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This document supplements Sections 3 and 4 of the main paper. In particular,
it includes the following:

– Derivation of the analytical gradient (supplements Section 3.2).
– Training details of the autoencoders (supplements Section 4).
– Stylized results for quantitative analysis of photo-realistic transfer (supple-

ments Section 4.2).
– Formulation of NST and WCT for multi-style transfer and double-style

transfer results from AdaIN and Avatar-net (supplements Section 4.3).

1 Derivation of the analytical gradient

For simplicity, we suppress the subscript N . Here we show that if

lj(F) = ||F− F(j)||2F + λ|| 1
n
FFT − 1

m
FsF

T
s ||2F , (1)

then
dl

dF
= 2(F− F(j)) +

4λ

n
(

1

n
FFT − 1

m
FsF

T
s )F. (2)

Proof.

||F− F(j)||2F (3)

=tr[(F− F(j))(F− F(j))T] (4)

=tr[FFT − 2F(F(j))T + F(j)(F(j))T], (5)

and

|| 1
n
FFT − 1

m
FsF

T
s ||2F (6)

=tr[(
1

n
FFT − 1

m
FsF

T
s )(

1

n
FFT − 1

m
FsF

T
s )] (7)

=tr[
1

n2
FFTFFT − 2

nm
FFTFsF

T
s +

1

m2
FsF

T
s FsF

T
s ]. (8)

Let F = [f1, f2, . . . , fn], F(j) = [f
(j)
1 , f

(j)
2 , . . . , f

(j)
n ], and Fs = [fs1 , f

s
2 , . . . , f

s
m].

We first find the partial derivatives with respect to fi:
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For the partial derivatives with respect to fi, we only have to focus on the
terms associated with fi. Therefore,
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Putting everything together, we have
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2 Multiple-style transfer

Starting from equation 8 in the main paper:
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holds, which can be shown by completing the square and removing the constant
parts, we can rewrite equation 28 into an equivalent form with λN ,
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The gradient of objective is then given by
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Note that when q = 1, equation 31 reduces to equation 2.

3 Training details of the autoencoders

The four autoencoders are trained by minimizing an image reconstruction loss
and a perceptual loss. In particular, if the functions of the encoderN and decoderN
are denoted φN (·) and ψN (·), respectively, the decoderN is trained by minimizing
the loss LAE :

LAE = ||ψN (φN (I))− I||2F + ||φN (ψN (φN (I)))− φN (I)||2F , (32)
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where I is an input image. We train the autoencoders on the MS-COCO dataset.
To support batch training, each image from the dataset is resized to 512 × 512
and randomly cropped to 256 × 256 as a training example in a batch. For the
autoencoders associated with relu4 1 and relu3 1 layers, they are trained with a
batch size of 8 for 5 epochs, while for relu2 1 and relu1 1 cases, the autoencoders
are trained for 3 epochs, due to their smaller sizes. We use Adam optimizer with
the learning rate 1 × 10−4 and without weight decay. Moreover, we use up-
sampling layers with bilinear interpolation in the decoders as the symmetric
part of the max-pooling layers in the encoders.
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4 Stylized results for quantitative analysis of
photo-realistic transfer

Fig. 1: Photo-realistically stylized images from 30 pairs of a content and a style images
for quantitative analysis. No spatial control and no post-processing are applied (Part
1/4).
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Table 1: Speed performance of our method under nupd = 15 and niter = 1 for gener-
ating the results in figures 1, 2, 3, and 4. Unit: Second.

256× 256 512× 512 768× 768 1024× 1024

time 0.13 0.31 0.62 0.92

Fig. 2: Photo-realistically stylized images from 30 pairs of a content and a style images
for quantitative analysis. No spatial control and no post-processing are applied (Part
2/4).
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Fig. 3: Photo-realistically stylized images from 30 pairs of a content and a style images
for quantitative analysis. No spatial control and no post-processing are applied (Part
3/4).



8 T. Chiu and D. Gurari

Fig. 4: Photo-realistically stylized images from 30 pairs of a content and a style images
for quantitative analysis. No spatial control and no post-processing are applied (Part
4/4).
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5 Formulation of NST and WCT for multi-style transfer

The objective of NST for multi-style transfer is as follows:
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where Fk

N,s’s are the feature maps of q style images extracted from encoderN .
The stylized image is then derived by solving equation 33 using gradient descent
by back-propagation. How different style features are included in equation 33 is
non-linear.

On the other hand, WCT realizes multiple-style transfer by linear interpola-
tion of transformed features. By applying WCT to each style feature Fk

N,s and

the content feature FN,c, we can derive a transformed feature Fk
N,wct. The final

feature FN,wct to be decoded is an affine combination:
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As such, each style is weakened due to wk < 1 in the stylized image and could
even not be observed.

6 Double-style transfer results from AdaIN and
Avatar-net

Fig. 5: Double-style transfer results from AdaIN and Avatar-net. Unlike our method
that preserves the integrity of each style, styles in doubly stylized images from AdaIN
and Avatar-net might be weakened due to the linear interpolation of feature maps.
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