
Appendix for CATCH: Context-based Meta
Reinforcement Learning for Transferrable

Architecture Search

Xin Chen?1, Yawen Duan?1, Zewei Chen2, Hang Xu2, Zihao Chen2,
Xiaodan Liang3, Tong Zhang??4, Zhenguo Li2

1 The University of Hong Kong
2 Huawei Noah’s Ark Lab
3 Sun Yat-sen University

4 The Hong Kong University of Science and Technology

1 Learning Curve Comparison with Sample-based
Algorithms

0 100 200 300 400 500

epoch

90.6

90.8

91.0

91.2

91.4

91.6

91.8

ac
cu

ra
cy

CIFAR-10

Global Max
RS
REINFORCE
R-EA
CATCH-meta

0 100 200 300 400 500

epoch
70.0

70.5

71.0

71.5

72.0

72.5

73.0

73.5

ac
cu

ra
cy

CIFAR-100

Global Max
RS
REINFORCE
R-EA
CATCH-meta

0 100 200 300 400 500

epoch
44.0

44.5

45.0

45.5

46.0

46.5

47.0

47.5
ac

cu
ra

cy
ImageNet16-120

Global Max
RS
REINFORCE
R-EA
CATCH-meta

Fig. 1: Comparison of CATCH with other sample-based algorithms on CIFAR-10
[6], CIFAR-100 [6], and ImageNet16-120 [3].

We compare the learning curve of CATCH with other sample-based algorithms
in Figure 1. We plot each curve with the highest fully-train validation accuracy
the agent has seen at each search epoch. Each curve is plotted with an average
of 500 trials. The shaded area shows the mean ± standard deviation among all
trials at each search epoch. CATCH stands out among others with higher per-
formance and lower variation on all three datasets (CIFAR-10, CIFAR-100, and
ImageNet16-120). It is also on average a magnitude faster than other algorithms
to find their best architectures after 500 searching epochs. On ImageNet16-120,
none of the algorithms except CATCH could even identify the best architecture
within 500 searching epochs across all 500 trials. CATCH is also more stable,
as is indicated by its much lower variation compared with other algorithms. Its

? Equal contribution.
?? Correspondence to: tongzhang@tongzhang-ml.org

2 X. Chen and Y. Duan et al.

3 2 1 0 1 2 3

Principal Component 1
3

2

1

0

1

2

3

4

Pr
in

cip
al

 C
om

po
ne

nt
 2

PCA (0 epoch)
CIFAR-10
CIFAR-100
ImageNet16-120

3 2 1 0 1 2 3 4

Principal Component 1

3

2

1

0

1

2

3

Pr
in

cip
al

 C
om

po
ne

nt
 2

PCA (10 epoch)
CIFAR-10
CIFAR-100
ImageNet16-120

4 3 2 1 0 1 2 3 4

Principal Component 1

2

1

0

1

2

3

Pr
in

cip
al

 C
om

po
ne

nt
 2

PCA (50 epoch)
CIFAR-10
CIFAR-100
ImageNet16-120

Fig. 2: The encoder’s adaptation process. It learns to distinguish different
datasets throughout the learning process, and thus provide informed input to
the controller and the evaluator.

variance tends to shrink over time, while R-EA and REINFORCE policies are
almost as unstable as random search. Through this comparison, we further prove
the adaptation speed and stability of CATCH, along with its competency across
various datasets and random seeds.

2 Encoder’s Adaptation Result

Throughout the adaptation process, we hypothesize that the encoder can pro-
vide dataset-specific guidance to the controller and the evaluator. To test this
hypothesis, we visualize the encoded latent context vector z of each dataset
through Principle Component Analysis, with the results presented in Figure 2.
Each point is generated by randomly selecting and encoding 80% network-reward
pairs from the search history. We freeze the weights of the meta-trained controller
and evaluator policy, and only allow gradient updates for the encoder. This op-
eration eliminates influence from the changing controller and evaluator policies,
and thus enables us to closely observe just the behaviors of the encoder. When
the encoder is first adapted to CIFAR-10, CIFAR-100, and ImageNet16-120,
the generated context vectors are not distinguishable across the three datasets.
However, after just 10 search epochs of adaptation, we can already identify a
cluster of ImageNet16-120 context vectors. The clusters then quickly evolve as
the encoder sees more architectures. By the 50-th search epoch, we can see three
distinctive clusters as a result of the encoder’s fast adaptation towards the three
datasets.

This observation is consistent with the results of NAS-Bench-201 [3]. In
the original paper, the network-performance pairs have higher correlation be-
tween CIFAR-10 and CIFAR-100 (0.968) than that between CIFAR-10 and
ImageNet16-120 (0.827). This correlation is also higher than the correlation be-
tween CIFAR-100 and ImageNet16-120 (0.91). This attributes to the reason why
the encoder takes more search epochs to distinguish CIFAR-10 from CIFAR-100.
The results are in support of our hypothesis, and show the encoder’s capability
to learn and express dataset-specific information effectively.

CATCH 3

0 100 200 300 400 500

trial number
89.5

90.0

90.5

91.0

91.5

92.0

va
lid

at
io

n
ac

cu
ra

cy
CIFAR-10

Global Max
CATCH-sfs
CATCH-meta
CATCH-w/o-evaluator

(a)

0 100 200 300 400 500

trial number
69.0

69.5

70.0

70.5

71.0

71.5

72.0

72.5

73.0

73.5

va
lid

at
io

n
ac

cu
ra

cy

CIFAR-100

Global Max
CATCH-sfs
CATCH-meta
CATCH-w/o-evaluator

(b)

0 100 200 300 400 500

trial number
41

42

43

44

45

46

47

48

va
lid

at
io

n
ac

cu
ra

cy

ImageNet16-120

Global Max
CATCH-sfs
CATCH-meta
CATCH-w/o-evaluator

(c)

Fig. 3: Comparison of CATCH-meta, CATCH-sfs with CATCH-without-
evaluator. Including the evaluator significantly raises the performance.

3 Ablation Study on the Evaluator

We also explored the effects of the evaluator by eliminating it from both the
meta-training and adaptation phase, and its performance is presented in Figure
3 (a)-(c). As the figure shows, the evaluator lifts the performance by a large
margin, making it a crucial component in the search algorithm. Table 1 provides
further information on the evaluator when comparing it with CATCH using
ground truth as the evaluator (CATCH-GT). CATCH-GT is a hard-to-defeat
baseline, but CATCH-meta managed to get very close to it and the global max
accuracy.

Table 1: Comparison of CATCH when using ground truth as the evalua-
tor (CATCH-GT), CATCH without evaluator (CATCH-w/o-evaluator), and
CATCH-meta. The results are taken from 100 trials where each trail contains
50 search epochs. We report the mean ± std for each setting in the table.

CIFAR-10 CIFAR-100 ImageNet16-120

CATCH-GT 91.64±0.09 73.31±0.16 47.18±0.09
CATCH-w/o-evaluator 91.17±0.25 72.08±0.68 45.86±0.54

CATCH-meta 91.63±0.11 73.29±0.31 46.37±0.53
Max Acc. 91.719 73.45 47.19

4 CATCHer Training Details

4.1 Controller Settings and Hyperparameters

The controller is trained with Proximal Policy Optimization (PPO) [10] algo-
rithm, and its loss Lc is defined following the original PPO loss:

Lc = Êt
[
min

(
rt (θc) Ât, clip (rt (θc) , 1− ε, 1 + ε) Ât

)]

4 X. Chen and Y. Duan et al.

ε is the PPO clipping parameter, rt (θc) =
πθc (al|st)
πθold (al|st)

is the probability ratio,

and Ât is the General Advantage Estimate (GAE) [9] estimate:

Ât =

t∑
l=0

(γλ)
l
δVl

where δVl = rt + γV (sl+1) − V (sl) is the Bellman residual term. The def-
inition of sl can be found in Table 3. We show the training hyperparameters
and our settings on translating architecture search elements as Markov Decision
Processes (MDP) in the following tables.

Table 2: Controller hyperparameters

Hyperparameter
Value NAS-Bench-201 [3] Residual Block

(meta-train) (adaptation) Search Space (adaptation)

Learning rate 0.001 0.001 0.0001
Adam scheduler step size 20 20 20
Adam scheduler gamma 0.99 0.99 0.99

Update frequency 1 epoch 1 epoch 1 epoch
Clipping parameter ε 0.2 0.2 0.2

Memory size 200 200 200
Discount γ 0.99 0.99 0.99

GAE parameter λ 0.95 0.95 0.95
Value Function coeff. 1 1 1

Entropy coeff. 0.01 0.03 0.05

Table 3: A mapping of Neural Architecture Search elements to MDP factors for
controller training. l denotes the current timestep. Invalid actions are masked
by zeroing out their probabilities in the outputs, then softmax the remaining
probabilities and sample accordingly.

MDP Factor Value Explanation

Current state sl (z, [a1...al−1]) Latent context and the current network design.

Current action a al A one-hot vector of the current design choice.
Reward r R A function of the evaluated network’s performance.

Next state sl+1 (z, [a1...al]) Latent context and the current network design.

4.2 Encoder and Evaluator Settings

The encoder generates the latent conext through the network-reward information
(m, r). This is done by taking the encoder output as the means and variances

CATCH 5

Algorithm 1 Pseudocode of Latent Context Encoding Procedure in a PyTorch-
like style.
def encode_z(B, D, Contexts, Encoder):

Contexts: a batch of contexts {(m, r)} use for encoding
B: len(Contexts), batch
D: the dimension of latent context variable z
Encoder: 3-layer MLP mapping (m, r) to (mean, var) of z_i

encode each (m, r) to (mean, var) of z
context_batch.rewards = normalize(context_batch.rewards)
params = Encoder.forward(context_batch) # shape: [B, 2*D]

get mean and var; t(): matrix transpose
means = params[..., :D].t() # shape: [D, B]
vars = F.softplus(params[..., D:].t()) # shape: [D, B]

get mean & var of each z_i; ds: torch.distributions
posteriors = []
for ms, vs in zip(unbind(means), unbind(vars)):

z_i_mean, z_i_var = _product_of_gaussian(ms, vs)
form a Gaussian Posterior from z_i_mean, sqrt(z_i_var)
z_i_posterior = ds.Gaussian(z_i_mean, sqrt(z_i_var))
posteriors.append(z_i_posterior)

sample z from q(z|Contexts); rsample(): random sample
z = [d.rsample() for d in posteriors]
return torch.stack(z)

of a D-dimensional Gaussian distribution, from which we sample z. We provide
pseudocode for this process in Algorithm 1.

The evaluator uses the Huber loss [5] to close the gap between its predicted
network performance r̃ and the actual performance r.

Le =
1

n

∑
i

loss(ri, r̃i),where loss(r, r̃) =

{
0.5(ri − r̃i)2 if | ri − r̃i |< 1,

| ri − r̃i | −0.5 otherwise.

(1)

Table 4: Encoder hyperparameters
Hyperparameter Value

Learning rate 0.01
Dimension of z 10
KL weight β 0.1

6 X. Chen and Y. Duan et al.

Table 5: Evaluator hyperparameters

Hyperparameter
Value Value

(meta-train) (adaptation)

Learning rate 0.0001 0.0001
Exploration factor ε initial value 1.0 0.5
Exploration factor ε decay rate 0.025 0.025
Exploration factor ε decay step 20 20

Number of networks evaluated per epoch 25 25
PER [8] prioritization factor α 0.5 0.5
PER bias correction factor β 0.575 0.575
PER β annealing step size 0.01 0.01

5 ImageNet, COCO, and Cityscapes Training Settings

Table 6-8 shows our training configurations on ImageNet [2] , COCO [7], and
Cityscapes [1] . On COCO, Faster R-CNN with the ResNet backbone and Cas-
cade FPN is used as our baseline. It is extremely costly to perform ImageNet
pretrain for search, but training detection networks without ImageNet pretrain
was made possible by [4]. For COCO and Cityscapes, we use Group Normaliza-
tion with halved-base-channel groups instead of Batch Normalization. Conv2D
with weight standardization (ConvWS2D) is also applied.

Table 6: ImageNet training hyperparameters with 8 GPUs.

Hyperparameter
Value Value

(partial-train) (fully-train)

Learning rate 0.1 0.1
Learning rate momentum 0.9 0.9

Weight decay 1 × 10−3 4 × 10−5

Learning rate warmup linear for 3 epochs linear for 3 epochs
Learning rate decay policy cosine cosine

Total epoch 40 240
Batch size 1024 512

Table 7: COCO training hyperparameters with 8 GPUs.

Hyperparameters
Value Value

(partial-train) (fully-train)

Normalization Group Normalization Batch Normalization
Batch size 16 16

Learning rate 0.18 0.02
Learning rate momentum 0.9 0.9

Weight decay 0.0001 0.0001
Learning rate decay policy cosine step

Total epoch 9 24

CATCH 7

Table 8: Cityscapes training hyperparameters with 8 GPUs.

Hyperparameters
Value Value

(partial-train) (fully-train)

Baseline model BiSeNet [13] BiSeNet
Convolution ConvWS2D Conv2D

Normalization Group Normalization Synchronized BN
Batch size 32 16

Learning rate 0.02 0.025
Learning rate momentum 0.9 0.9

Weight decay 5 × 10−4 1 × 10−4

Learning rate warmup linear for 5 epochs linear for 5 epochs
Learning rate decay policy cosine polynomial

Total epoch 40 100

6 Searched Models of Residual Block Search Space

We show an example model in our Residual Block search space in Figure 3. It
consists of 5 stages, with depth=15, stage distribution=[3,3,4,5], and channel
distribution=[2,2,4,7]. We use the same notation format to show the searched
models in Table 9.

C
-N

-R

C
-N

-R

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Bo
ttl
en

ec
k

Image

Channels 2 2 4 7

3 3 4 5Downsampling

Fig. 4: An example model in the Residual Block search space following [12, 11].
C-N-R stands for a combination of Convolution layer, Normalization layer, and
a ReLU operation.

Table 9: Searched models in Residual Block search space.

Searched Model
Input

Depth
Stage Channel

FLOPS(G) Params(MB)
Channel Distribution Distribution

CATCH-Net-A 64 20 [2, 7, 8, 3] [5, 4, 8, 3] 4.45 25.96
CATCH-Net-B 64 25 [8, 5, 8, 4] [3, 10, 8, 4] 9.84 32.16
CATCH-Net-C 64 20 [5, 4, 5, 6] [1, 8, 5, 6] 8.08 37.03
CATCH-Net-D 64 20 [1, 8, 5, 6] [2, 7, 7, 4] 4.46 30.98

8 X. Chen and Y. Duan et al.

References

1. Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene understanding. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

2. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

3. Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible
neural architecture search. arXiv preprint arXiv:2001.00326, 2020.

4. Kaiming He, Ross B. Girshick, and Piotr Dollár. Rethinking imagenet pre-training.
CoRR, abs/1811.08883, 2018.

5. Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in
statistics, pages 492–518. Springer, 1992.

6. Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

7. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and Larry Zitnick. Microsoft coco: Common objects in
context. In ECCV. European Conference on Computer Vision, September 2014.

8. Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized expe-
rience replay. arXiv preprint arXiv:1511.05952, 2015.

9. John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

10. John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

11. Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian, and Chunhua Shen. NAS-
FCOS: fast neural architecture search for object detection. CoRR, abs/1906.04423,
2019.

12. Lewei Yao, Hang Xu, Wei Zhang, Xiaodan Liang, and Zhenguo Li. Sm-nas:
Structural-to-modular neural architecture search for object detection. arXiv
preprint arXiv:1911.09929, 2019.

13. Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, and Nong Sang.
Bisenet: Bilateral segmentation network for real-time semantic segmentation. In
The European Conference on Computer Vision (ECCV), September 2018.

