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Abstract. We present an unsupervised 3D deep learning framework
based on a ubiquitously true proposition named view-object consistency
as it states that a 3D object and its projected 2D views always belong to
the same object class. To validate its effectiveness, we design a multi-view
CNN for the salient view selection of 3D objects, which quintessentially
cannot be handled by supervised learning due to the difficulty of data
collection. Our unsupervised multi-view CNN branches off two channels
which encode the knowledge within each 2D view and the 3D object
respectively and also exploits both intra-view and inter-view knowledge
of the object. It ends with a new loss layer which formulates the view-
object consistency by impelling the two channels to generate consistent
classification outcomes. We experimentally demonstrate the superiority
of our method over state-of-the-art methods and showcase that it can be
used to select salient views of 3D scenes containing multiple objects.

Keywords: Unsupervised 3D Deep Learning, Multi-View CNN, View-
Object Consistency, View Selection

1 Introduction

The success of Generative Adversarial Network (GAN) [8] demonstrates the
great value and impact of a widely applicable unsupervised deep learning frame-
work. One important reason is that data collection for training a deep network
is laborious in many tasks. This is particularly the case for 3D tasks where
data collection is generally more challenging than that in 2D tasks. Therefore, a
widely applicable 3D deep learning framework is potentially of broad interest.

A simple but ubiquitously true proposition is that a 3D object and its pro-
jected 2D views always belong to the same object class no matter what taxonomy
is applied to the classification. We name the proposition view-object consistency
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and propose an unsupervised 3D deep learning framework based on it. Since
it is not feasible for us to thoroughly explore the utility of the framework via
various 3D tasks in one paper, we pick salient view selection of 3D objects to
demonstrate its effectiveness for three reasons. First, salient view selection is
challenging as it does not only rely on low-level geometric features but also in-
volves high-level semantics of objects. Thus a data-driven method is naturally
sound. Second, however, it is the particular task where collecting a large amount
of accurately and consistently annotated data is notoriously difficult. We found
that all existing datasets are very small (e.g. 68 objects in [7] and 16 objects in
[23]) no matter whether the annotations were collected directly (e.g. by marking
a viewpoint on a view sphere surrounding the object [7]) or indirectly (e.g. by
selecting the preferred view from two views for multiple times [23]). Third, we
shall further show the advantage of an unsupervised method by extending salient
view selection to 3D scenes. Salient view selection of 3D scenes can hardly be
addressed by a weakly supervised method relying on such annotation as a single
class label as a scene often contains objects belonging to different classes.

The problem of salient view selection of 3D objects is arguably well defined.
Besides related literatures in computer vision and graphics to be discussed in
Section 2, researchers in psychology [6, 2] have revealed that for many classes of
familiar objects, the preferred views are reasonably consistent among the human
subjects. To make it clear, the most salient view of a 3D object herein is defined
as the view that a human subject likes most for whatever reason. And we shall
evaluate our method using the publicly available benchmark [7] where subjects
were asked to rotate a 3D object to directly select the view that they preferred.

To instantiate the view-object consistency in the context of salient view selec-
tion, we develop a multi-view convolutional neural network (CNN). It formulates
the view-object consistency through a two-channel architecture and a new loss
function. It also integrates with an important heuristic of human’s view prefer-
ence via a specifically designed layer. The proposed multi-view CNN is trained
end-to-end in an unsupervised manner using only a collection of 3D objects
without any manual annotations and is thus named as Unsupervised Multi-View
CNN (UMVCNN). Overall, it exploits both intra-view and inter-view knowledge
via a multi-view representation of 3D objects for salient view selection.

The contribution of our work is hence threefold:

(1) We propose an unsupervised framework of 3D deep learning where the core
idea is valid ubiquitously and thus potentially has a range of applications.

(2) We propose a multi-view CNN in accordance with this unsupervised frame-
work to address the classical problem of salient view selection of 3D objects.

(3) By the unsupervised 3D deep learning framework, we extend salient view
selection from individual 3D objects to scenes containing multiple objects.

2 Related work

We categorise the literatures into three groups. The first group is based only
on handcrafted attributes of 3D objects; the second group is essentially shallow
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learning of a certain model to combine multiple attributes while all attributes
are not learned but still handcrafted; the third group is based on deep learning
where some, if not all of the attributes, are learned via deep neural networks.

Handcrafted attributes. Polonsky et al. [21] explored general frameworks
for view selection by analysing several handcrafted attributes associated to ge-
ometrical or statistical properties of a 3D object or its projected 2D views. Lee
et al. [16] selected salient views using the attribute of mesh saliency computed
via Gaussian-weighted mean curvatures. Yamauchi et al. [33] employed mesh
saliency as the intra-view cue for finding salient views while taking into account
such inter-view cue as the similarity of projected views. [17] computed a saliency
measure based on both local geometrical and global topological attributes for
salient view selection. However, most methods based on handcrafted attributes
do not generalise well due mainly to the limited expressive capabilities of the
attributes extracted by some fixed schemes for objects of different classes.

Handcrafted attributes with shallow learning. Vieira et al. [29] learned
good views via an SVM classifier where the candidate views were represented
by a collection of handcrafted attributes. To investigate human view preference,
Secord et al. [23] collected a small dataset to learn a regression model combin-
ing a list of handcrafted attributes. Mezuman and Weiss [18] leveraged Internet
images to learn the view from which we most often see the object, where the
handcrafted GIST descriptor was employed to measure view similarity. He et al.
[10] proposed a multi-view learning framework exploiting both 2D and 3D hand-
crafted attributes to recommend viewpoints for photographing architectures.

Deep learning. Apart from the psychological work [27, 6, 9], in computer
vision, there is also evidence [32, 26, 19] of the relation between view selection
and object recognition where view-dependent attributes were extracted via deep
networks for 3D object recognition. Kim et al. [14] and Song et al. [25] leveraged
CNNs for view selection instead of improving recognition accuracy. Our work is
inspired by them but fundamentally different for two reasons: 1) both [14] and
[25] require annotated data for training while our work is unsupervised; 2) both
of them cannot be trained end-to-end where the former trains two CNNs and a
Random Forest classifier separately and the latter trains a CNN and a Markov
Random Field individually while our UMVCNN is trained fully end-to-end.

3 Salient view selection via UMVCNN

In this section, we first describe each component of our method in a piecewise
manner. We then elaborate the implementation as a whole where each component
is situated in the context of the complete pipeline.

3.1 Multi-view representation of a 3D object

Multi-view CNNs have been used to adapt image-based deep networks to 3D
objects where an object is represented as a set of its projected views. Compared
with other methods which generalise deep learning to non-Euclidean domains,



4 R. Song et al.

Fig. 1. Overview of the proposed UMVCNN containing two channels. The green and
the red arrows denote the view channel and the object channel respectively. “VD” and
“WSP” denote the view distinction and the weighted sum pooling layers respectively.

multi-view CNNs showed state-of-the-art performance in various 3D shape un-
derstanding tasks [26, 22, 13, 12]. One consensus is that we should avoid using
the very ‘bad’ views usually defined as the ones that cause misunderstanding of
objects. We propose a scheme considering two low-level attributes to ensure that
the selected 2D views for representing a 3D object are at least ‘not very bad’.

We start with an icosahedron to uniformly sample a view sphere surrounding
the input object. Then we iteratively subdivide the icosahedron to produce more
viewpoints on the view sphere. We end with a polyhedron with 162 vertices. Next,
we rank the views taken from these viewpoints based on the attributes of view
area and silhouette length. View area is calculated as the area of the projection
of the object as seen from a particular viewpoint. Silhouette length is the length
of the outer contour of the silhouette of the object as seen from a particular
viewpoint. We collect the top N = 20 views with the highest ranks on average
based on the two attributes as the multi-view representation of the 3D object.

3.2 UMVCNN architecture

Overview. Fig. 1 illustrates the architecture of the UMVCNN. It starts with
VGG-19 [3] as the backbone and then branches off the view and the object chan-
nels after the Fc7 layers. Through the view distinction (VD) layer, it generates
an inter-view heuristic using the deep features extracted from the 2D views. A
weighted sum pooling (WSP) layer is then employed to incorporate this heuristic
and multiple intra-view features derived from each individual view into a single
tensor encoding the information corresponding to the entire 3D object. These
two layers and the newly added fully connected layer Fc9 followed by a Softmax
normalisation form the object channel. It outputs to the loss layer a vector com-
posed of the probabilities of the 3D object belonging to a certain class. On the
other hand, we still keep the original Fc8 layer of VGG-19 in the view channel
that generates a vector for each view predicting which class the view belongs
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to. Every VGG-19 layer from Conv1 to Fc8 in the UMVCNN shares the same
weights for all views. Finally, the outputs of the view and the object channels
converge at the newly designed Multi-View Logistic Loss (MV-LogLoss) layer
that formulates the view-object consistency to enable an unsupervised learning.

View distinction (VD) layer. Existing work [33, 23, 34] showed that hu-
mans subjects find a good view by not only scrutinising its own intra-view con-
tent, but also comparing it with other views of the same object. Note that a lim-
itation of most previous work is the lack of the consideration of such inter-view
knowledge in their algorithms. In this work, we propose a heuristic mechanism
to formulate the inter-view knowledge via paired comparisons of views. Previous
work [31, 15] in psychology pointed out that a basic principle in human visual
system is to suppress the response to frequently occurring features, while at the
same time it remains sensitive to features that deviate from the norm. We thus
propose the VD layer as a heuristic method to formulate this principle where the
view most different from all other views are regarded as the most distinct one.
The VD layer takes as input the outputs of all Fc7 layers. Since one 3D object
is represented as N views, the input of the VD layer is a matrix of size 4096×N
for a given object. Each of its columns can be regarded as a feature descriptor
of one view. The VD layer outputs an N -dimensional vector to the WSP layer.
Each element of the vector corresponds to the distinction of a particular view.

Given two views Vi and Vj , their difference can be measured as the Eu-
clidean distance between their feature descriptors Fi and Fj output by the Fc7
layer (with ReLU activation). However, this measure is insufficient as a view
tends to have similar content with its neighbouring views. If a view is even very
different from its neighbouring views, it is likely to contain some unique content
and thus be considered confidently distinct from the other views. Hence, the dis-
similarity of two views should be proportional to the difference computed as the
Euclidean distance between their feature descriptors and inversely proportional
to the geodesic distance between their corresponding viewpoints. Such a heuris-
tic also computationally holds for symmetric objects. For symmetric views, the
dissimilarity is always 0 as Fi = Fj and thus has nothing to do with the geodesic
distance between them. Besides the N projected views, the UMVCNN also re-
quires as input the view index VIndi ∈ {1, 2, ..., 162} generated as a byproduct
when creating the multi-view presentation of the object (see Section 3.1).

Let Geod(VIndi,VIndj) be the geodesic distance between the viewpoints
corresponding to Vi and Vj , the dissimilarity between them is defined as:

Dij =
‖Fi − Fj‖

1 + α ·Geod(VIndi,VIndj)
, s.t. i, j ∈ {1, 2 . . . , N} and i 6= j (1)

where α = 2 in our implementation. The distinction of Vi is then computed as
the sum of its pairwise dissimilarity to all the other views.

Si =
∑
j 6=i

Dij . (2)

Eqs. (1) and (2) are both differentiable. Thus for back-propagation, given that
the gradient passed to the VD layer is an N -dimensional vector S, according to
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the chain rule, the gradient F with regard to its input can be computed as

Fi = Si
∂Si

∂Fi
(3)

Considering Eqs. (1) and (2) and the partial derivative of the Euclidean distance

function ∂‖x‖
∂xi

= xi

‖x‖ , it can be computed as

∂Si

∂Fi
=

∑
j 6=i

Fi − Fj

(1 + α ·Geod(VIndi,VIndj)) · ‖Fi − Fj‖
. (4)

Weighted sum pooling (WSP) layer. To implement the view-object con-
sistency through the loss layer requiring the outputs of the view and the object
channels to have the same dimensions, we need to pool to aggregate the learned
knowledge across all 2D views to create a single descriptor for the 3D object.
Also, we need to consider how to cast the influence of view distinction into this
aggregation process where distinct views should have larger weights. Thus in-
stead of the popular element-wise max pooling [26, 13] in multi-view CNNs, we
carry out a WSP to incorporate view distinction as the weights into the pooling

P =

N∑
i=1

FiSi (5)

where Fi is the column vector of the output of the Fc7 layer F which denotes
the feature descriptor of Vi. Si is its distinction output by the VD layer. The
output of the WSP layer P regarded as the feature descriptor of the 3D object is
thus estimated as the weighted sum of the feature descriptors of all views where
the weights are their distinctions. Eq. (5) can be expressed in a bilinear form as
P = FS. Thus with the gradient P passed to the WSP layer, the gradients F
and S with regard to the inputs F and S respectively can be computed as

F = PST , S = FTP. (6)

MV-LogLoss Layer. We propose the MV-LogLoss layer to formulate the
view-object consistency enabling an unsupervised learning. No matter what the
taxonomy is, the outcome of the classification based on each 2D view should
be consistent with that based on the entire 3D object. As illustrated in Fig. 1,
either of the view and the object channels alone is specifically designed to have
the architecture of a classification network, which facilitates the formulation
of the view-object consistency. Moreover, such a design benefits salient view
selection as the features vital for object classification are usually important for
the selection of a salient view. Psychological studies [27, 6, 9] validated that a
good view of an object can significantly help people to correctly recognise it.

The MV-LogLoss simply adapts the log loss in a multi-view scenario. This
loss layer first computes the individual log loss of the softmax-normalised output
of each Fc8 layer, V(i) with regard to that of the Fc9 layer, O, which represent
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the final outputs of the view channel and the object channel respectively. The
multi-view loss is then computed as the sum of all individual log losses:

L = −
N∑
i=1

C∑
c=1

Oc · log (Vc(i)) (7)

where for simplicity, we write the output of the view channel Vc(Vi) as Vc(i).
Through training, Eq. (7) is minimised by impelling O to be consistent with
V(i) and the view-object consistency is thus realised.

It can be clearly seen that the MV-LogLoss defined as Eq. (7) does not rely on
any annotations as Oc and Vc(i) are internally generated by the object channel
and the view channel of the UMVCNN respectively. C in Eq. (7) is a picked
integer defining the output dimension of the Fc8/Fc9 layer when building the
UMVCNN. And the influence of varying C will be studied in Section 4.4.

3.3 Salient view selection

In the deployment, given an object represented as a set of N views, we first
feed the views into the UMVCNN and hijack the output of the Softmax layer
connected with the Fc9 layer during the forward-propagation to predict its object
class C. Then, we back-propagate a C-dimensional one-hot vector where only the
entry of index C is 1 from this Softmax layer to the input views with all network
weights fixed. It leads to a per-pixel saliency map Ii for all pixels in each view
Vi based on their influence on the predicted class C. Ii can be interpreted as a
measure of pixel importance with regard to the recognition of the object. Like
previous methods [16, 23, 17] and also to facilitate evaluations, we are keen to
obtain the goodness of any viewpoint, which requires to generate a per-vertex
saliency map. We thus employed the 2D-to-3D saliency transfer scheme proposed
in [25] to derive a 3D saliency map Hi from Ii. Finally, we hijack the output of
the VD layer Si as the weighting parameters which represent the learned view
distinction to aggregate multi-view saliency maps His into a single one:

H =

N∑
i=1

SiHi. (8)

We then select the viewpoint that maximises the sum of the saliency map H
for the visible regions of the 3D object as the salient viewpoint:

vs = arg max
v

(
∑

m∈B(v)

H(m)) (9)

where B(v) is the set of the vertices visible from the viewpoint v and H(m)
denotes the saliency of the vertex m. M(v) =

∑
m∈B(v)H(m) can be regarded

as the saliency map of the viewpoints. Fig. 2 shows the 2D representation of the
unwarped viewpoint saliency map on a view sphere normalised to the interval
of [0, 1]. It is generated via the Mercator projection where the x and the y axes
correspond to the latitude and the longitude respectively. Note that initially the
model is not up oriented in the view sphere.
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Fig. 2. Viewpoint saliency map. (a)–(c) are the projected views of the Lucy model. (d)
is the viewpoint saliency map where the black square, circle and diamond mark the
locations of the viewpoints corresponding to the views shown in (a)–(c) respectively.

3.4 Implementation

The proposed method is fully unsupervised. All we need to do is to pick an
integer C for defining the output dimension of the Fc8/Fc9 layer.

We first render each 3D object as 20 views as described in Section 3.1 using a
standard OpenGL renderer with perspective projection mode. The strengths of
the ambient light, the diffuse light and the specular reflection are set to 0.2, 0.6
and 0.1 respectively. We apply flat shading to the meshed object. Using different
illumination models or shading coefficients does not affect our method due to
the invariance of the learned convolutional filters to illumination changes, as ob-
served in image-based CNNs. All of the 20 views are then printed at 200 dpi, also
in the OpenGL mode, and further resized to the resolution of 224 × 224. Then
for training we feed these views into the UMVCNN wherein the convolutional
layers and the first fully connected layer Fc6 are initialised with the weights pre-
trained on ImageNet while other fully connected layers Fc7, Fc8 and Fc9 are all
initialised with random weights using the popular method proposed in [11]. The
UMVCNN is trained end-to-end by stochastic gradient descent with the learning
rate of 10−5. As we observed, the training always converged within 50 epochs for
all of the variants of the UMVCNN that we shall discuss in Sections 4.4. When
deploying the UMVCNN to select the salient view of a given 3D object, we again
render the object as 20 views with the same rendering settings and then use the
scheme described in Sections 3.3 to output the salient viewpoint.

4 Experimental results

In this section, we first introduce the datasets used in the experiments and eval-
uate our method qualitatively. Then, we show that our method can be directly
used to select the salient view of a 3D scene to attract further interest. Finally,
we evaluate both the proposed UMVCNN and its variants via quantitative com-
parisons for demonstrating its superiority and better understanding it.

4.1 Datasets

We create a new dataset containing 2747 3D models downloaded from the Prince-
ton ModelNet dataset [32], the Schelling dataset [4] and the Trimble 3D Ware-
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Fig. 3. Qualitative results of the salient views and the viewpoint saliency maps gener-
ated by our method. The black square corresponds to the salient viewpoints selected
by our method. The white “X”s correspond to the ground truth best viewpoints picked
by 26 human subjects (including their symmetric viewpoints) provided by [7].

house [30]. These models are originally from 30 object categories while in this
work, all categorical annotations are removed in training and validation for an
unsupervised learning. We use the same data split as in [32] where 80% of the
objects in each category are used for training and 20% are used for validation.

We test our method on the Best View Selection benchmark [7] which might be
the only publicly available benchmark suitable for quantitatively evaluating view
selection methods. It contains 68 3D objects of various classes including some
that do not belong to any of the 30 categories from the perspective of human
recognition. It provides a quantitative benchmarking measure, the ground truth
best viewpoints picked by 26 people and the results of 7 competing methods. We
also used objects from the Stanford 3D Scanning Repository [5], the Princeton
Shape Benchmark [24] and the Watertight Track of SHREC’07 for evaluations.
Data and codes are available at https://github.com/rsong/UMVCNN.

4.2 Qualitative results

Fig. 3 shows our results for a variety of 3D objects with the ground truth best
viewpoints supplied by [7]. The ground truth best viewpoints could be more
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Fig. 4. Qualitative comparisons with [16] and [33]. (a) The best views selected by
[16] (as implemented and shown in [33]). (b) The best views selected by [33]. (c) The
best views selected by our method. (d) The viewpoint saliency maps generated by our
method where the black squares mark the most salient viewpoints.

or less than 26 as 1) several participants could select the same viewpoint and
2) the symmetry of each object is taken into account and thus the symmetric
viewpoints of those picked by the participants are also included. It can be seen
that the consistency of human preferred viewpoints varies over different objects.
Even though, most ground truth best viewpoints fall into the red or orange areas
in the viewpoint saliency maps, which demonstrates that our method is good
at predicting human’s viewpoint preference over various objects. Also, for most
objects, the salient viewpoint found by our method is, or at least very close to, a
ground truth viewpoint picked by a participant. Due to the default distortion of
the Mercator projection, for the Ant, the viewpoints on the bottom boundary of
the viewpoint saliency map that look distant from each other are actually very
close on the view sphere since they are both close to its bottom pole.

We next compare our method with some state-of-the-art methods. Since some
of them require tuning of parameters and some are not open-sourced, we used our
method to select salient views for the same objects used in the papers where the
methods were reported. Fig. 4 compared our method with [16] and [33]. It can
be seen that the our method is less influenced by some local geometric features
such as the sharp edges at the bottom of the hand model if semantically they
do not help the recognition of the object. Similarly, Fig. 5 shows that [17] chose
a back view of the lamp containing many local details such as wires and screws.
In comparison, for both the lamp and the jeep, our method tends to select views
natural and good for recognising the objects. Fig. 5 also shows that our method
outperforms [25] over a helicopter and a horse while more convincing quantitative
comparisons using a variety of 3D objects are provided in Section 4.3. Note that
[25] is essentially based on a weakly supervised deep learning framework where
the class labels of the objects are available during training.

Since the UMVCNN does not rely on the knowledge about object classes,
our method can be directly used to select the salient view of a 3D scene which
usually contains objects of different classes and thus is unlikely to be reliably cat-
egorised in most datasets. According to the results shown in Fig. 6, our method
successfully selects good views for various 3D scenes. The viewpoint saliency
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Fig. 5. Qualitative comparisons with [17, 25]. (a) and (d) The best views selected by
[17] and [25] respectively. (b) and (e) The best views selected by our method. (c) and (f)
The viewpoint saliency maps with black squares marking the most salient viewpoints.

maps of 3D scenes generated by our method are also informative. For instance,
by observing the corresponding locations of the best and the worst views in the
viewpoint saliency maps of most scenes, we find that the views with positive
elevation angles are generally much more salient than those with negative ones,
which is consistent with human’s viewpoint preference. We also observed that
the best view of a scene is not necessarily the best view of each individual object
in it. For example, in the living room scene, the best view of the entire scene is
not that of one of the three sofas. Similarly, in the work site scene, the best view
of the scene is not that of the person in the middle and some chairs.

Please refer to the supplemental material for more qualitative results.

4.3 Quantitative results

We tested our method on the benchmark supplied by [7] which contains 68 ob-
jects using a computer with an Intel i7-4790 3.6GHz CPU and 32GB RAM with-
out any GPU acceleration. The salient views of most objects can be computed
within 1 minute where the vertex visibility to each viewpoint is precomputed.

Table 1 gives the statistics of the View Selection Error (VSE) of 9 automatic
view selection methods over all of 68 objects. The VSE proposed by [7] measures
the geodesic distance between the viewpoint found by a method and the ground
truth supplied by a human subject on a unit view sphere and is averaged over
the choices of all subjects, with the consideration of object-specific symmetry.

According to Table 1, our method yields the best performance in terms of
the mean VSE, the median VSE and the number of objects for which a method
gave the lowest VSE among all competing methods. Here UMVCNN-30 refers
to the UMVCNN with C set to 30. As mentioned at the end of Section 3.2,
this means that the output dimension of the Fc8 and Fc9 layers is set to 30
when we build the UMVCNN, which indicates that either of the view and the
object channels categorises the objects into 30 classes. As shown in Fig. 3, due to
the inconsistency of the ground truth choices of human subjects over the same
object, reaching a zero mean VSE is impossible and improving the VSE is very
challenging if it is already low. In most cases, a viewpoint with a mean VSE lower
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Fig. 6. Salient and non-salient views of 3D scenes (courtesy of Trimble 3D Warehouse
[30]) selected by our method. Left column: the most salient views; Middle column: the
least salient views; Right column: the viewpoint saliency maps where the black square
marks the most salient view and the white diamond marks the least salient view.

than 0.3 corresponds to a good view. Even though, our method outperforms
[25] by 3.4%, 2.9%, 4.6% and 24.8% in terms of the mean, the median, the
standard deviation and the interquartile range of the VSE respectively. Note that
their method is also based on deep learning but trained, in a weakly supervised
manner, on a large dataset with the annotations of object class membership.

No method is consistently the best over all 68 objects although our method
accomplishes the best results for 20 objects, the most over all competing meth-
ods. This is in agreement with the conclusions in [1, 23] which argued that hu-
man’s view preference is driven by a variety of attributes. In general, the methods
based on low-level attributes perform significantly worse than the two based on
deep neural networks which learn high-level attributes of 3D objects.

In particular, Table 1 shows that our method significantly outperforms [7]
based on view area and [21] based on silhouette length in terms of the VSE. This
demonstrates that the improvement of the VSE does come from the UMVCNN
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Table 1. Statistics of the VSE of 9 methods over 68 objects. SD and IQR represent
the standard deviation and the interquartile range respectively. n gives the number of
objects for which a method gave the lowest VSE among all competing methods.

View Selection Method mean VSE median VSE SD of VSE IQR of VSE n

View area [7] 0.517 0.539 0.186 0.306 6
Ratio of visible area [21] 0.473 0.473 0.196 0.338 1
Surface area entropy [28] 0.396 0.386 0.144 0.195 8
Silhouette length [21] 0.446 0.445 0.172 0.275 7
Silhouette entropy [20] 0.484 0.469 0.153 0.241 5
Curvature entropy [20] 0.474 0.466 0.139 0.239 8
Mesh saliency [16] 0.430 0.395 0.165 0.233 2
Deep mesh distinction [25] 0.380 0.346 0.173 0.314 11
UMVCNN-30 0.367 0.336 0.165 0.236 20

Table 2. Mean View Selection Error of the variants of the UMVCNN over 68 objects

UMVCNN Variants C = 10 C = 15 C = 20 C = 25 C = 30 C = 30, C = 30, C = 35 C = 40
max-pooling 30 views

mean VSE 0.379 0.373 0.382 0.381 0.367 0.384 0.366 0.377 0.380

rather than the handcrafted features, i.e. view area and silhouette length that
we use for the multi-view representation of a 3D object (see Section 3.1).

4.4 Evaluations over the variants of UMVCNN

Effect of varying C. Table 2 gives the mean VSE of the UMVCNN variants.
It can be seen that redesigning the UMVCNN by varying C from 30 leads to an
insignificant degradation of performance. As mentioned in Section 4.1, the 3D
objects used for training are originally from 30 categories while we removed all
categorical annotations for an unsupervised learning. Presumably, that C = 30
is indeed a good choice for the UMVCNN can be interpreted by the fact that
salient view selection is highly related to classification as we observe that the
objects of the same class tend to have analogous salient viewpoints while it is not
the case the other way round. However, we cannot observe any obvious rule that
suggests a way for deciding C. In a supervised learning, the network is forced to
adopt the taxonomy of object classification consistent with human annotations
while there is no guarantee that this taxonomy is optimal to the particular task
such as salient view selection. Thus in different tasks, C might need to be tuned,
but not necessarily fine-tuned as the UMVCNN is not very sensitive to it.

Ablation study for validating VD and WSP. We are interested in
the heuristic component of the UMVCNN, i.e. the VD and the WSP layers.
To validate its effectiveness, we replace the VD and the WSP layers with the
popular element-wise max pooling which have demonstrated state-of-the-art per-
formances in various 3D shape understanding tasks such as classification [26],
retrieval [26] and segmentation [14]. The variant corresponds to ‘C = 30, max
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Fig. 7. Limitation. Our method tends to select views good for recognition but not
necessarily “natural”. Left: the view selected by a subject; Middle: the view selected
by our method; Right: the viewpoint saliency map where the diamond and the square
mark the views selected by the subject and our method respectively.

pooling’ in Table 2. To aggregate the multi-view 3D saliency maps Hi in Eq. (8),
we set Si to 1 as it is not available via this variant. Table 2 shows that the per-
formance of the UMVCNN is significantly worse without the VD and the WSP
layers. This demonstrates the effectiveness of the view distinction heuristic. It
also suggests that the unsupervised learning based on the view-object consis-
tency is likely to benefit from some heuristics introduced for the specific task.

Effect of the number of views. We tested the variant corresponding to
‘C = 30, 30 views’ in Table 2 where a 3D object is projected into 30 instead of
20 views. All the other variants in Table 2 used the 20-view setup. It can be seen
that using 30 views merely reduces the mean VSE slightly from 0.367 to 0.366.
Using more or different views is trivial, however, we found that a 20-view setup
is already enough to achieve high performance.

5 Conclusions

This work reveals that the view-object consistency is promising for the establish-
ment of an unsupervised framework of 3D deep learning. We validate its effec-
tiveness on the challenging task of salient view selection of 3D objects through
the relatively naive design of a multi-view deep architecture. While the perfor-
mance of our method is impressive, it has some limitations as shown in Fig. 7.
Our method tends to select a view good for recognising the object, such as the
view that better shows some features important for recognising the airplane (e.g.
the wings and the engines). However, most subjects prefer a “natural” side view.

Future work will focus on implementing the unsupervised learning frame-
work in more applications to demonstrate that it is amenable to a wide range
of 3D shape understanding tasks. Particularly interesting applications might be
some 3D scene understanding tasks hindered by the difficulty of collecting large
amounts of accurately and consistently annotated data for training.
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