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Abstract. Region Proposal Network (RPN) provides strong support
for handling the scale variation of objects in two-stage object detection.
For one-stage detectors which do not have RPN, it is more demanding
to have powerful sub-networks capable of directly capturing objects of
unknown sizes. To enhance such capability, we propose an extremely effi-
cient neural architecture search method, named Fast And Diverse (FAD),
to better explore the optimal configuration of receptive fields and con-
volution types in the sub-networks for one-stage detectors. FAD consists
of a designed search space and an efficient architecture search algorithm.
The search space contains a rich set of diverse transformations designed
specifically for object detection. To cope with the designed search space, a
novel search algorithm termed Representation Sharing (RepShare) is pro-
posed to effectively identify the best combinations of the defined trans-
formations. In our experiments, FAD obtains prominent improvements
on two types of one-stage detectors with various backbones. In partic-
ular, our FAD detector achieves 46.4 AP on MS-COCO (under single-
scale testing), outperforming the state-of-the-art detectors, including the
most recent NAS-based detectors, Auto-FPN [42] (searched for 16 GPU-
days) and NAS-FCOS [39] (28 GPU-days), while significantly reduces
the search cost to 0.6 GPU-days. Beyond object detection, we further
demonstrate the generality of FAD on the more challenging instance
segmentation, and expect it to benefit more tasks.

1 Introduction

Object detection is a fundamental task in computer vision [31,24,17,30,18,
23,15, 38,45], but it remains challenging due to the large variation in object
scales. To handle the scale variation, a straightforward method is to utilize multi-
scale image inputs [34, 35], which usually lacks efficiency. A line of more efficient
methods is to tackle the scale variation on the intermediate features [24, 17]. For
example, Feature Pyramid Networks (FPN) [17] is a representative work that
implements the detection of objects with different scales in multiple levels of
feature pyramids. On the other hand, recent works also attempt to improve the
detectors from the perspective of receptive fields (RFs) [23,15]. They enhance
the scale-awareness of the detectors by having multi-branch transformations with
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Table 1. Comparison against other NAS methods for object detection on
MS-COCO [19]. Trans. indicates the number of transformation types in the search
space (‘skip-connect’ is excluded). Counterpart denotes the baseline detectors (and
backbone) for direct comparison. * means only the dilation rates are varied.

Method 1\?[2?;1(;}21 Trans. GPU-days Counterpart E;laﬁ;\;i
NAS-FPN [7] RL 2 > 100 RetinaNet (Res-50) 129
DetNAS [1] EA 4 44 FPN (ShuffleNetv2) 12.0
NATS-det [26] EA 9* 20 RetinaNet (Res-50) 1 1.3
Auto-FPN [42]  Gradient 6 16 FPN (Res-50) $1.9
NAS-FCOS [39]  RL 6 28 FCOS (Res-50) +1.7
SM-NAS [43] EA - > 100 - -
FAD (ours) Gradient 12 0.6 FCOS (Res-50) T17

different combinations of kernel sizes and/or dilation rates. Then the features of
different RFs are aggregated to enrich the information of different scales at each
spatial location.

An object detector often has a backbone network followed by the detection-
specific sub-networks (i.e. heads), which play an important role in object detec-
tion. The sub-networks compute the deep features which are used to directly
predict the object category, localization and size. Unlike two-stage detectors
in which the sub-networks operate on the fixed-size feature maps computed
from each object proposal, generated by a region proposal network with ROI-
pooling [31], the sub-networks in one-stage detectors should be capable of ‘look-
ing for’ objects of arbitrary sizes directly. It becomes more challenging for an
anchor-free detector. Because the multi-scale anchor boxes can be considered as
a way to explicitly handle various sizes and shapes of objects, whereas an anchor-
free detector only predicts a single object at each spatial location, without any
prior information about the object size. Therefore, for one-stage detectors, espe-
cially the anchor-free ones, the capability of the sub-networks for capturing the
objects with large scale variation becomes the key. In this work, we aim to en-
hance the power of the sub-networks in one-stage detectors, by searching for the
optimal combination of the RFs and convolutions in a learning-based manner.

Neural Architecture Search (NAS) has gained increasing attention. It trans-
fers the task of neural networks design from a heuristics-guided process to an
optimization problem. Recently, it has been shown that NAS can achieve promi-
nent results on object detection [7,1,42,26,43,39]. In most of the work, the
operations in the search space are directly extended from those used for image
classification [48,22] with limited variation on dilation rates. Therefore, their
search spaces with respect to transformations are relatively limited, as listed
in Table 1. Apart from the combination of RFs, we also investigate the impor-
tance of the diversity of the transformations in NAS search space for object
detection. However, searching through such a large number of candidate trans-
formations can be computationally expensive, especially for the RL-based [48,
27] and EA-based [29] approaches. Additionally, this problem can be more signif-
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icant for object detection than image classification, due to the more complicated
pipelines with larger input images.

To this end, we propose a computation-friendly method, named Fast And
Diverse (FAD), to search for the task-specific sub-networks in one-stage object
detectors. FAD consists of a designed search space and an efficient search algo-
rithm. We first design a rich set of diverse transformations tailored for object
detection, covering multiple RFs and various convolution types. To learn the op-
timal combinations more efficiently, a search method via representation sharing
(RepShare) is proposed accordingly. By sharing intermediate representations,
the proposed RepShare significantly reduces the searching time and memory
cost for the architecture search. Furthermore, we propose an efficient method to
reduce the interference between the transformations sharing the same represen-
tations, and at the same time, alleviate the degradation of search quality caused
by RepShare.

To demonstrate the effectiveness of the proposed method, we redesign the
sub-networks for modern one-stage object detectors, and propose a searchable
module for replacement. The architecture search for the module is extremely
efficient using our FAD, which is more than 25X faster than the fastest NAS
approach for object detectors so far, while achieving a comparable AP improve-
ment (see Table 1). With ResNeXt-101 [41] as the backbone, our FAD detector
achieves 46.4 AP on the MS-COCO [19] test-dev set using a single model under
single-scale testing, without using any additional regularization or modules (e.g.
deformable conv [3]). Moreover, we show that FAD can also benefit more chal-
lenging tasks, such as instance segmentation. The contributions of this work are
summarized as:

e We present a novel method, named Fast And Diverse (FAD), to search mean-
ingful transformations in the task-specific sub-networks for one-stage object
detection. The search space is designed specifically for object detection, and
we empirically investigate the importance of the RFs coverage and convolu-
tion types for object detection.

e We propose an efficient search method with a novel representation sharing
(RepShare) algorithm, which can significantly reduce the search cost in both
time and memory usage, e.g. being more than 25x faster than all previ-
ous methods. To ensure the search quality, a new method is introduced to
decouple the transformation selection from the shared representations.

e To evaluate our methods, we design a searchable module for one-stage object
detection and instance segmentation. Extensive experiments show that our
FAD detector obtains consistent performance improvements on different de-
tection frameworks with various backbones, and even has fewer parameters.

2 Related Work

2.1 Object Detection and Instance Segmentation

In general, object detectors can be categorized into two groups: two-stage de-
tectors and one-stage detectors. Modern two-stage detectors [31, 2] first adopt a
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regional proposal network (RPN) to generate a set of object proposals, which are
then fed to the R-CNN heads for object classification and bounding box regres-
sion. On the other hand, one-stage object detectors [30, 24, 18] directly perform
object classification and box regression simultaneously at each spatial location
on the feature maps produced from a backbone network. Taking RetinaNet as
an example, it consists of a backbone network with a feature pyramid network
(FPN) [17] and two sub-networks for classification and bounding box regression.
Recent works attempt to get rid of hand-designed anchor boxes while achieving
comparable performance [14,4, 47, 38]. For instance, FCOS [38] additionally pre-
dicts a centerness score which indicates the distance of current location to the
center of the corresponding object, and can even outperform RetinaNet.

Receptive fields (RF). RF is proved to be very important for object detectors [23,
15]. For instance, Liu et al. [23] designed a combination of kernel sizes and
dilation rates, to simulate the impact of the eccentricities of population receptive
fields in human visual cortex. TridentNet [15] tackles the scale variation using
multi-branch modules with different dilation rates. In this work, we aim to search
for an optimal combination of different conv layers and dilation rates jointly.

Instance segmentation. Instance segmentation is closely related to object detec-
tion, and the dominant instance segmentation methods often have two stages [10,
13]: they first detect the objects in an image, and then predict an object mask on
each detected region. Mask R-CNN [10] is a representative work in this paradigm,
which has an additional mask head on top of Faster R-CNN [31] to perform mask
prediction on each object proposal. In this work, we apply the proposed FAD
search method to instance segmentation, which has not been explored previously.

2.2 Neural Architecture Search

Recent attention has been moved from network design by hand to neural archi-
tecture search (NAS) [48,27, 21, 25, 22]. A stream of efficient NAS methods is the
differentiable NAS [25, 22]. In particular, DARTS [22] significantly increases the
search efficiency by relaxing the categorical choice of operation to be continuous,
so that the architecture can be optimized by gradient descent. In this work, we
develop an efficient NAS algorithm for object detectors, by fast searching the
optimized transformations.

NAS for Object Detection NAS has been applied to many vision tasks apart
from image classification, such as object detection [7,1,42,26]. For example,
NAS-FPN [7] uses a RL-based NAS to search for an optimal FPN [17] on the
RetinaNet. DetNAS [1] aims at finding the optimal shuffle-block-based backbone
network in object detectors using an evolution algorithm [8,28]. A channel-level
NAS is proposed in NATS [26] to search for the backbone in object detectors.
Alternatively, some recent works search for the detection-specific parts rather
than the backbone for object detection. For instance, Auto-FPN [42] searches
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Fig. 1. Search space of FAD for one-stage object detectors. The backbone
and FPN [17] in detectors remain the same, while each FPN level is connected to a
searchable module. It consists of two groups of cells, with same cell architectures within
each group. In a cell, the edges connecting nodes consist of two standard 1x1 conv layers
and a transformation block in between. The cell structures and the transformations are
to be searched. Each edge might have different RFs, resulting in combinations of RFs
at each node which enrich the features for capturing information of various scales.

for a FPN structure and head structures. SM-NAS [43] also searches for two-
stage detectors by first conducting a structural-level search and then a modular-
level search. Instead of exploring novel structures, CR-NAS [16] aims to re-
allocate the computation resources in the backbone. NAS-FCOS [39] is a FCOS-
based detector in which the structure of its FPN and the following sub-networks
are computed using RI-based NAS. In this work, we design the search space
specifically, and propose the FAD method to search for the sub-networks in
one-stage detectors.

3 Fast Diverse-Transformation Search

3.1 Search Space of FAD

One-stage detectors like RetinaNet [18] and FCOS [38] consist of a backbone
network with FPN [17] and two parallel sub-networks for object classification
and bounding box regression, respectively. In this section, we design a searchable
module to replace the commonly-used sub-networks. This module is searched by
the proposed FAD, and can be adapted to one-stage object detectors that follow
a similar structure as RetinaNet [18] in a plug-and-play fashion. We then describe
the novel search space of FAD which is tailored for object detection, including
a variety of diverse transformations with different RF's.

Object Detector with FAD As shown in Figure 1, the proposed searchable
module is comprised of two groups of cells, which are connected sequentially
with a shortcut from the input of the module to that of the second group. The
module outputs both object classification and bounding box prediction. The
architectures and parameters are shared across different FPN levels.
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Classification and regression. In FAD, the bounding box prediction is performed
on the output of the first group, while the classification is computed from the
output of the second group. The intuition behind this design is that the two
tasks should not be implemented on the exactly same feature maps due to dif-
ferent objectives: bounding box regression needs to focus on the local detailed
information, while object classification is implemented on the features with more
semantic information (i.e. the feature maps on deeper layers). Therefore, we per-
form bounding box regression on the output of the first group.

Design of Search Space In the following, we describe the design of the search
space for FAD, which is inspired by the insights from modern neural architec-
tures [37,11] and object detectors [23,15]. Three important considerations in
our design are the coverage of RFs, the diversity in convolution types and the
computational efficiency.

Groups and cells. A group contains M repeated cells, and each cell is defined as
a module that contains multiple nodes and edges. Similar to [22,20], each cell is
formulated as a directed acyclic graph of nodes. Each node is a stack of feature
maps and each edge is an atomic block for search. In this work, we empirically set
the number of nodes in each cell to be 3, excluding the input and output nodes. In
our design, an edge consists of two 1 x 1 conv layers f and a transformation block
T between the two (Figure 1 bottom-right). The transformation block contains
a set of candidate transformations which will be described in Sec. 3.2. Each conv
layer in the transformation is followed by a group-normalization layer [40] and
a ReLU. Given a node z;, all the predecessors x; connected to it, and an edge
pointing from z; to x;, we can have the following expression:

7= T ey @), (1)

where f; ’jc/ and f; /j’c are the two 1 x 1 conv layers, with one transforming the

input channel ¢ to the channel used in the transformation block Tif;’cl and the
other vice versa. x; is computed based on N total number of predecessors. The
two 1 x 1 convolution enable a flexibility in the channel size in T, similar to
the inception module [37], while maintaining the same channel size for all the
nodes. We empirically found that maintaining a relatively large channel size for
nodes is beneficial to the performance. The representations of the intermediate
nodes in a cell are concatenated and passed to a 1 x 1 conv layer to reduce the
number of channels back to ¢. This additional conv layer ensures the consistent
channel size between the input and output of each cell. Furthermore, the idea of
having two groups of cells enables a larger flexibility for the architecture search,
i.e. a larger search space. Within each group, the cells share the same structure.
Therefore, once the search is completed, the cells in each group can be repeated
for multiple times, offering a great scalability in architecture depth.
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Diverse transformations. Our initial design of the candidate transformations
covers 4 different sizes of RFs (Figure 2 bottom left). In particular, for the
transformations that are responsible for a RF larger than 5, we use more effi-
cient operations by having a base filter followed by a dilated convolution which
spreads out the base filter to reach larger RFs. Moreover, the dilated conv lay-
ers are depthwise separable [32,12], in order to keep the computation efficient.
The memory-efficient design introduced in Section 3.2, allows us to include more
types of convolutions. Hence we have two streams of transformations: the stan-
dard conv and the depthwise separable conv. Namely, for the 6 transformations
shown in the bottom-left corner of Figure 2, the ‘conv’ layers can be all standard
convolution or depthwise separable convolution.

There are no pooling layers involved in the search space as we empirically
found that they are not helpful in our scenario. This is probably because the
spatial resolution of the feature maps remains the same in the sub-networks.
Moreover, skip-connection is not included in the transformation. Lastly, a ‘none’
path, indicating the importance of input edges with respect to each node, is
added to the transformation block. In summary, the proposed transformation
block contains 13 distinct transformations in total, including 2 types of conv
layers and 3 dilation rates, and covering 4 sizes of RF's, as illustrated in Figure 2.
Therefore, we build a meaningful search space with strongly diverse transforma-
tions. The resultant search space has roughly 2.3 x 10 unique paths in total,
with one cell per group in search time.

FAD for Instance Segmentation We expect that the mask prediction task
can also benefit from the combination of RFs and diverse transformations. With
minimal modification, FAD readily applicable to general instance segmentation
frameworks, e.g. Mask R-CNN [10] and Mask Scoring R-CNN [13]. Specifically,
we replace the conv layers before the deconvolutional layer in the mask head by
the proposed searchable module, and search for its architecture in an end-to-end
fashion. The search space is degined by following that of object detectors.

3.2 Fast Search with Representation Sharing

In this section, we propose a novel algorithm to significantly reduce the search
cost in both time and memory, followed by the description of search procedure.

Representation Sharing The proposed acceleration method for architecture
search, named RepShare, is performed in two steps: filter decomposing and in-
termediate representation sharing. We elaborate these two steps in the following.

Decomposing large filters. As proposed in [33], filters with large kernel sizes can
be replaced by multiple 3 x 3 filters. For example, a stack of three 3 x 3 filters in
fact has an equivalent size of receptive filed as a 7 x 7 filter. The stacked filters
have the advantages of fewer parameters and more non-linearities in between
for learning more discriminative representations. Following this intuition, we
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Image Classification Representation Sharing

RF=3
{sep 3x3, avg/max 3x3}

Node RF=5 Node
{sep 5x5, dil 3x3}

RF size 3 5 7 9

t1: conv 3x3 ta: conv 3x3 + dil 3x3 (r=2)
to: conv 5x5 ts: conv 5x5 + dil 3x3 (r=2)
ta: conv 7x7 te: conv 3x3 +dil 3x3 (r=3) | x 2

Fig. 2. Transformations and representation sharing. Left: comparison between
the transformations used for image classification and those proposed for object detec-
tion in the search space. The proposed transformations are listed at the bottom. conv
can be the standard or the depthwise separable convolution. Right: RepShare. Each
sphere and solid line denotes a representation and a conv layer, respectively. First,
large filters are decomposed into stacks of 3 x 3 filters. Second, p1 and ps are shared
across transformations. Note that the 1 x 1 conv layers are not shown for simplicity.

decompose the filters with large kernel size and construct a transformation block
only containing filters of size 3 x 3 (¢; to tg shown in Figure 2 top-right). However,
the replacement of large filters with stacks of small ones significantly increases
the memory overhead during the search. Taking the proposed transformations
as an example, more than twice intermediate representations are generated after
the decomposition.

Representation Sharing. To reduce this memory overhead, we further propose a
novel approach. Namely, for each receptive field (RF) level, all the intermediate
representations that are not directly connected to node z; are shared (Figure 2
bottom-right). To be specific, we denote t3 in top-right of Figure 2 as the stem.
In the stem, there are 3 intermediate representations having different sizes of
RFs with respect to the node x;. We merge the transformations by sharing the
intermediate representations in the stem. For example in Figure 2 (top-right),
to merge the ¢; into the stem, we directly connect the first intermediate rep-
resentation in the stem to node x;, and therefore the original ¢; (conv 3 x 3)
transformation is replaced by this new transformation. Specifically, the RepShare
reduces the number of representations computed in each transformation block
from 26 to 12. Therefore, it can significantly speed up the search process. More-
over, the search speed is further boosted by the memory-efficiency of RepShare
since the search can be done using a single GPU, which avoids the computational
overhead introduced by training with multiple GPUs (e.g. parameter update).
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Relation to other efficient search methods. The proposed RepShare has similar
spirits to some recent approaches. For instance, parameter sharing introduced
in [27] takes the advantage of sharing the same sets of parameters among child
models to greatly speed up the search in RL-based NAS methods. It is inspired
by parameter inheritance [29] which also reuses the same parameters for child
models across mutation to avoid training from scratch. RepShare is more than
using the same parameters, but also the same computation. Furthermore, apart
from accelerating the search, RepShare further reduces the memory consump-
tion. Single-path NAS [36] also share computations, but is different from ours.
It considers a small kernel (e.g. 3 x 3) as the core of a large one (e.g. 5 x 5), and
uses a learnable threshold to compare the importance of the two kernels, and
selects the optimal one.

Decoupling Shared Representations Similar to parameter sharing described
in [27] in which child models are coupled to some extent due to reusing the same
weights, RepShare also exhibits such behaviour. In RepShare, transformations
sharing the same representations might interfere with each other, and thus the
parameters directly corresponding to the shared representations are not well
optimized in the search. It causes that those transformations are difficult to
outstand in the architecture derivation. For example, in Figure 2 (bottom-right),
two intermediate representations are shared. Namely, p; is shared across all six
transformations and ps is shared across t5, t3 and ¢5. Due to the coupling effect
(i.e. interference between transformations), ¢; and to are not able to learn the
optimal parameters on their own, which may degrade the search quality. Notably,
this effect mainly happens on ¢; and to, since their outputs are exactly the shared
representations; while other transformations (t3 to tg) have the flexibility to
compensate this effect due to additional operations on the share representations.

Decoupling with extra functions. To address this issue in RepShare, we propose
a simple yet effective method to decouple the transformations (that directly
depend on the shared representations, i.e. t; and ¢3) from the shared represen-
tations. Namely, an additional function H is applied between each shared rep-
resentation and its corresponding transformation output. With this additional
function, for example, the output of ¢ is no longer p;, but H(p;). In this case,
t; and to are decoupled from p; and ps, respectively. For the choice of H, we use
a standard 1 x 1 conv layer followed by a ReLU. This light-weight extra function
produces minimal computational overhead and is applied to both conv streams
(i.e. the standard and depthwise separable convolution streams).

Optimization and Deriving Architectures In a cell, each edge contains a
transformation block in which the final transformation is determined from a set
of candidates illustrated in Figure 2. In order to search using back-propagation,
we follow the continuous relaxation for the search space as [22], and adapt it
to the proposed RepShare paradigm. For each of the two streams (Figure 2
bottom-right) in the transformation block, the output of a transformation (7; ;)
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is essentially the sum of all the intermediate representations multiplied with
corresponding «. Therefore, we can have:

Tyl =3 —— (ofy)_ 2)

b,
p
peP Zprep exp (%,j)

where 2 is the output of the first 1 x 1 conv layer in the transformation block.
p and p’ are the intermediate representations out of all representations P. o is
the a corresponding to p.

Optimization and derivation of discrete architectures. During the architecture
search, a and the network weights w are jointly optimized in a bilevel optimiza-
tion scheme, as in [22, 20]. In particular, the first-order approximation is adopted.
At the end of the search, a discrete architecture is decoded by retaining one trans-
formation per edge and two input edges for each node based on the largest « in
each transformation block. Since the intermediate representations are selected
instead of operations, they should then be mapped to the corresponding actual
transformations in the derived architecture, i.e. the transformations in Figure 2
(top-right).

4 Experiments

In this section, the proposed FAD is evaluated in two tasks: object detection
and instance segmentation. In the Supplementary Material (SM), we further
conduct experiments for image classification to analyze the effect of decoupling
in RepShare.

4.1 Object Detection

Implementation details. Although the proposed module can be adopted to dif-
ferent one-stage object detectors, we perform the architecture search using FAD
on FCOS [38], due to its efficiency. The search is conducted on the PASCAL
VOC [5]. We also perform the search directly on MS-COCO [19] and make com-
parisons in Table 2. More implementation details, including the search and the
detector training, can be found in the SM.

Ablation Study We conduct ablation study on the search cost, search spaces,
as well as different backbones and detectors. More studies on the marco-structure
of the module, and network width and depth are presented in SM.

Search cost. The time required for a complete architecture search using our FAD
is 0.6 GPU-days. A single TITAN XP is used for the search. Table 1 compares
the search cost of FAD against other NAS-based methods for object detection.
As we can see, the search speed for FAD is at least 25x faster than other recent
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Table 2. Comparison for the architecture search. Memory and bs denotes the
memory usage and images per GPU. Both Subset and Full refer to the proposed search
space. Sep. and Std. mean that only depthwise and standard conv are used, respectively.
ResNet-50 is used as the backbone. Results are obtained on the MS-COCO minival
split. All the searches are performed on VOC, expect for T which is on MS-COCO.

Method  RepShare Search Space Trans. RFs  Memory (G) GPU-days AP
FCOS [38] - - - - - - 38.6
Random - Full 12 3,5,7,9 - - 39.0
FAD X DARTS [22] 7 57,9 ~10 (bs=4) 0.4 39.0
FAD v Subset 1 4 35 ~T(bs=4) 0.25 39.2
FAD v Subset 2 8 35,7 ~11 (bs=4) 0.5 39.7
FAD v Sep. only 6 35,79 ~10 (bs=4) 0.36 39.5
FAD v Std. only 6  3,5,7,9 ~9.5 (bs=4) 0.4 39.9
FAD v w/o decouple 12 3,579 ~ 12 (bs =4) 0.6 40.0
FAD v Full 12 3579 ~12(bs=4) 06  40.3
FAD X Full 12 35,79 ~9 (bs=1) 2.3 40.3
FAD T v/ Full 12 3579 ~9 (bs=4) 5.5 40.3

approaches, while achieving a similar relative AP improvement on MS-COCO.
Meanwhile, the architecture explored by FAD is scalable in depth by simply
adding the repetitive cells in the groups, which provides greater flexibility to the
module.

Search space. To demonstrate the superiority of the proposed search space, we
reuse the same search procedure but replace the proposed search operations
with that in DARTS [22], which are listed in Figure 2 (top-left). Note that
the depthwise separable convolution is doubled in DARTS, and hence the RFs
change accordingly. As we can see from Table 2, the operations used in DARTS
only bring a marginal improvement of 0.4 AP, compared to the original FCOS,
while the proposed transformations improve the performance significantly, from
38.6 to 40.3. To further study the importance of the full transformation set,
we search by using two transformation subsets. Namely, the two subsets contain
transformations with the RFs smaller than 7 and 9, respectively. Our results show
that with less transformations in the search space, the performance degrades
accordingly. Moreover, we search by using only one type of convolution (either
the standard or the depthwise separable) for the conv layers with dilation rate
of 1. Not surprisingly, both of them fail to achieve a similar performance as
the full search space. This illustrates the power of the proposed transformations
which fully benefit from the better combinations of RFs and convolution types.
Besides, the performance slightly degrades without decoupling. More results on
decoupling can be found in the SM. Another observation is that the proxyless
search on MS-COCQO can achieve similar performance on detection, but it takes
much longer search time. Hence, we use the architecture searched on VOC for
object detection for the rest of this work.
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Table 3. FAD on different detectors and backbones. The — indicates the change
from original detector to FAD. Dim. is the channel size in the subnets, or ¢’ in the
transformation block in FAD. Results are obtained on MS-COCO minival.

Method Backbone Dim. Params (M) FLOPs (G) AP
MobileNetV2 256 — 96 9.8 = 9.0 124 — 108 31.3 — 32.7
Res-50 256 — 96 322 =315 201 =185  38.6 — 40.3

FCOS Res-101 256 — 96 51.2 — 50.4 277 — 261 43.0 — 44.2

Res-X-101 256 — 96 90.0 = 89.2 439 — 423  44.7T — 45.8
Res-X-101 256 — 128 90.0 — 91.2 439 — 465 44.7 — 46.0

Res-50 256 — 96 33.8 —+33.0 234 —218 36.1 = 37.7
RetinaNet Res-101 256 — 96 52.7 —52.0 310 =294 37.7 =394

Res-X-101 256 — 128  91.5 — 92.7 472 — 498  39.8 — 41.6
Subnet only - 256 — 96 4.9 — 4.1 105 — 89 -

In addition, our FAD is also compared with the ‘random’ baseline. Namely, a
transformation is randomly sampled in each block and two edges are randomly
sampled for each node. It can be found that the proposed FAD indeed finds much
better architectures. The last conclusion to draw in Table 2 is that, comparing to
the search without RepShare, RepShare enables an almost 4x faster search with
only one third of the GPU memory usage, without harming the performance.

Adaptation to different backbone networks. We replace the ResNet-50 in the de-
tector by using three different networks: MobileNetV2 [12], ResNet-101 [11] and
ResNeXt-101 [41]. As shown in Table 3, our FAD obtains a consistent improve-
ment (about 1.4 AP on average) for all the backbones compared, with even fewer
parameters and FLOPs. This indicates that the architecture of FAD generalizes
well to the backbone networks with different capacity. A direct comparison on
the sub-networks (without the backbone and FPN) shows a 16.3% and 15.2%
decrease on the number of parameters and the FLOPs. Hence, we can conclude
that the performance gain is obtained from the better architecture searched
rather than the network capacity itself.

Transferability. Our FAD is expected to be readily applicable to different types
of one-stage object detectors (with the two-subnet structure). To examine this
property, we further plug the proposed searchable module into RetinaNet [18].
Table 3 reveals that FAD can also improve the performance of RetinaNet by a
large margin even with fewer parameters. Therefore, we see that the searched
sub-networks can boost the performance of different types of detectors (and
potentially more powerful detectors in the future) in a plug-and-play fashion.

Comparison with the state-of-the-art We compare FAD with the state-of-
the-art object detectors on the MS-COCO test—dev split, including some recent
NAS-based object detectors. All the methods are evaluated under the single-
model and single-scale setting. Table 4 shows that, by having 128 channels in
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Table 4. Comparison with the state-of-the-art object detectors on the MS-
COCO test-dev split (including concurrent work [9, 46, 44, 39]). FCOS [38] is used as the
base detector for FAD. All the results are tested under the single-scale and single-model
setting. Note that models using additional regularization method [6] and deformable
convolution [3] are excluded in the table (except for NAS-FCOS [39]).

Two-stage detectors Backbone AP APs50 AP75 APs APy APy,
TridentNet[15] ResNet-101 42.7 63.6 46.5 23.9 46.6 56.6
Auto-FPN [42] ResNeXt-64x4d-101  44.3 - - - - -
SM-NAS: E5 [43] Searched 459 64.6 49.6 27.1 49.0 58.0
Hit-Detector [9] Searched 445 - - - - -
One-stage detectors

RetinaNet [18] ResNeXt-101 40.8 61.1 44.1 24.1 44.2 51.2
CenterNet511 [4] Hourglass-104 449 62.4 48.1 25.6 47.4 57.4
FSAF [47] ResNeXt-64x4d-101  42.9 63.8 46.3 26.6 46.2 52.7
FCOS [38] ResNeXt-64x4d-101  44.7 64.1 48.4 27.6 47.5 55.6
FreeAnchor [45] ResNeXt-101 449 64.3 48.5 26.8 48.3 55.9
SAPD [46] ResNeXt-64x4d-101  45.4 65.6 48.9 27.3 48.7 56.8
ATSS [44] ResNeXt-64x4d-101  45.6 64.6 49.7 28.5 48.9 55.6
NAS-FPN [7] (7 @ 384) ResNet-50 54 - - - o
NAS-FCOS [39] ResNeXt-64x4d-101 461 - - - - -
FAD @ 96 ResNet-101 44.1  62.7 47.9 26.8 47.1 54.6
FAD @ 128 ResNet-101 445 63.0 48.3 27.1 47.4 55.0
FAD @ 128 ResNeXt-64x4d-101  46.0 64.9 50.0 29.1 48.8 56.6
FAD @ 128-256 ResNeXt-64x4d-101 46.4 65.4 50.4 29.4 49.3 57.4

the first group and 256 in the second (with 98.3M parameters), FAD @128-
256 achieves 46.4 AP which surpasses all the recent object detectors, including
two concurrent work, NAS-FCOS [39] and Hit-Detector [9]. Note that NAS-
FCOS includes the deformable convolution [3] in the search space, which is not
considered in other NAS-based detectors (including our FAD), and it is well-
known for giving large AP improvements. On the other hand, the search of FAD
is almost 50x faster than that of NAS-FCOS on the same dataset (i.e. VOC).

Searched Architectures The derived architectures by FAD are presented in
Figure 3. We have two interesting observations. First, the edges correspond to a
mixture of RFs (especially for the cell group for classification) and convolution
types, which again validates our motivation. Another important insight is that
the transformations with large RFs (i.e. 7 and 9) appear near the input node,
while those with small RFs (i.e. 3 and 5) are closer to the output node. This is
consistent with the DetNAS architecture explored in [1].

4.2 Instance Segmentation

To showcase the generality of the proposed FAD, we apply it to another useful
task — instance segmentation. Different from object detection, only one group of
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Fig. 3. Architectures searched for object detection. The left and right cells
are for the first and second group, respectively. std, sep and dil denote the standard,
depthwise separable and dilated conv.

Table 5. Comparison on instance segmentation mask AP on the MS-COCO
minival split. P. is for parameters (M) and F. is for FLOPs (G).

Method Backbone P. F. AP APs9 AP75 APs AP, APp

Res-50 44.3 285 342 55.7 363 154 36.8 50.9
Mask R-CNN [10] Res-101  63.3 362 36.1 58.1 383 164 389 534
Res-50 44.4 287 35,5 56.8 379 16.0 384 52.7

Mask FAD Res-101  63.4 364 370 586 395 17.0 39.8 54.9

Res-50 60.7 326 356 56.2 382 16.6 378 52.0
MS R-CNN [13] Res-101  79.6 402 374 583 402 175 402 544
MS FAD Res-50 60.8 328 36.3 56.3 39.2 16.1 38.8 53.4

Res-101  79.7 404 38.0 58.7 41.0 17.6 41.0 55.1

cell is searched in the mask head. The search is conducted on MS-COCO, which
takes 2.6 GPU-days. For a fair comparison, we exactly follow [10, 13] for training
the searched networks. The search and training details are described in the SM.

Results Table 5 shows that, with similar number of parameters and FLOPs,
all FAD outperform their counterparts with same backbones on both Mask R-
CNN and MS R-CNN. Notably, Mask FAD has relatively larger improvements in
terms of APy and APy, (e.g. 1.6 and 1.8 AP on ResNet-50) than APg (0.6 AP),
possibly due to the transformations with larger RFs. Another surprising result
is that Mask FAD (ResNet-50) achieves similar AP as MS R-CNN (ResNet-50),
i.e. 35.5 vs. 35.6, despite a simpler pipeline and 26.9% fewer parameters. The
improvements are prominent since we only modify the mask head architecture
which only accounts for 2.25M parameters, i.e. 2.8% to 5% of the whole networks.

5 Conclusion

In this work, we propose FAD to efficiently search for better sub-networks with
diverse transformations and optimal combinations of RFs for one-stage object
detection and instance segmentation. To demonstrate the effectiveness of the
proposed search space and search method, we design a searchable module for
the two tasks at hand (and potentially applicable to other tasks). Extensive
experiments show that the architectures searched by our FAD can consistently
outperform their counterparts on different detectors and segmentation networks.
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