 images as a validation dataset.
For the segmentation network, we constructed the training datasets by cropping
the eye region (Ri) that satisfies Eq.(6) using the label data of each image.

Ri = {z | ‖ z − oi ‖1 ≤ 3l}, i ∈ {Right, Left}, z ∈ R2 (6)

where oi is the midpoint between the two ends of eye, and l is 1/2 of the distance
between the two ends of the eye. Meanwhile, we employed two different dataset
compositions for the segmentation network. Firstly, due to lack of dataset, we
integrated BioID and GI4E dataset. And we equally split the integrated dataset
into five-folds. In other words, we used 80% data of the integrated dataset as a
training dataset and evaluated the proposed method by using the other data for
each fold. Secondly, we entirely used the integrated dataset for training dataset
and evaluated the segmentation network on TFV dataset. Color jittering was
used as data augmentation for training of the segmentation network. Note that
the TFV is only used for evaluation. The more details of implementation can be
found in the supplementary material.

Meanwhile, each module in the PCT system was learned individually. A
hardware environment consisting of one NVIDA GTX 1070 Ti GPU and one
Intel i7-8700 CPU was used.
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Fig. 5. Accuracy vs. the normalized error (e) for BioID, GI4E and TFV datasets.

Fig. 6. Qualitative comparison between [13] (left) and ours (right) for BioID dataset.

4.2 Quantitative results

The proposed method and the SOTA methods were compared in terms of three
accuracy levels for BioID, GI4E and Talking Face Video datasets. All quantita-
tive results in Table 1 and Table 2 were acquired by five-times experiments and
the figures in Tables are the average values. The first accuracy level of e ≤ 0.05
means that the estimated pupil center position is within pupil radius, which is
also called the fine level because it reflects the highest precision of pupil center
detection. The middle level of e ≤ 0.1 indicates that the estimated pupil center
position is within iris radius. Finally, the coarsest level of e ≤ 0.25 means that
the estimated pupil center position is within eye radius.

Table 1 shows the experimental results for the BioID dataset. In terms
of fine level (e ≤ 0.05), the proposed method showed outstanding accuracy of
96.71% (±0.05%). This is 1.44% higher than the best SOTA method[4]. How-
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Table 1. Comparison results for BioID dataset.

Method Category e ≤ 0.05 e ≤ 0.1 e ≤ 0.25

Tian2016[5] Prior 93.93% 98.22% NA
Vater2016[6] Prior 89.48% 94.85% NA
Zhang2016[7] Prior 85.66% 93.68% 99.21%
Kacete2016[8] Prior 91.30% 97.90% 99.6%
Ahuja2016[9] Prior 92.06% 97.96% 100%
Cai2018[10] Prior 92.80% NA NA
Xiao2018[11] Prior 94.35% 98.75% 99.80%
Levin2018[4] Prior 95.27% 99.52% 100%
Gou2017[3] Context 91.20% 99.40% 99.80%
Choi2019[13] Context 93.30% 96.91% 100%
Xia2019[12] Context 94.40% 99.90% 100%

Ours Context 96.71% 98.95% 100%

Table 2. Comparison results for GI4E and TFV datasets.

GI4E dataset
Method Category e ≤ 0.05 e ≤ 0.1 e ≤ 0.25

Zhang2016[7] Prior 97.90% 99.60% NA
Cai2018[10] Prior 99.50% NA NA
Xiao2018[11] Prior 97.90% 100% 100%
Levin2018[4] Prior 99.03% 99.92% 100%
Gou2017[3] Context 98.30% 99.80% NA
Xia2019[12] Context 99.10% 100% 100%
Choi2019[13] Context 99.60% 99.84% 100%

Ours Context 99.84% 99.84% 100%
TFV dataset

Ahuja2016[9] Prior 94.78% 99.00% 99.42%
Xiao2018[11] Prior 91.24% 97.56% 99.96%
Levin2018[4] Prior 95.62% 99.88% 99.98%
Choi2019[13] Context 95.18% 99.72% 100%

Ours Context 96.38% 100% 100%

Table 3. Complexity comparision in terms of FLOPs, the number of parameters and
latency.

Face Detection Network Glasses Removal Network
Method Choi2019[13] Faceboxes[26] Ours Choi2019[13] Ours
FLOPs 2.39G 0.09G 0.15G 245G 59G

Parameters 2.6M 1M 1.74M 11M 3.2M
Latency 13ms 10ms 7ms 10ms 4ms

ever, we could see the proposed method gives a little bit lower performance in
case of e ≤ 0.1. This is because other SOTA methods were evaluated by using
clean face image through annotated data. However, unlike [3, 4, 12], the proposed
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method is evaluated with a face image predicted by the proposed face detector.
In other words, the inaccuracy of the face detection is included in the result of
the proposed method. For the GI4E dataset, the proposed method showed the
SOTA performance of 99.84%(±0.00%) in terms of fine level (see Table 2). Even
for TFV dataset, the proposed method showed the best performance for fine
level by 0.76% (±0.12%). Fig. 5 shows accuracy curves of the proposed method,
[4] and [13] for BioID, GI4E and TFV datasets. Fig. 5 illustrates that the pro-
posed method is more accurate than other methods under the fine level range
(e ≤ 0.05).

On the other hand, in order to quantitatively verify the complexity of the
proposed PCT system, the FLOPs, the number of parameters, and the latency
of the face detection network and the glasses removal network were measured.
And the measured values were compared with those of [13] and [26]. In Table 3,
the number of FLOPs and parameters of the proposed face detection network
increased, but its latency was lower than that of [26]. This phenomenon can
be attributed to the bottleneck of the concatenation structure of the inception
module. Note that the FLOPs and parameters of the proposed glasses removal
network decreased to only 24.1% and 29.1% of [13]. The latency of the proposed
glasses removal network also decreased significantly to around 40% of [13]. As a
result, the total latency of the proposed PCT system amounts to about 19ms,
which is enough for real-time operation on general purpose computers.

4.3 Qualitative Results

This section qualitatively compared the proposed method and [13] (see Fig.
6). For this experiment, the BioID dataset was used. We could observe that
the proposed method provides closer result to the actual pupil center. We also
qualitatively verified the validity of the PCCL proposed in Section 3.3. Fig. 7
shows the results of the glasses removal network. The customized dataset was
used for this experiment. Looking at the second and third rows, we could see
that the PCCL significantly mitigates the blur problem. Also, in rows 3 and 4
of Fig. 7, in spite that the proposed glasses removal network is lighter than [13],
the details are better preserved than [13].

4.4 Ablation study

This section further analyzes the effects of the proposed techniques on pupil
center detection performance. BioID dataset was used for this experiment, and
the fine level of e ≤ 0.05 was evaluated. Since we used the five-point landmark
extractor provided by dlib[29] to ensure low latency, we increased the size of the
bounding box horizontally by about 10 pixels to extract the exact landmarks. For
fair comparison, the size of the bounding box obtained from the face detection
network of [13] was also increased by 10 pixels.

The experiment identifies the effects of the proposed techniques by replacing
each module of [13] with the proposed technique. Table 4 shows the experimental
results. The fine level accuracy of [13] was 95.39%. We used this accuracy as a
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Fig. 7. Qualitative comparison with [13]’s glasses remover and ours for the customized
dataset. First row is input images. Second and third rows are the proposed glasses
remover’s outputs without/with PCCL. Lastly, fourth row is [13]’s glasses remover’s
outputs.

Table 4. The effect of each module on the overall performance.

Face Detection (FD) Glasses Removal (GR) Mutual Information (MI) e ≤ 0.05

95.39%
X 95.59%

X 95.79%
X X 95.99%
X X X 96.71%

baseline in the following experiment. When the face detection network of [13] is
replaced with the proposed network (FD), the performance increases to 95.59%
(+0.2%). In case of changing the glasses removal network to the proposed method
(GR), the overall performance was 95.79% (+0.4%). If both face detection and
glasses removal networks of [13] were modified with the proposed techniques (FD
+ GR), the detection accuracy became 95.99% (+0.6%). Finally, when all the
modules including the segmentation network were replaced with the proposed
methods (FD + GR + MI), that is, the proposed PCT system itself showed the
detection accuracy of 96.71% (+1.32%). Meanwhile, we investigated practical
effect of the proposed representation learning on the segmentation network (see
Fig. 8). As shown in Fig. 8 (b) and (d), the proposed representation learning
using MI did not practically affect on output shapes. However, as shown in Fig.
8 (a) and (c), we can observe that the proposed representation learning provides
the segmentation network with additional location information for accurate pupil
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Fig. 8. (a) and (c) are the probability maps of pupil center locations. In (a) and (c),
Red ‘x’ marks are ground truth locations.(b) and (d) are the shapes of segmentation
network outputs. Here, BioID dataset was used.

center detection. To sum up with, all of the proposed modules provide significant
performance improvements, and the segmentation network combined with the
proposed representation learning has the greatest effect on pupil center detection
performance without additional cost during inference.

5 Conclusions

This paper proposes pupil center detection methods for high accuracy and light
weight methods to secure real-time operation. The proposed representation learn-
ing can provide an additional information into the segmentation network for
accurate pupil center detection by using mutual information. Also, we designed
a low latency face detection network using a non-local block and a lightweight
glasses removal network that provides good image quality by using self-attention
block and perceptual loss. Experimental results show that the proposed scheme
has a low latency of 19ms per frame with state-of-the-art accuracy in fine level
index. The proposed real-time PCT system is expected to be effectively used in
systems such as AR, VR, and hologram.
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