
Topology-Preserving Class-Incremental Learning

Xiaoyu Tao1,#, Xinyuan Chang2,#, Xiaopeng Hong1,3, Xing Wei2, and
Yihong Gong2?

1 Faculty of Electronic and Information Engineering, Xi’an Jiaotong University
2 School of Software Engineering, Xi’an Jiaotong University

3 Research Center for Artificial Intelligence, Peng Cheng Laboratory
{txy666793,cxy19960919}@stu.xjtu.edu.cn,hongxiaopeng@mail.xjtu.edu.cn

xingxjtu@gmail.com,ygong@mail.xjtu.edu.cn

Abstract. A well-known issue for class-incremental learning is the catas-
trophic forgetting phenomenon, where the network’s recognition per-
formance on old classes degrades severely when incrementally learn-
ing new classes. To alleviate forgetting, we put forward to preserve the
old class knowledge by maintaining the topology of the network’s fea-
ture space. On this basis, we propose a novel topology-preserving class-
incremental learning (TPCIL) framework. TPCIL uses an elastic Heb-
bian graph (EHG) to model the feature space topology, which is con-
structed with the competitive Hebbian learning rule. To maintain the
topology, we develop the topology-preserving loss (TPL) that penalizes
the changes of EHG’s neighboring relationships during incremental learn-
ing phases. Comprehensive experiments on CIFAR100, ImageNet, and
subImageNet datasets demonstrate the power of the TPCIL for continu-
ously learning new classes with less forgetting. The code will be released.

Keywords: Topology-Preserving Class-Incremental Learning (TPCIL),
Class-Incremental Learning (CIL), Elastic Hebbian Graph (EHG), Topology-
Preserving Loss (TPL)

1 Introduction

To date, deep neural networks have been successfully applied to a large number
of computer vision and pattern recognition tasks [16, 11, 34, 33, 22, 5, 20, 8, 41,
40, 24], etc. When applying a network to a classification problem, we generally
first assume that the data classes are pre-defined and fixed, and then construct a
network with the number of neural units in the output layer equal to the number
of classes. In real applications, however, there often emerge new classes of data
that have not been encountered before, and can not be recognized by the learnt
model. Therefore, it is crucial to allow the model to incrementally expand, and
to learn from data of new classes. This ability is referred to as class-incremental
learning (CIL) in the literature [32, 3].

? Yihong Gong is the corresponding author. # Xiaoyu Tao and Xinyuan Chang are
co-first authors.

2 X. Tao et al.

Epoch 1
Acc. 8.96% (↓67.88%)

Epoch 40
Acc. 58.58% (↓18.26%)

Initial state
Acc. 76.84%

Epoch 1
Acc. 55.52% (↓21.32%)

Epoch 40
Acc. 69.95% (↓6.89%)

(a) Base model

Epoch 1
Acc. 8.96% (↓67.88%)

Epoch 40
Acc. 58.58% (↓18.26%)

Initial state
Acc. 76.84%

Epoch 1
Acc. 55.52% (↓21.32%)

Epoch 40
Acc. 69.95% (↓6.89%)

(b) Distillation (LUCIR)

Epoch 1
Acc. 8.96% (↓67.88%)

Epoch 40
Acc. 58.58% (↓18.26%)

Initial state
Acc. 76.84%

Epoch 1
Acc. 55.52% (↓21.32%)

Epoch 40
Acc. 69.95% (↓6.89%)

(c) Ours (TPCIL)

Fig. 1. t-SNE visualization of the comparison between TPCIL and the distillation ap-
proach in classifying the base class exemplars. We report the test accuracy on the base
class test set during incremental learning. (a) Initially, the base class exemplars are well
separated in feature space. (b) The distillation approach fails to maintain the feature
space topology of the base class exemplars at the beginning of incremental learning,
where catastrophic forgetting is clearly identified at epoch 1 with severe degradation
of the base class test accuracy. As a result, it has to take a much longer time (e.g.,
40 epochs here) to re-learn discriminative features for the exemplars. (c) TPCIL uses
the topology-preserving loss (TPL) that maintains the topology of these old class ex-
emplars, which can avoid forgetting during the entire incremental learning phase

CIL aims to incrementally learn a unified classifier to recognize new classes
without forgetting the old ones at the same time. This problem is usually studied
under a practical condition that the training set of old classes is unavailable
when learning new classes [32]. As a consequence, it is prohibitive to retrain the
model on the joint training set of both old and new classes. A straight-forward
approach is to directly finetune the model on new class data. However, it is prone
to catastrophic forgetting (CF) [10], where classification accuracies on old classes
deteriorate drastically during finetuning.

To tackle catastrophic forgetting, a number of CIL methods [32, 3, 42, 13]
adopt the knowledge distillation [12] technique to preserve the old class knowl-
edge contained in the network’s output logits. Knowledge distillation was orig-
inally proposed for transferring ‘dark knowledge’ from the teacher model to a
student model [12, 43]. LwF [19] introduces this idea to incremental learning to
alleviate the forgetting of the old tasks’ knowledge when learning a new task.
When applying to CIL, one typically stores a smaller set of exemplar images
representative of old classes, and incorporates the distillation loss with the clas-
sification loss (i.e., cross-entropy) for learning from new class training samples.

Although the distillation approaches can mitigate forgetting to some extent,
they face the bias problem [13, 42] caused by imbalanced number of old/new
class training samples, which hurts the recognition performance [9]. Moreover,
it is observed in our experiments that the distillation-based methods seem to
forget the old knowledge at first and then re-learn the knowledge from the old
class exemplars during incremental learning, which is termed the start-all-over
phenomenon, as shown in Fig. 1 (b). As a result, it takes more additional epochs
to re-acquire the old class knowledge. Besides, excessive re-learning also increases

Topology-Preserving Class-Incremental Learning 3

the risk of overfitting to the old class exemplars. These issues restrict the ability
of incremental learning from a (potentially) infinite sequence of new classes.

To solve the above problems, in this paper, we propose a cognitive-inspired
Topology-Preseving CIL (TPCIL) method. Recent advances in cognitive science
reveal that forgetting is caused by the disruption of the topology of human visual
working memory [39, 6]. Analogously, for deep CNNs, we have also observed that
catastrophic forgetting occurred together with the disruption of the feature space
topology once learning new classes. Based on these discoveries, we endeavor to
preserve the old class knowledge and mitigate forgetting by maintaining the
topology of CNN’s feature space. We model the topology using an elastic Hebbian
graph (EHG) constructed with competitive Hebbian learning (CHL) [28]. During
CIL, we impose new constraints, namely the topology-preserving loss (TPL) on
EHG, to penalize the changes of its topological connections.

We conduct comprehensive experiments on popular image classification bench-
marks CIFAR100, ImageNet, and subImageNet, and compare TPCIL with the
state-of-the-art CIL methods. Experimental results demonstrate the effective-
ness of TPCIL for improving recognition performance in a long sequence of
incremental learning. To summarize, our main contributions include:

– We propose a neuroscience inspired, topology-preserving framework for ef-
fective class-incremental learning with less forgetting.

– We construct an elastic Hebbian graph (EHG) by competitive Hebbian learn-
ing to model the topology of CNN’s feature space.

– We design the topology-preserving loss (TPL) to maintain the feature space
topology and mitigate forgetting.

2 Related Work

There are two branches in recent incremental learning studies. The multi-task
incremental learning [30, 19] aims at learning a sequence of independent tasks,
each of which is assigned a specific classifier, while the single-task incremental
learning [27, 38] employs a unified classifier to treat the entire incremental learn-
ing process as one task. The CIL focused by this paper belongs to the single-task
incremental learning, where only one classification head is incrementally learnt
to recognize all encountered data batches of different classes.

2.1 Multi-task Incremental Learning

The multi-task incremental learning [30] assumes the task identity is always
known during training and testing. The model is required to learn new tasks
without degrading the old tasks’ performance. Research works usually adopt
the following strategies to mitigate forgetting: (1) regularization strategy [14,
45, 17, 19], (2) architectural strategy [26, 25, 44, 35, 1], and (3) rehearsal strat-
egy [23, 4, 36, 46]. Regularization strategy imposes regularization on the network
weights or outputs when learning the new tasks. For example, EWC [14] and

4 X. Tao et al.

SI [45] impose constraints on the network weights, penalizing changing of the
weights important to old tasks. Architectural strategy dynamically modifies the
network’s structures by expanding, pruning [21, 47] or masking the neural con-
nections. For example, PackNet [26] creates free parameters for new tasks by
network pruning. HAT [35] learns the attention masks to constrain the weights
for old tasks when learning new tasks. Rehearsal strategy periodically replay the
memory for the past experiences of the old tasks to the network when learning
new tasks. For example, GEM [23] uses an external memory to store a small set
of old tasks’ exemplar images and use them to constrain the old tasks’ losses
during incremental learning. DGR [36] and LifelongGAN [46] use a generative
model to memorize the old tasks’ data distribution, with a generative adversarial
network learnt to produce pseudo training samples of old tasks.

In short, the multi-task methods perform incremental learning in task-level
with task-specific classifiers. As a consequence, these methods can not be directly
used by CIL, which only has a single, incrementally expanded classifier.

2.2 Class-Incremental Learning

Most class-incremental learning (CIL) works [32, 3, 42, 13] alleviates forgetting
using the knowledge distillation [12, 43, 31, 18] technique, which is initially in-
troduced by LWF [19] for multi-task incremental learning. An earlier work
iCaRL [32] decouples the learning of the classifier and the feature representation,
where the classifier is implemented by the nearest matching of the pre-stored ex-
emplars in an episodic memory. When learning the representation for the new
classes, the a distillation loss term is added to the cross-entropy loss function to
maintain the representations of the old class exemplars. A later work EEIL [3]
learns the network in an end-to-end fashion with the cross-distillated loss. It
overcomes the limitation of iCaRL by learning the representation and the clas-
sifier jointly. More recent CIL studies [42, 13, 9, 37] reveal the critical bias issue
caused by the imbalanced number of training samples of old and new classes,
where the classification layer’s weights and logits are biased towards new classes
after incremental learning. To eliminate the bias, LUCIR [13] normalizes the
feature vectors and the weights of the classification layer, adopts the cosine sim-
ilarity metric, and applies distillation to the feature space rather than the output
logits. BIC [42] develops a bias correction technique that learns a linear model
to unify the distribution of the output logits. IL2M [9] proposes a dual-memory
approach that finetunes the model without the distillation loss. It stores the
exemplars and the statistics of historical classes to rectify the prediction scores.

In short, the distillation-based CIL methods maintain the distribution of
the output/feature logits [32, 3, 42, 13] for the old class exemplars. However, it
is observed that such kind of objective is not well achieved during incremen-
tal learning, where the old class knowledge is likely forgotten at the beginning
of incremental learning (see Fig. 1). Besides, as the exemplar set is typically
randomly sampled from the old class training set, it is only a rough approx-
imation of the data distribution. Recent studies in few-shot class-incremental
learning [37] show that the knowledge can be well preserved by learning the

Topology-Preserving Class-Incremental Learning 5

topology of the feature space manifold, even when the manifold is non-uniform
and heterogeneous. Different from the above approaches, TPCIL maintains the
feature space topology by constraining the relations of the representative points,
while allowing the shift of the representatives to adapt to new classes.

3 Topology-Preserving Class-Incremental Learning

3.1 Problem Definition

The class-incremental learning (CIL) problem is defined as follows. Let X, Y ,
and Z denote the training set, the label set, and the test set, respectively. A CNN
model θ is required to incrementally learn a unified classifier from a sequence
of training sessions X1, X2, · · · , Xt, Xt+1, · · · , where Xt = {(xti, yti)}

Nt
i=1 is the

labeled training set of the t-th session with Nt samples, and xti and yti ∈ Y t are
the i-th image and its label, respectively. Y t is the disjoint label set at session t,
s.t. ∀p 6= q, Y p ∩ Y q = ∅. At session (t+ 1), a model θt+1 is learnt from Xt+1,
without the presence of the old class training sets X1, X2, · · · , Xt. Then θt+1 is
evaluated on the union of all the encountered test sets

⋃t+1
j=1 Z

j .

3.2 Overall Framework

A CNN can be regarded as the composition of a feature extractor f(·; θ) with
parameters θ and a classification layer with a weight matrix W . Given an in-
put x, CNN outputs o(x; θ) = W>f(x; θ), which is followed by a softmax
layer to produce multi-class probabilities. Let F ⊆ Rn denotes the feature
space defined by f(·; θ). Initially, we train θ1 on the base class training set
X1 with the cross-entropy loss. Then, we incrementally finetune the model on
X2, · · · , Xt, Xt+1, · · · , to get θ2, · · · , θt, θt+1, · · · . At session (t+ 1), the output
layer is expanded for new classes by adding |Y t+1| new neurons. Directly fine-
tuning θt+1 on Xt+1 will overwrite old weights in θt important for recognizing
old classes, which disrupts the feature space topology and causes catastrophic
forgetting, with a degradation of the recognition performance on

⋃t
j=1 Y

j .
In this paper, we alleviate forgetting by maintaining the feature space topol-

ogy for the old classes. To achieve this purpose, we first model the feature space
topology using the elastic Hebbian graph (EHG), and then propose the topology-
preserving loss (TPL) term to penalize changing of the feature space topology
represented by EHG. Let Gt denote the EHG constructed at session t. The
overall loss function at the next session (t+ 1) is defined as:

`(Xt+1, Gt; θt+1) = `CE(Xt+1, Gt; θt+1) + λ`TPL(Gt; θt+1). (1)

In the above equation, `CE is the standard cross-entropy loss:

`CE(Xt+1, Gt; θt+1) =
∑
(x,y)

− log p̂y(x), (2)

6 X. Tao et al.

(a) (b) (c) (d) (e)

Fig. 2. Conceptual visualization of the topology-preserving mechanism. The golden
curve stands for the feature space manifold; The circles and solid lines indicate the
vertices and edges of EHG, respectively. (a) N points are randomly picked to initialize
EHG’s vertices. (b) By competitive Hebbian learning (CHL), the feature space is par-
titioned into N disjoint Voronoi cells, each of which is encoded by a vertex. The neigh-
borhood relations is described by the connections between the vertices. (c) Finetuning
CNN for new classes may greatly change the neighborhood relationship of vertices and
disrupt the feature space topology. (d) The TPL term compels EHG to maintain the
relations of the vertices. (e) After learning new class, EHG grows by inserting new
vertices. Then all vertices are updated by CHL and the similarities are re-computed

where (x, y) denotes a training image and its label, and p̂y(x) is the CNN’s
predicted probability of label y given input x. We use Xt+1 as well as the old
class images assigned to EHG’s vertices (see Section 3.3 for details) for training.
`TPL is the proposed TPL loss term applied to Gt. The hyper-parameter λ is
used for controlling the strength of TPL. We elaborate our approach in the
following subsections.

3.3 Topology Modelling via Elastic Hebbian Graph

An effective way to model the topology of a feature space is to perform Compet-
itive Hebbian learning (CHL) [28] on the feature space manifold. CHL can learn
a set of points representative of any manifold (e.g., non-uniform), and is proved
to well preserve the topological structure [29]. To enable topology modelling for
CIL and cooperate with CNN, we design the elastic Hebbian graph (EHG) which
is constructed using CHL. The detailed algorithm is described as follows.

For computational stability, we normalize the feature space and adopt the
cosine similarity metric. Let ·̄ denotes the normalization operation, where f̄ =
f/‖f‖. Given the normalized feature space F̄ , the EHG is defined as G = 〈V,E〉,
where V = {v̄1, · · · , v̄N |v̄i ∈ F̄} is the set of N vertices representative of F̄ ,
and E is the edge set describing the neighborhood relations of the vertices in V .
Each vertex v̄i is the centroid vector representing the feature vectors within a
neighborhood region Vi, which is refered to as the Voronoi cell [29]:

Vi = {f̄ ∈ F̄|f̄>v̄i ≥ f̄>v̄j , ∀j 6= i}, ∀i. (3)

To get v̄i, we first randomly initialize its value by picking a random position in
feature space, as shown in Fig. 2 (a). Then we update v̄i iteratively using the

Topology-Preserving Class-Incremental Learning 7

following normalized Hebbian rule:

v∗i = v̄i + ε · e−ki/α(f̄ − v̄i), v̄∗i = v∗i /‖v∗i ‖, i = 1, · · · , N, (4)

where v̄∗i denotes the updated vertex, and e−ki/α is the decay function to scale
the updating step. The decay factor is measured by the proximity rank ki, where
v̄i is the ki-th nearest neighbor of f̄ among all vertices in V . The hyper-parameter
ε is the learning rate, and α controls the strength of the decay. Eq. (4) ensures the
vertex nearest to f̄ has the largest adapting step towards f̄ , while other vertices
are less affected. We execute Eq. (4) until v̄∗i is converged.

With the updated vertex set V , we may construct the corresponding Delau-
nay graph as in [29] to model the neighborhood relations of the vertices, as shown
in Fig. 2 (b). However, it is difficult to directly constrain the Delaunay graph
under the gradient descent framework, as the adjacency of vertices are changed
by the Hebbian rule, which is hard to cooperate with CNN’s back-propagation.
Alternatively, we convert G as a similarity graph for ease of optimization. Each
edge eij is assigned with a weight sij , which is the similarity between v̄i and v̄j :

sij = v̄>i v̄j . (5)

In this way, the changing of G can be back-propagated to CNN and optimized
with the gradient decent algorithm. For computing the observed values of each
vertex at the next incremental learning session, we assign v̄i with an image ui
drawn from the old training samples whose feature vector is the closet to v̄i.

When applying EHG to incremental learning, we first construct the graph
using the base class training data. When the training of θ1 is completed, we
extract the set of normalized feature vectors on X1, by which we have F̄ 1 =
{f̄(x; θt)|∀(x, y) ∈ X1}. F̄ 1 forms the feature space manifold of the base classes.
We compute EHG G1 on F̄ 1 using Eq. (4) and Eq. (5). G1 is stored to alleviate
forgetting at the next session. Iteratively, at session (t+1), after learning θt+1, we
grow and update the pre-stored EHG Gt to make it consistent with the adapted
feature space. We insert K new vertices {v̄N+1, · · · , v̄N+K} to get V t+1, and
then update all vertices on F̄ t+1 using Eq. (4). After that, the similarities are
recomputed to get Et+1. Fig. 2 (e) illustrates the growth of EHG. The topology
of the newly formed manifold for new classes is modelled by new vertices and
integrated into the EHG.

3.4 Topology-Preserving Constraint

At session (t + 1), given EHG Gt = 〈V t, Et〉, when catastrophic forgetting oc-
curs, Gt is distorted with the disruption of the old edges, as shown in Fig. 2
(c). To alleviate forgetting, the original connections in Gt should be maintained
when finetuning CNN on Xt+1. This is achieved by constraining the neighboring
relations of vertices described by the edges’ weights (i.e., similarities) in Et. For
this purpose, one approach is to maintain the rank of the edges’ weights during
learning. However, it is difficult and inefficient to optimize the nonsmooth global
ranking [2], while the local ranking can not well preserve the global relations.

8 X. Tao et al.

Alternatively, we can measure the changing of the neighboring relations by com-
puting the correlation between the initial and observation values of the edges’
weights. A lower correlation indicates a higher probability that the rank of the
edges has changed during learning, which should be penalized. On this basis, we
define the topology-preserving loss (TPL) term as:

`TPL(Gt; θt+1) = −

N∑
i,j

(sij − 1
N2

N∑
i,j

sij)(s̃ij − 1
N2

N∑
i,j

s̃ij)√
N∑
i,j

(sij − 1
N2

N∑
i,j

sij)2

√
N∑
i,j

(s̃ij − 1
N2

N∑
i,j

s̃ij)2

, (6)

where S = {sij |1 ≤ i, j ≤ N} and S̃ = {s̃ij |1 ≤ i, j ≤ N} are the sets of the
initial and observation values of edges’ weights in Et, respectively. The active
value s̃ij is estimated by:

s̃ij = f̃>i f̃j = f̄(ui; θ
t+1)>f̄(uj ; θ

t+1), (7)

where ui and uj are the pre-stored images assigned to v̄i and v̄j , respectively. As
v̄i encodes the i-th region in feature space, the TPL term implicitly maintains
the adjacency of these regions. Another choice for the loss term is to penalize the
l1 or l2 norms of the similarities. In our experiments, we found such restrictions
are not as flexible as the correlation form and behave worse, since they do not
allow a linear changing of the similarities’ scale.

Rather than penalizing the shift of EHG’s vertices in feature space, TPL
penalizes the changing of the topological relations between the vertices, while
allowing the reasonable shift of vertices. Such constraint is ‘soft’, easier to opti-
mize, which makes the EHG structure ‘elastic’ and does not interfere the learning
of new classes. Fig. 2 (d) illustrates the effect of TPL.

3.5 Optimization

TPCIL integrates a CNN model and an EHG Gt, where Gt is used to preserve
the topology of CNN’s feature space manifold. It is noteworthy that the CNN
model is trained with the minibatch stochastic gradient descent (minibatch SGD)
algorithm, while Gt is constructed and updated with the competitive Hebbian
learning (CHL). It is less efficient to update the vertices of Gt using Eq. (4)
at each minibatch iteration, as the features obtained at intermediate training
sessions have not been fully optimized. Therefore, we learn Gt after the training
of CNN is completed. Gt is then used for the next incremental session (t+ 1).

3.6 Comparison with the Distillation-based Approaches

In contrast to our approach that maintains the feature space topology, other CIL
works [3, 13, 42] are mostly based on knowledge distillation, where a distillation
loss term is appended to the cross-entropy loss:

`(X̃t+1; θt+1, θt) = `CE(X̃t+1; θt+1) + γ`DL(X̃t+1; θt+1, θt), (8)

Topology-Preserving Class-Incremental Learning 9

where X̃t+1 = Xt+1 ∪M t denotes the joint set of new class training samples
Xt+1 and the old class exemplars M t, and θt and θt+1 are the parameter sets
achieved at session t and (t+ 1), correspondingly. The distillation loss term `DL
is applied to the network’s output logits corresponding to the old classes [32, 3]:

`DL(X̃t+1; θt+1, θt) = −
∑

(x,y)∈X̃t+1

Ct∑
c=1

e−oc(x;θ
t)/T∑Ct

j=1 e
−oj(x;θt)/T

log
e−oc(x;θ

t+1)/T∑Ct

j=1 e
−oj(x;θt+1)/T

,

(9)
where Ct = |Y t| is the number of the old classes and T (e.g., T = 2) is the tem-
perature for distillation. Another distillation approach is to apply the distillation
loss to the feature space, which is called feature distillation loss [13]:

`FDL(X̃t+1; θt+1, θt) =
∑

(x,y)∈X̃t+1

(1− f̄(x; θt)>f̄(x; θt+1)), (10)

where f̄(x; θt) denotes the normalized feature vector.
The distillation losses `DL and `FDL penalize the changing of the output log-

its or feature vectors computed by the old model. Such a restriction is too strict
and difficult to satisfy, as the cross-entropy loss `CE dominantly brings adapta-
tion to new classes in the feature or output space. We have observed the start-
all-over phenomenon, where the features of the base class exemplars in M t are
‘forgotten’ at the beginning of incremental learning, as illustrated in Fig. 1 (b).
In comparison, the TPL term in Eq. (6) constrains the neighboring relations
between the EHG vertices, allowing the feature space to adapt to new classes
more freely without losing discriminative power. In this way, the plummeting of
the old classes’ recognition performance at the initial training iterations can be
avoid. Detailed experimental comparisons are described in Section 4.3.

4 Experiments

We conduct comprehensive experiments under the CIL setting in [13] on three
popular image classification datasets CIFAR100 [15], ImageNet [7] and subIma-
geNet [32, 13]. Following [13], for each dataset, we choose half of the classes as
the base classes for the base session and divide the rest of the classes into 5 or
10 incremental sessions. Detailed setups are described as follows.

4.1 Datasets and Experimental Setups

CIFAR100. It contains 60,000 natural RGB images of the size 32×32 over 100
classes, including 50,000 training and 10,000 test images. We follow the protocols
in [13] to process the dataset, where 50 classes are selected as the base classes,
and the rest 50 classes are equally divided for incremental learning phases. We
randomly flip each image for data augmentation during training.
ImageNet. The large-scale ImageNet (1k) dataset has 1.28 million training
and 50,000 validation images over 1000 classes. We select 500 classes as the base

10 X. Tao et al.

classes and split the rest 500 classes for incremental learning. We randomly flip
the image and crop a 224×224 patch for data augmentation during training, and
use the single-crop center image patch for testing.
SubImageNet. This dataset is the 100-class subset of ImageNet, which contains
about 130,000 images for training and 5,000 images for testing. We select 50
classes as the base classes and equally divide the rest 50 classes for incremental
learning. For data augmentation, we use the same technique as ImageNet.
Experimental Setups. All the experiments are performed using PyTorch. As
in [13], we choose the popular 32-layer ResNet as the baseline CNN for CIFAR100
and the 18-layer ResNet for ImageNet and subImageNet, respectively.

Initially, we train the base model for 120 epochs using minibatch SGD with
the minibatch size of 128. The learning rate is initialized to 0.1 and decreased to
0.01 and 0.001 at epoch 60 and 100, respectively. At each incremental learning
session, we finetune the model for 90 epochs, where the learning rate is initially
set to 0.01 for CIFAR100 and 5e-4 for ImageNet and subImageNet, respectively,
and decreased by 10 times at epoch 30 and 60. We set the hyper-parameter
λ = 15 in Eq. (1) for CIFAR100 and λ = 10 for subImageNet and ImageNet,
respectively. For EHG, we insert 20 vertices for each new class, which leads to
2,000 vertices for CIFAR100 and subImageNet, and 20,000 vertices for ImageNet.
We set ε = 0.1 and α = 10 in Eq. (4). At the end of each session, we evaluate
the model on the union of all the encountered test sets.

We compare TPCIL with the representative CIL methods, including the clas-
sical iCARL [32], EEIL [3] and recent state of the arts LUCIR [13] and BiC [42].
To show the effectiveness of alleviate forgetting, we also directly finetune the
CNN model using both the new class training samples and the old class exem-
plars without forgetting-reduction techniques. We denote this baseline method
as “Ft-CNN”. For the upper-bound, we follow [13] and retrain the model at
each session on a joint set of all training images of encountered classes, which is
denoted as “Joint-CNN”. The distillation temperature in Eq. (9) is set to T = 2.
For fair comparisons, we use the equal number of old class exemplars for all
comparative methods. All results are averaged over 5 runs. We report the top-1
test accuracy of each session, as well as the accuracy averaged over all sessions.

4.2 Comparison Results

Fig. 3 shows the comparison results between TPCIL and other CIL methods.
Each curve reports the changing of the test accuracy at each session. The green
curve stands for the baseline “Ft-CNN”, while the yellow curve indicates the
upper-bound “Joint-CNN”. The orange curve reports the accuracy achieved by
TPCIL, while the cyan, blue and purple curves report the accuracies of LUCIR,
iCARL and EEIL, respectively. We summarize the results as follows:

– For training with both the 5 and 10-session settings on all datasets, TPCIL
greatly outperforms all other CIL methods on each incremental session by a
large margin, and is the closest to the upper-bound joint training method. By
comparing each pair of the orange and cyan curves in Fig. 3, we observe that

Topology-Preserving Class-Incremental Learning 11

50 60 70 80 90 100
Number of Classes

(a) CIFAR100, 5 sessions

0

20

40

60

80

O
ve

ra
ll

A
cc

.(%
)

50 60 70 80 90 100
Number of Classes

(b) subImageNet, 5 sessions

0

25

50

75

500 600 700 800 900 1000
Number of Classes

(c) ImageNet, 5 sessions

0

20

40

60

50 60 70 80 90 100
Number of Classes

(d) CIFAR100, 10 sessions

0

20

40

60

80

O
ve

ra
ll

A
cc

.(%
)

Ft-CNN EEIL iCaRL BiC LUCIR TPCIL Joint-CNN

50 60 70 80 90 100
Number of Classes

(e) subImageNet, 10 sessions

0

25

50

75

500 600 700 800 900 1000
Number of Classes

(f) ImageNet, 10 sessions

0

20

40

60

Fig. 3. Comparison results on CIFAR100, subImageNet, and ImageNet under the 5-
session (a)-(c) and 10-session (d)-(f) settings. Noting that the original EEIL in [3] uses
more data augmentation techniques to boost the performance, which has higher accu-
racy than iCaRL. In our experiments, we apply the same data augmentation operation
to all methods for fair comparisons, which causes the accuracy of EEIL lower

TPCIL achieves higher accuracy than the state-of-the-art LUCIR. Moreover,
the superiority of TPCIL is more obvious after learning all the sessions. It
shows the effectiveness of TPCIL for long-term incremental learning.

– On CIFAR100, TPCIL achieves the average accuracy of 65.34% and 63.58%
with the 5 and 10-session settings, respectively. In comparison, the second-
best LUCIR achieves the average accuracy of 63.42% and 60.18%, corre-
spondingly. TPCIL outperforms LUCIR by up to 3.40%. After learning all
the sessions, TPCIL greatly outperforms LUCIR by up to 4.28%.

– On subImageNet, TPCIL has the average accuracy of 76.27% and 74.81%
with the 5 and 10-session settings, respectively, while the second-best LU-
CIR has the average accuracy of 70.47% and 68.09%, correspondingly. TP-
CIL greatly outperforms LUCIR by up to 6.72%. Furthermore, at the last
session, TPCIL significantly outperforms LUCIR by up to 10.60%.

– On ImageNet, with the 5-session CIL setting, the average accuracy of TP-
CIL is 64.89%, exceeding the second-best LUCIR (64.34%) by up to 0.55%.
With the 10-session setting, TPCIL achieves the average accuracy of 62.88%,
surpassing LUCIR (61.28%) by up to 1.60%. After learning all the sessions,
TPCIL outperforms LUCIR by up to 1.43% and 2.53%, correspondingly.

In addition to the 5 and 10-session setting, we have also evaluated 1 and
2-session incremental learning and permuted the order of the sessions. We find

12 X. Tao et al.

0 20 40 60 80
Predicted classes

(a) Ft-CNN

0

20

40

60

80

T
ru

e
cl

as
se

s

0 20 40 60 80
Predicted classes

(b) iCaRL

0

20

40

60

80

0 20 40 60 80
Predicted classes

(c) EEIL

0

20

40

60

80

0 20 40 60 80
Predicted classes

(d) NCM

0

20

40

60

80

T
ru

e
cl

as
se

s

0 20 40 60 80
Predicted classes

(e) TPCIL

0

20

40

60

80

0 20 40 60 80
Predicted classes

(f) Joint-CNN

0

20

40

60

80

0.0

0.2

0.4

0.6

0.8

Fig. 4. Confusion matrices of different methods on CIFAR100 under the 5-session
setting. The horizontal/vertical axes indicate the predicted/true classes, respectively.
The color bar at the right side indicates the activation intensity

the rank of the methods’ accuracies remains the same, by which we can draw
the same conclusion for the comparison results.

Fig. 4 shows the confusion matrices of classification results produced by dif-
ferent CIL methods. In Fig. 4 (a), simply finetuning for new class will cause
severe misclassifications, where the old class samples are prone to be classified
as new classes. The iCARL (b), EEIL (c), and LUCIR (d) methods can cor-
rect some misclassified cases, but there are still many unsatisfactory activations
outside the diagonal. In comparison, our TPCIL (e) produces a much better
confusion matrix, where the activations are mostly distributed at the diagonal,
which is the closest to the upper-bound Joint-CNN (f) method. It demonstrates
the effectiveness of TPCIL for alleviating forgetting and improving the accuracy.

4.3 Analysis of the TPCIL Components

We perform ablation studies on CIFAR100 under the 5-session incremental learn-
ing setting to analyse the effect of TPCIL components, as described in follows.

The effect of different loss terms. We explore how different loss terms affect
the recognition performance, including the distillation loss (DL) and feature dis-
tillation loss (FDL) in Section 3.6, and different choices (i.e., Eq. (6), l1 or l2) of
the TPL form. The experiments are performed on CIFAR100 under the 5-session
setting. For fair comparisons, all loss terms use the same set of representative

Topology-Preserving Class-Incremental Learning 13

Table 1. Comparison of the test accuracy achieved by different loss terms

Method
encountered classes

avg. acc.
50 60 70 80 90 100

finetuning 76.84 51.90 49.66 43.23 40.21 39.40 50.21

DL(Eq. (9)) 76.84 61.57 55.27 48.76 46.04 45.20 55.61
FDL(Eq. (6)) 76.84 66.32 62.11 55.73 51.56 50.74 60.55

TPL 76.84 70.23 66.64 61.99 59.32 57.04 65.34
TPL(l1) 76.84 68.33 65.21 61.21 57.63 55.80 64.17
TPL(l2) 76.84 66.60 63.23 59.11 56.64 54.08 62.75
TPL+DL 76.84 63.72 57.44 48.75 45.31 45.07 56.19
TPL+FDL 76.84 68.60 61.04 52.33 47.41 45.76 58.66

Table 2. Comparison of different exemplar generation techniques

Method
the number of exemplars/class

1 2 5 10 20

Random 33.86 45.83 48.89 58.26 64.70
k-means 39.45 48.75 52.24 60.67 65.03
EHG 42.26 51.27 52.89 61.47 65.34

images given by EHG. Additionally, we also combine TPL with DL and FDL
and evaluate their performances.

Table 1 reports the comparison results. The TPL term achieves the best ac-
curacy after learning all sessions, exceeding FDL significantly by up to 6.3% and
DL by up to 11.84%. While the combinations of TPL and distillation losses de-
grade the performance of using TPL alone. It demonstrates that maintaining the
feature space topology is more effective to alleviate forgetting than maintaining
the stability of the output logits or feature vectors using distillation.
Comparison of different exemplar generation techniques. In TPCIL,
the EHG vertices learned by Hebbian rules can be seen as the exemplars of the
feature space. Alternatively, we can randomly sample points in feature space,
or run a clustering method (e.g., k-means) and treat the cluster centroids as
the exemplars. Table 2 compares the average test accuracy achieved by the
three exemplar generations approaches under different number of the exemplars.
Apparently, using a large number of exemplars can achieve higher accuracy even
for random sampling, while EHG behaves better especially when the number of
exemplars is small, thanks to the topology-preservation mechanism [29].
The effect of the number of the exemplars. In the experiments, the CIL
methods use an external memory to store the old class exemplars. Though storing
more representatives is helpful for the recognition performance, it also brings
more memory overhead. Table 3 reports the average accuracy achieved by using
different numbers of vertices/exemplars per class. It is observed that the test
accuracy is prone to be saturated when the number of exemplars per class is
greater than 30. For a better trade-off, we use 20 exemplars per class. Besides,

14 X. Tao et al.

Table 3. Average accuracy of different methods with different number of exemplars

Method
the number of exemplars

10 20 30 40 50

iCaRL [32] 52.5 56.5 60.0 61.0 62.0
EEIL [3] 41.8 50.3 55.2 57.1 59.7
LUCIR [13] 61.0 64.0 64.5 65.5 66.0
TPCIL (ours) 61.5 65.3 66.2 66.5 67.0

Table 4. Average accuracy with different λ on CIFAR100 with the 5-session setting

λ 0 0.1 1 5 10 15 50 100

Average acc. 22.34 58.39 63.07 64.99 65.33 65.34 64.48 61.99

we can also observe that TPCIL achieves better performance than other methods
when fixing the memory size, which demonstrates the efficiency of TPCIL.

4.4 Sensitivity Study of the Hyper-parameter λ

The hyper-parameter λ in Eq. (1) controls the strength of TPL term. We perform
the sensitivity study to see how the recognition performance is influenced by
changing λ. For other hyper-parameters ε and α in Eq. (4), we follow their
settings in [29] and ensure the vertices of EHG well converged after competitive
Hebbian learning. We run TPCIL on CIFAR100 with the 5-session setting and
change λ in the range of {0.1, 1, 5, 10, 15, 50, 100}. Table 4 shows the average test
accuracy achieved by different values of λ. We observe that with the increasing
of λ within a reasonably wide range, the average test accuracy is improved,
indicating the effectiveness of TPL. While too large λ (e.g., λ = 100) could
weaken the contribution of the classification loss and hurt the accuracy.

5 Conclusion

This work focuses on the CIL task and addresses the catastrophic forgetting
problem from a new, cognitive-inspired perspective. To alleviate forgetting, we
put forward to preserve the old class knowledge by maintaining the topology
of feature space. We propose a novel TPCIL framework, which uses an EHG
graph to model the topology of the feature space manifold, and a TPL term to
constrain EHG, penalizing the changing of the topology. Extensive experiments
demonstrate that the proposed TPCIL greatly outperforms state-of-the-art CIL
methods. In future works, we will generalize TPCIL to more applications.
Acknowledgements. This work is sponsored by National Key R&D Program of
China under Grand No.2019YFB1312000, National Major Project under Grant
No.2017YFC0803905 and SHAANXI Province Joint Key Laboratory of Machine
Learning.

Topology-Preserving Class-Incremental Learning 15

References

1. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory
aware synapses: Learning what (not) to forget. In: ECCV (2018)

2. Burges, C.J., Ragno, R., Le, Q.V.: Learning to rank with nonsmooth cost functions.
In: NeurIPS (2007)

3. Castro, F.M., Maŕın-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end
incremental learning. In: ECCV. pp. 233–248 (2018)

4. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning
with a-gem. arXiv preprint arXiv:1812.00420 (2018)

5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

6. Chen, L.: The topological approach to perceptual organization. Visual Cognition
12(4), 553–637 (2005)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

8. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angular margin loss for
deep face recognition. arXiv preprint arXiv:1801.07698 (2018)

9. Eden, B., Adrian, P.: Il2m: Class incremental learning with dual memory. In: ICCV
(2019)

10. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in cogni-
tive sciences 3(4), 128–135 (1999)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015)

12. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
Computer Science 14(7), 38–39 (2015)

13. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incre-
mentally via rebalancing. In: CVPR (2019)

14. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences 114(13), 3521–3526 (2017)

15. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Tech. rep., Citeseer (2009)

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NeurIPS (2012)

17. Lee, S.W., Kim, J.H., Jun, J., Ha, J.W., Zhang, B.T.: Overcoming catastrophic
forgetting by incremental moment matching. In: NeurIPS (2017)

18. Lee, S., Song, B.C.: Graph-based knowledge distillation by multi-head attention
network. In: BMVC (2019)

19. Li, Z., Hoiem, D.: Learning without forgetting. T-PAMI 40(12), 2935–2947 (2018)

20. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: Deep hypersphere
embedding for face recognition. In: CVPR (2017)

21. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network
pruning. In: ICLR (2019)

22. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR (2015)

23. Lopez-Paz, D., et al.: Gradient episodic memory for continual learning. In: NeurIPS
(2017)

16 X. Tao et al.

24. Ma, Z., Wei, X., Hong, X., Gong, Y.: Bayesian loss for crowd count estimation
with point supervision. In: ICCV (2019)

25. Mallya, A., Davis, D., Lazebnik, S.: Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. In: ECCV (2018)

26. Mallya, A., Lazebnik, S.: Packnet: Adding multiple tasks to a single network by
iterative pruning. In: CVPR (2018)

27. Maltoni, D., Lomonaco, V.: Continuous learning in single-incremental-task scenar-
ios. arXiv preprint arXiv:1806.08568 (2018)

28. Martinetz, T.M.: Competitive hebbian learning rule forms perfectly topology pre-
serving maps. In: International Conference on Artificial Neural Networks. pp. 427–
434 (1993)

29. Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks
7(3), 507–522 (1994)

30. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: A review. Neural Networks (2019)

31. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: CVPR
(2019)

32. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier
and representation learning. In: CVPR (2017)

33. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. arXiv preprint arXiv:1506.02640 (2015)

34. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In: NeurIPS (2015)

35. Serrà, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forget-
ting with hard attention to the task. arXiv preprint arXiv:1801.01423 (2018)

36. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. In: NeurIPS (2017)

37. Tao, X., Hong, X., Chang, X., Dong, S., Xing, W., Yihong, G.: Few-shot class-
incremental learning. In: CVPR (2020)

38. Tao, X., Hong, X., Chang, X., Gong, Y.: Bi-objective continual learning: Learning
‘new’ while consolidating ‘known’. In: AAAI (February 2020)

39. Wei, N., Zhou, T., Zhang, Z., Zhuo, Y., Chen, L.: Visual working memory repre-
sentation as a topological defined perceptual object. Journal of Vision 19(7), 1–12
(2019)

40. Wei, X., Zhang, Y., Gong, Y., Zhang, J., Zheng, N.: Grassmann pooling as com-
pact homogeneous bilinear pooling for fine-grained visual classification. In: ECCV
(2018)

41. Wei, X., Zhang, Y., Gong, Y., Zheng, N.: Kernelized subspace pooling for deep
local descriptors. In: CVPR (2018)

42. Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., Fu, Y.: Large scale incre-
mental learning. In: CVPR (2019)

43. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: Fast opti-
mization, network minimization and transfer learning. In: CVPR (2017)

44. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically ex-
pandable networks. arXiv preprint arXiv:1708.01547 (2017)

45. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence.
In: ICML (2017)

46. Zhai, M., Chen, L., Tung, F., He, J., Nawhal, M., Mori, G.: Lifelong gan: Continual
learning for conditional image generation. In: ICCV (2019)

47. Zhuo, L., Zhang, B., Yang, L., Chen, H., Ye, Q., David, S.D., Ji, R., Guo, G.:
Cogradient descent for bilinear optimization. In: CVPR (2020)

