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Abstract. We propose a method of gait recognition just from a single
image for the first time, which enables latency-free gait recognition. To
mitigate large intra-subject variations caused by a phase (gait pose)
difference between a matching pair of input single images, we first recon-
struct full gait cycles of image sequences from the single images using an
auto-encoder framework, and then feed them into a state-of-the-art gait
recognition network for matching. Specifically, a phase estimation network
is introduced for the input single image, and the gait cycle reconstruc-
tion network exploits the estimated phase to mitigate the dependence
of an encoded feature on the phase of that single image. This is called
phase-aware gait cycle reconstructor (PA-GCR). In the training phase,
the PA-GCR and recognition network are simultaneously optimized to
achieve a good trade-off between reconstruction and recognition accu-
racies. Experiments on three gait datasets demonstrate the significant
performance improvement of this method.
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1 Introduction

Gait is a common biometric modality used to identify a person. Gait has unique
advantages compared with other biometrics such as DNA, fingerprints, the iris,
and the face. For example, it can be authenticated at a long distance even without
subject cooperation. Gait recognition has therefore received great attention for
applications such as surveillance, forensics, and criminal investigation with CCTV
footage [6, 19, 25].

Extensive studies on gait recognition have mainly used a silhouette sequence
itself [41, 40, 7] or gait features extracted from a gait cycle of silhouette se-
quences [47, 37, 42, 38, 45, 48, 14]. However, capturing a video containing a certain
time length or a full gait cycle usually requires waiting for some time (e.g.,
about one second for a full gait cycle), which is undesirable for real-time online
applications. An extreme way to reduce latency in capturing is to try identifying
a subject using just a single image, which has not been especially targeted in
prior work to our knowledge. Besides latency, gait recognition from a single
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Fig. 1. Examples of different scenarios of gait recognition. (a) A matching pair (G and
P) from the same subject for different problem settings. Left (I): gait recognition using
a full gait cycle; right (II): gait recognition from a single image. There are significant
differences between the pair of single images owing to the phase difference (i.e., double
vs. single support). (b) A matching pair from different subject. (I) and (II) are the
real silhouette images of a half gait cycles (i.e., ground truth). (III) and (IV) are
the corresponding reconstructed half cycles from the single input image using our
method. Clear motion differences (e.g., stoop by green circles and stride by red circles)
are observed between real cycles (I) and (II), and also the reconstructions (III) and
(IV), which means our method can successfully reconstruct the individual gait motion
patterns to some extent.

image is also applicable to a case of temporal partial occlusion, which is another
challenging factor in the real world. For example, in crowded scenes, a subject
may be heavily occluded for most of the frames and those frames are useless,
whereas the single-image gait recognition can still work once a single frame
without occlusion is obtained.

Gait recognition from a single image, however, is quite challenging because gait
phase differences (e.g., single vs. double support) introduce great intra-subject
variations, as shown in Fig. 1(a). This largely degrades the performances of
existing gait recognition methods such as the state-of-the-art network GaitSet [7]
and conventional techniques using gait features such as a gait energy image
(GEI) [13] (i.e., averaged silhouette over a full gait cycle).

On the other hand, a snapshot in an action video has proven to imply dynamic
information that can predict past/future motions (i.e., implied motion) [21], which
has been applied to video synthesis and action recognition [9, 33]. Similarly, a
single gait image captured from a gait sequence, also intimates pose sequences
before or after the frame while keeping the individuality of his/her gait thanks to
temporally continuous variables (e.g., knee joint and back bending angles) [16],
and hence provides the possibility of gait recognition from a single image. For
example, a subject bending his/her back in the single-support is likely to bend
his/her back in the double-support too (see Fig. 1(b)(I)), and a single-support
phase with a greater knee flexion probably results in a double-support with a
larger stride (see Fig. 1(b)(II)). Motivated by these facts, we tackle single-image
gait recognition by first reconstructing a gait cycle of a silhouette sequence from
the single image, which contains all the phases, before exploiting the subsequent
matcher.

Recovering a silhouette sequence of a full gait cycle or a gait feature to be
extracted from it, actually, is also often done in gait recognition from videos with
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low frame-rates [1, 2, 4]. However, most of these methods does not work well for
a very limited number of input frames (i.e., a single frame), and moreover, these
approaches optimize only gait cycle reconstruction quality, and hence cannot
guarantee the optimal recognition accuracy essentially.

We therefore propose a unified framework of a phase-aware gait cycle re-
construction network (PA-GCRNet) for gait recognition from a single image.
This consists of a phase-aware gait cycle reconstructor (PA-GCR) module and
a subsequent recognition network. Instead of simply minimizing the gait cycle
reconstruction error, the proposed PA-GCRNet learns an appropriate gait cycle
reconstruction, where the reconstruction quality is well maintained while ensuring
optimal recognition performance simultaneously. The contributions of this work
are threefold:
1. The first work aiming at gait recognition from a single image.

To our knowledge, this is the first work specially aimed at gait recognition
from a single image. Compared with most existing gait recognition studies,
which require acquisition of a gait video containing a certain time length (e.g.,
a gait cycle), single-image gait recognition is more suitable for real-time online
applications because the result can be obtained once a single image is captured
(i.e., without latency).
2. Gait cycle reconstruction from an arbitrary input phase.

While most existing works focus on generating future action frames from an
initial frame [9, 33], the proposed PA-GCR can reconstruct a gait cycle including
future and past frames from an arbitrary input phase. To reduce the intra-subject
variations in the reconstructed gait cycles caused by input phase difference,
an phase estimation network is incorporated to mitigate the dependence of an
encoded feature on the input phase. The proposed PA-GCR is further combined
with the state-of-the-art sequence-based gait recognition network GaitSet [7], in
an end-to-end training manner to achieve a good trade-off between gait cycle
reconstruction performance and recognition accuracy, unlike traditional low frame-
rate gait recognition methods that just focus on reconstruction quality instead of
recognition performance.
3. State-of-the-art performance on three publicly available datasets.

The proposed method was evaluated on three publicly available gait datasets:
the OU-ISIR Gait Database, Multi-View Large Population Dataset (OU-MVLP) [39],
CASIA Gait Database, Dataset B (CASIA-B) [46], and OU-ISIR Treadmill
Dataset D (OUTD-D) [26]. The proposed method yields significantly improved
recognition performance on all three datasets compared with pure sequence-
based GaitSet [7] and other state-of-the-art approaches to low frame-rate gait
recognition.

2 Related Work

2.1 Gait recognition from low frame-rate videos

Temporal interpolation and super-resolution-based approaches. Tem-
poral interpolation and super-resolution-based approaches were developed to
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increase the number of frames to cope with the low frame-rate. Al-Huseiny et
al. [3] proposed level-set morphing for temporal interpolation, and Prismall et
al. [34] used linear interpolation for moment descriptors. These are, however, not
applicable for very low frame-rates.

Makihara et al. [27] proposed reconstructing a gait period with a high frame-
rate using phase registration data among multiple periods from a sequence with
a low frame-rate and a manifold expressing a periodic temporal super-resolution
(TSR) image sequence via energy minimization. Akae et al. [1] later used an
exemplar of a gait image sequence with a high frame-rate to overcome the wagon
wheel effect in [27]. A unified example-based and reconstruction-based periodic
TSR was proposed in [2] to further solve the stroboscopic problem with good
reconstruction even when the sequence has such a low frame-rate as to appear
nearly still.

However, these methods only ensure optimal reconstruction quality rather
than recognition accuracy, which is the main goal of gait recognition.

Metric learning-based approach. Unlike temporal interpolation and super-
resolution-based approaches, metric learning-based approach directly applies a
metric learning technique to videos with low frame-rates. Guan et al. [12] first
extracted a gait feature just by averaging a sequence with a low frame-rate and
applied a random subspace method (RSM) to reduce the generalization errors
caused by the low frame-rate. However, this does not work well for extremely
low frame-rates (e.g., 1 fps) because it is difficult to find robust subspaces with
good generalizations for very few input frames.

Direct gait feature reconstruction-based approach. Recently, a direct gait
feature reconstruction-based approach [4] was proposed that takes the average
of a low frame-rate sequence as an input feature (e.g., an incomplete GEI) and
reconstructs a GEI to be progressively extracted from a full gait cycle using a fully
convolutional neural network. Similarly to traditional temporal interpolation and
super-resolution-based approaches, this network only optimizes the reconstruction
performance of the GEI, and still works poorly for very low frame-rates.

2.2 Gait representation

Most studies on gait recognition cope with normal frame-rates under various
covariates, such as view [28, 42], walking speed [11, 43], clothing [17, 10], and
carried objects [29, 23]. Rather than directly using silhouette image sequences,
most traditional methods exploit feature templates (e.g., GEI and frequency-
domain features [28]) extracted from the full gait cycle of a silhouette sequence
for further processing such as feature transformation [28, 22] and spatial metric
learning [11, 29, 5]. Recently, gait recognition performance has been greatly im-
proved by introducing the convolutional neural network (CNN) framework, where
the GEI is mainly used as the network input [47, 37, 42, 38, 45, 48]. Additionally, a
few CNN-based approaches directly handle silhouette sequences [41, 40, 7] to use
more temporal information than a single GEI template. Among them, GaitSet [7]
achieves remarkable state-of-the-art recognition performance; hence, we combine
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Fig. 2. Overview of the proposed method. GT denotes the ground truth. (a) shows
the whole framework of the PA-GCRNet, which contains a PA-GCR for full gait cycle
reconstruction and GaitSet [7] as the subsequent recognition network for discrimination
learning. A triplet of samples (probe, genuine, and imposter) is fed into the PA-GCRNet
in the training stage, where the network parameters are shared among each stream.
(b) illustrates the details of the PA-GCR module, which consists of four components:
an encoder, a phase estimator, a feature transformer, and a decoder. The imposter is
omitted here because the similarity loss Lsim is only defined for the genuine pair.

the proposed PA-GCR with GaitSet for further feature discrimination learning
from the reconstructed full gait cycles.

3 Gait Recognition using PA-GCRNet

3.1 Overview

An overview of the proposed PA-GCRNet is shown in Fig. 2(a). Given a captured
gait image, a silhouette can be first extracted using graph-cut segmentation based
on background subtraction [30], or recent state-of-the-art semantic segmentation
methods such as RefineNet [24] based on deep learning. A normalized silhouette
is then obtained via height normalization and registration using the center of
gravity [28], after which it is used as an input for the proposed method.

The proposed PA-GCRNet consists of two parts: PA-GCR and the recognition
network (GaitSet in our implementation). Similarly to GaitSet [7], the proposed
PA-GCRNet takes a triplet of inputs in the training stage, where the network
parameters are shared among the three inputs. The PA-GCR tries fully recon-
structing a gait cycle of a silhouette sequence that contains a fixed number of
frames with corresponding phases (e.g., left-leg-forward double-support in the first
frame) by considering the phase of a single input silhouette. The reconstructed
full gait cycle of silhouettes is then fed into the subsequent recognition network
to learn more discriminative features for gait recognition. In the testing stage, the
dissimilarity between a matching pair is computed as the L2 distance between
the discriminative features learnt by the recognition network.
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3.2 PA-GCR

The proposed PA-GCR has four components: an encoder, a phase estimator,
a feature transformer, and a decoder, as shown in Fig. 2(b). One potential
issue is that the phase difference among input silhouettes may affect gait cycle
reconstruction results. For example, a double-support silhouette reconstructed
from a single-support input silhouette may be different from that reconstructed
from a double-support silhouette, because the poses in dynamic parts such as
legs and arms in the double-support phase are not observed in the single-support
phase. There may be large intra-subject variations in the reconstructed gait
cycle of silhouettes if we directly use encoded features from input silhouettes
with various phases (kinds of phase-dependent encoded features). We therefore
introduce the feature transformer to transform the phase-dependent encoded
features into more phase-independent features by taking the estimated phase
information into account for the following decoder. This is more advantageous
because it reduces intra-subject variations in the reconstructed gait cycle of
silhouettes.

Phase representation Considering the periodicity of human gait, it is necessary
to represent the phase (gait stance) using a periodically continuous label. The
phase can be defined by a cyclic angle representation with the domain [0, 2π)
similarly to a general periodic variable. The cyclic angle representation, however,
is discontinuous from 2π to 0; hence we use a redundant two-dimensional vector
representation without discontinuity consisting of sine and cosine functions.
Assuming that a gait cycle has T frames and that the phase evolves linearly over
the frames. The phase vector pt ∈ R2 at the t-th frame is expressed as

pt = [cos θt, sin θt]
T , (1)

where θt = θ0 + 2π t
T , and θ0 is a phase shift.

Gait cycle of a silhouette sequence for training We need full gait cycles of
silhouette sequences from multiple training subjects (i.e., ground truth) to train
the proposed network, and the cycles should be phase-synchronized among the
training subjects to mitigate the impact of phase inconsistency on reconstruction
performance in the training data. However, the real gait cycle needs to be first
interpolated into the common gait cycle (e.g., 100 frames per cycle) because the
number of frames of a real cycle might be different among the training subjects
(e.g., 25 frames per cycle for subject A, 32 frames per cycle for subject B).
We therefore apply a geometric transformation based on free-form deformation
(FFD) [36] to interpolate intermediate frames between original frames and to
generate the silhouette sequence with the common gait cycle because the FFD is
suitable for expressing the transformation of a non-rigid human body and helps
preserve gait individuality in the transformed image [8, 44].

After obtaining the silhouette sequences with the common gait cycle, we
synchronize them among the training subjects using a baseline algorithm [35].
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More specifically, we first choose a subject as the standard, and then compute
the sum of silhouette differences over the common gait cycle between another
subject and this standard. We compute the sum for each shift amount of the
starting frame, and we adopt the silhouette sequence with the shift amount that
minimizes the summed difference as the training data for the reconstructor.

Networks 1) Encoder. The encoder E first extracts a low-dimensional feature
from the input silhouette, which somewhat depends on the phase of the input
silhouette. Given the input silhouette I, the obtained low-dimensional feature
from the encoder is denoted as

f pI

I = E(I), (2)

where pI is the phase of input I.
The encoder is designed as a CNN with an input size of 1 × 64 × 64. Four

convolutional layers are used with a filter size of 4 × 4 and stride of two, and
the number of filters is increased from 64 to 512 in successive doubling steps.
We apply a batch-normalization layer [18] and the rectified linear unit (ReLU)
activation function [31] after each convolutional layer. Finally, a 100-dimensional
feature is obtained through a fully connected layer.
2) Phase estimator. A phase estimator P is used to estimate the phase label
of the input silhouette to make the phase-dependent encoded feature more
phase-independent in the next step. The phase estimator is represented as

p̂I = P (I) ∈ R2. (3)

The phase estimator has a structure similar to that of the encoder, but with
one more fully connected layer to regress the 2D phase label. A normalization
layer is used to ensure that ‖p̂I‖2 = 1, which is a characteristic of the sine and
cosine functions. The output phase label is compared with the ground truth label
pI to compute an estimation loss as

Lesti = ‖p̂I − pI‖22. (4)

3) Feature transformer. A feature transformer T is inserted between the
encoder and the decoder to reduce the reconstruction difference caused by the
input phase difference for the same subject. The feature transformer transforms
the phase-dependent encoded feature f pI

I into the phase-independent feature f I ,
which is formulated as

f I = T (cat(f pI

I , p̂I)), (5)

where cat indicates a concatenation.
We implement the feature transformation using a fully connected layer to

obtain the transformed 100D feature f I ∈ R100 from the 102D concatenated
vector of the encoded feature f pI

I ∈ R100 and the estimated phase p̂I ∈ R2. We
expect the transformed feature f I to be more independent of the input phase
than the encoded feature f pI

I , i.e., those for the same subjects are more similar
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to each other among different phases of the input silhouettes. Therefore, we
minimize the similarity loss for the phase-independent feature f I via

Lsim = ‖f Ip − f Ig‖22, (6)

where Ip and Ig denote the probe and genuine in a training triplet sample,
respectively.
4) Decoder. The output feature of the feature transformer is then fed into the
decoder D to fully reconstruct a gait cycle with a predefined number of frames
M , and the decoding process is formulated as

RI = D(f I), (7)

where RI denotes the gait cycle of M silhouettes reconstructed from the input
silhouette I.

The structure of the decoder is symmetrical to that of the encoder. A fully
connected layer along with reshaping is first used to convert the input 100D
feature into the same size as the feature output from the last convolutional layer
in the encoder, and then four deconvolutional layers are used for up-sampling. A
sigmoid activation function is applied after the last deconvolutional layer that
outputs the reconstructions with a size of M × 64 × 64, where each channel
indicates a reconstructed image at a specific phase common to all subjects. A
reconstruction loss is computed to ensure the reconstructed gait cycle is similar
to the corresponding ground truth (training data) GTI , which is defined as

Lrecon = ‖RI −GTI‖22. (8)

3.3 Combining PA-GCR with GaitSet

Next, the reconstructed gait cycle from the PA-GCR is fed into GaitSet to obtain
a more discriminative feature.

GaitSet [7] is a set-based gait recognition network that takes a set of silhouettes
as an input. After obtaining features from each input silhouette independently
using a CNN, set pooling is applied to aggregate features over frames into a
set-level feature. The set-level feature is then used for discrimination learning via
horizontal pyramid mapping, which extracts features of different spatial locations
on different scales. The feature output from GaitSet G for the reconstructed gait
cycle of silhouettes RI is formulated as

hI = G(RI). (9)

For a batch size of S×K in the training stage, where S is the number of subjects
and K is the number of samples per subject, the batch all triplet loss is [15]

Ltrip =
1

N

S∑
i=1

K∑
a=1

K∑
s=1
s 6=a

S∑
j=1
j 6=i

K∑
n=1

max(margin + di,ai,s − d
i,a
j,n, 0), (10)

where N = SK(SK − K)(K − 1) is the number of all triplets in a batch,
di,ai,s = ‖hIi,s − hIi,a‖22 is the dissimilarity score of the genuine pair, and di,aj,n =

‖hIj,n − hIi,a‖22 is the dissimilarity score of the imposter pair.
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3.4 Unified loss function

Because the phase estimator directly works on the input image, we train it
separately from the main pipeline (i.e., the encoder, the feature transformer, the
decoder, and GaitSet). We therefore define a unified loss function to optimize
the whole main pipeline jointly to achieve a trade-off between reconstruction and
recognition accuracy. The unified loss function is calculated as the weighted sum
of the three aforementioned loss functions:

Luni = wsimLsim + wreconLrecon + wtripLtrip, (11)

where wsim, wrecon, and wtrip are the respective weights for the three losses.

4 Experiments

4.1 Datasets

We evaluated the proposed method on three publicly available datasets: OU-
MVLP [39], CASIA-B [46], and OUTD-D [26].

OU-MVLP contains image sequences of 10,307 subjects captured from 14
views at a frame rate of 25 fps, and is the largest gait dataset with a wide view
variation in the world. We only focused on the side view (90◦) to investigate the
recognition performance using a single frame without other covariates. According
to the original protocol [39], 5,153 subjects were used for training and the other
disjoint 5,154 subjects were used for testing, with one probe sequence and one
gallery sequence for each subject. We used this as the main dataset for the
following experiments because of its high statistical reliability.

CASIA-B is one of the most widely used gait datasets and consists of gait
sequences of 124 subjects captured at 25 fps. Each subject has six normal walking
sequences for each of the 11 views. Similarly to the OU-MVLP experiment, only
sequences at 90◦ were used for our evaluation (Section 4.4). We adopted the same
challenging protocol as in [4], where the first 24 subjects were used for training
and the last 100 were used for testing, with one gallery sequence (NM #01) and
five probe sequences (NM #02-06).

OUTD-D is a dataset that focuses on gait fluctuations (i.e., silhouette differ-
ences of the same phase) over several periods. Hence, it includes a larger number
of frames, 360 in each sequence. 185 subjects with two sequences (probe and
gallery) for each subject were captured at 60 fps from the side view in this dataset.
Using the same protocol as in [1, 2], we used 85 subjects for training and the
other 100 for testing (Section 4.4).

We randomly selected a single frame from a sequence as the input for evalua-
tion for all the datasets.

4.2 Implementation details

We trained the proposed network using the Adam optimizer [20] with a batch
size of S ×K = 8 × 16. We used the same number of channels in GaitSet for
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OU-MVLP and CASIA-B as in [7], and used the same number for OUTD-D as
that for CASIA-B. The margin in Eq. 10 was set to 0.2 for all three datasets. We
first prepared the ground truth of a full gait cycle containing 100 frames for the
phase synchronization introduced in Section 3.2. Considering the computational
complexity and memory size needed to train the network, we set the number of
frames in the reconstructions as M = 25, and evenly down-sampled 25 frames
from the original 100 frames to correspond to the training ground truth.

The weights in Eq. 11 were set as wsim = 0.0005 and wrecon = wtrip = 1. To
first achieve stable reconstruction results, Ltrip was excluded (i.e., only PA-GCR
was included) for the first 30K training iterations with an initial learning rate of
10−4 for OU-MVLP, and for the first 20K iterations with an initial learning rate of
10−5 for CASIA-B and OUTD-D. We then involved Ltrip with a learning rate of
10−4 for GaitSet while reducing the learning rate for PA-GCR by 0.1. The whole
network was trained with 50K more iterations for CASIA-B and OUTD-D and
250K more iterations for OU-MVLP, where the learning rates for both PA-GCR
and GaitSet were again reduced by 0.1 for the last 100K iterations.

The recognition performance was evaluated using rank-1 identification rate
and equal error rate (EER) [32].

4.3 Visualizing gait cycle reconstruction

We first visualize gait cycles reconstructed by PA-GCRNet using a test example
of a genuine pair. We choose the challenging case of a large phase difference
between the matching pair, where the input probe and gallery image are in the
single-support and double-support phase, respectively. Fig. 3 shows that the
reconstruction results are similar to the corresponding ground truths. We also
give the mean squared error (MSE) as a measure of the difference between the
reconstruction result and ground truth [2]:

MSE =
1

MWH

M∑
m=1

W∑
i=1

H∑
j=1

‖RI(i, j,m)−GTI(i, j,m)‖22, (12)

where W and H are the image width and height, respectively, and M is the
number of images in the gait cycle (25 in this case). The figure also shows the
mean squared L2 distance between the ground truth pair and reconstruction pair
to illustrate the difference between the matching pair.

Using the single input silhouette, the proposed method successfully recon-
structs a natural gait cycle with a continuous phase change. Although there is
still a reconstruction error, the body shapes and poses in the reconstruction
are similar to those in the ground truth. The reconstructed gallery and probe
pair are also quite similar (see Figs. 3(d) and (e)), which demonstrates that the
PA-GCRNet reconstructions are independent of the phase of the input silhouettes
to some extent.

On the other hand, the ground truth pair in Fig. 3(b) and (c) has a larger
difference because there may be pose variations even for the same phase. This
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Fig. 3. Examples of gait cycle reconstruction. (a) Input silhouette; left: probe; right:
gallery. (b) Ground truth of probe gait cycle. (c) Ground truth of gallery gait cycle.
(d) Reconstructed probe gait cycle. (e) Reconstructed gallery gait cycle. Blue digits
indicate the errors between the reconstruction and corresponding ground truth, and
orange digits indicate the mean squared L2 distances between the corresponding probe
and gallery pairs.

implies that the proposed network not only forces the reconstruction results to be
similar to the ground truth, but also reduces the intra-subject variation between
the reconstructed same subject pair, which is more beneficial for matching. This
is because the end-to-end training includes both reconstruction and recognition,
which makes the PA-GCRNet achieve a good trade-off between reconstruction
quality and recognition performance. More reconstruction examples are shown in
the supplementary material.

In addition, taking a look at the case that a pair of inputs are in the same phase
but from different test subjects (see Figs. 1(b)(III) and (IV)), the pose differences
(e.g., different back bending and stride) are continuously observed between the
reconstructed gait cycle pair, which demonstrates the proposed network can
keep the gait pose individuality to some extent. That is, an individual gait pose
sequence is able to be reconstructed from a single gait image by the network,
which provides more gait characteristics of a specific subject, and hence possibly
helps improve the recognition accuracy.

4.4 Comparison with state-of-the-art methods

OU-MVLP In this section, the proposed method is compared with state-of-the-
art methods for OU-MVLP. There is no existing work on this topic, and only
GaitSet [7] has been used to test performance based on a single input image.
Therefore, we compare our method with GaitSet3 and the baseline, i.e., direct
matching (DM) between the selected single probe and gallery image pair, as
shown in Table 1.

The proposed method significantly outperforms the benchmarks. For example,
the rank-1 identification rate is over five times higher than that of the benchmarks,
which makes it possible to achieve gait recognition from a single image. The
proposed method completes a matching task and obtains the dissimilarity score

3 The results were obtained by using their model on our test set (selected single image
from a sequence).
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Table 1. Rank-1 identification rate [%] (denoted as Rank-1) and EER [%] of the
proposed method and other benchmarks for OU-MVLP. Bold and bold italic indicate
the best and second-best results, respectively. This font convention is used to indicate
performance throughout this paper.

Method Rank-1 EER
DM 4.4 41.3

Gaitset [7] 14.0 19.6
PA-GCRNet (proposed) 80.3 1.3

between a matching image pair in 5 milliseconds using a Quadro RTX 6000 GPU,
demonstrating its real-time executability.

CASIA-B Considering the very limited number of training subjects in CASIA-B,
we adopted two strategies for the proposed method: training the network from
scratch only using 24 training subjects in CASIA-B, and fine-tuning the network
from the model pre-trained for OU-MVLP. For the latter, we only fine-tuned
the PA-GCR from the OU-MVLP while still training the GaitSet part from
scratch because of the different settings of GaitSet for these two datasets [7].
Additionally, to validate the generalization capability of the proposed network,
we also investigated the performance of cross-dataset testing, i.e., directly tested
with CASIA-B using the pre-trained PA-GCRNet on OU-MVLP.

Table 2 (left) shows the results for GaitSet, DM and our method along with
that of ITCNet, which was reported [4] using a single input image for this dataset.
Note that the ITCNet protocol differed from ours by choosing 14 different frames
for each probe and gallery sequence and then obtaining the result via fusion. The
other benchmarks and our method used only a single image.

Because of the severe overfitting caused by the very limited training samples,
the proposed method cannot perform well by training from scratch on this dataset
but still gains a little improvement compared with GaitSet. The overfitting
problem can be solved and the performance of the proposed method largely
improved by fine-tuning the PA-GCR pre-trained via OU-MVLP with a better
generalization capability. Although the result is not as good as for OU-MVLP,
this is understandable because some low-quality silhouettes with segmentation
errors are included in this dataset. These may affect the recognition performance
if the selected matching image pair has different segmented silhouettes.

It is worth mentioning to that the cross-dataset testing achieves a quite good
performance, which is only slightly worse than the fine-tuned model in terms of
EER. That means, the proposed network trained on a large-scale dataset (i.e.,
OU-MVLP) has a good generalization to be directly used for another dataset,
and hence has a chance to be directly applied in real application scenarios.

OUTD-D We finally compare the methods for OUTD-D. Table 2 (right) shows
the results of our method using both training from scratch and fine-tuning, as
well as cross-dataset testing, as was done for CASIA-B. The results for NoTSR [2]
(direct matching between the averaged silhouettes over selected frames), Morph [3],
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Table 2. Rank-1 identification rate [%] (denoted as Rank-1) and EER [%] of the pro-
posed method and other benchmarks for CASIA-B and OUTD-D. Note that ITCNet [4],
NoTSR [2], Morph [3], TSR [1], and Unified TSR [2] used different protocols from ours.

Dataset CASIA-B OUTD-D
Method Rank-1 EER Rank-1 EER

DM 14.1 39.7 17 39.0
Gaitset [7] 33.3 17.7 42 13.0

PA-GCRNet (scratch) 39.4 14.7 73 6.4
PA-GCRNet (cross-dataset) 74.7 9.9 75 4.1

PA-GCRNet (fine-tune) 74.7 8.1 91 3.5

ITCNet [4] 50.0 22.8 - -
NoTSR [2] - - 51 15.0
Morph [3] - - 52 14.0
TSR [1] - - 44 16.5

Unified TSR [2] - - 87 3.5

TSR [1], and Unified TSR [2] were obtained for 1 fps, which means six frames
from one sequence were simultaneously used in those methods.

Compared with the benchmarks using the same protocol, the proposed method
achieves much better results even for training from scratch. The performance of
the proposed method can be further improved by fine-tuning the PA-GCR from
the pre-trained model for OU-MVLP. This even outperforms the state-of-the-art
method for low frame-rate gait recognition (Unified TSR [2]), which uses more
than one frame for each sequence simultaneously. Again, the cross-dataset testing
works well and gains a better result than the model trained from scratch, which
further demonstrates the good generalization capability of the proposed method4.

4.5 Ablation study

We analyzed the effects of each component of the proposed method on OU-MVLP,
as shown in Table 3. The first row shows the result of the baseline GaitSet, which
used the same settings as in the original paper [7]. One component of our method
was removed for each row from the second to the fourth row. Specifically, we did
the following: in the second row, the GaitSet was retrained using the same strategy
(a single image) as the proposed method to fairly confirm the effectiveness of
PA-GCR reconstruction; in the third row, PA-GCR and GaitSet were separately
trained to verify the effectiveness of the proposed unified framework; in the fourth
row, the phase estimator and feature transformer with the similarity loss (Eq. 6)
were removed from the proposed network to validate the effects of using the phase
information of the input image. The fifth row shows the result of our method. For
reference, the sixth row reports the upper bound of the proposed phase-aware
framework (i.e., using the ground truth phase label rather than the estimate by
the phase estimator). The last row shows the upper bound of reconstruction (i.e.,
test results for the ground truth of the gait cycle using the pre-trained GaitSet
model in the first row).

4 Reconstruction results for cross-dataset testing are shown in the supplementary
material.
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Table 3. Ablation experiments evaluated using rank-1 identification rate [%] (denoted as
Rank-1) on OU-MVLP. Ground truth is denoted as GT. “×” indicates phase information
is not used.

Model
Removed

component Phase info.
#Training

input frame Test input Rank-1

GaitSet [7] - × 30 1 real frame 14.0
GaitSet PA-GCR × 1 1 real frame 34.4

PA-GCR + GaitSet Unified training Estimated 1 1 real frame 50.5
GCRNet Use of phase info. × 1 1 real frame 77.4

PA-GCRNet (proposed) - Estimated 1 1 real frame 80.3

PA-GCRNet (upper bound
of phase-aware framework)

- GT 1 1 real frame 80.6

GaitSet (upper bound
of reconstruction)

- × 30
GT gait cycle
(25 frames) 97.7

Comparing the results in the second and fifth rows, it is obvious that removing
the proposed PA-GCR significantly reduces the recognition performance. This
demonstrates the need to involve gait cycle reconstruction in this task. The
proposed unified framework performs much better than the separated training
strategy in the third row because it achieves a trade-off between reconstruction
and recognition accuracy through its unified optimization. The effectiveness of
using input phase information is also confirmed by comparing the fourth and
fifth rows. Additionally, the phase estimator yields an error of only 0.02, which is
the mean squared L2 distance between the estimated and ground truth phases5.
Therefore, the difference in performance between the real test (i.e., using the
estimated phase) and the upper bound of using the ground truth phase is quite
small for the proposed method.

5 Conclusion

This paper presented PA-GCRNet for gait recognition from a single image. Given
a single input image, the PA-GCR fully reconstructs the gait cycle of a silhouette
in conjunction with the phase estimator and then feeds the reconstruction into a
subsequent recognition network like GaitSet for matching. This method achieved
significantly higher recognition performance on three publicly available gait
datasets.

One future research goal is to extend the proposed PA-GCR to accept multiple
input images for low frame-rate gait recognition. Additionally, the proposed
method can also potentially be extended to general actions to generate both
future and past frames from an arbitrary frame, which is beneficial for video
synthesis and action recognition, and this remains future work.
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