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1 Datasets

NYUDv2 NYUDv2[2] is an indoor RGB-D semantic segmentation dataset. It
contains 1449 RGB-D images with pixel-wise labels. And it provides depth maps
captured by Kinect and the corresponding camera intrinsic parameters for all
images. We follow the 40-class setting and the standard split which consists of
795 training images and 654 testing images.

Cityscapes Cityscapes[1] is an urban scene understanding dataset that con-
tains outdoor scene in different cities. The dataset has 5,000 stereo frames, each
frame containing an 2048 × 1024 RGB image, a disparity map, a set of camera
parameters, and a fine-annotated 19-category ground truth label map. There are
2,979 images in training set, 500 images in validation set and 1,525 images in
test set. We use camera parameters and disparity maps to calculate depth maps.
The quality of depth data in this dataset is not as good as NYUDv2, and the
scenes have wider ranges and more complicated structures.

2 More experiments of the initialization of introduced
parameters

In Table 1, we compare more different initialization settings of the introduced
parameters ak and t. When we change the initialization settings, the performance
may slightly drop, but still outperforms the baseline and 2.5D convolution. This
validates the effectiveness and the robustness of the learnable depth receptive
field in our method. Small initialization values of ak seems to have relatively
obvious harm on the performance. We suppose that it is because in this case
the receptive fields of different kernels are largely overlapped at the initial state,
and it brings difficulty for learning.
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Table 1. Results of different initialization of ak and t. The backbone model is ResNet-
50

Method ak t mIoU(%) pixel Acc(%)

Baseline - - 44.56 73.01
2.5D[3] - - 48.23 75.73

Malleable 2.5D
[−4,−2, 0, 2, 4] 1 48.66 75.94
[−2,−1, 0, 1, 2] 1 48.80 76.03
[−1,−0.5, 0, 0.5, 1] 1 48.42 75.78

Malleable 2.5D
[−2,−1, 0, 1, 2] 0.5 48.69 75.81
[−2,−1, 0, 1, 2] 1 48.80 76.03
[−2,−1, 0, 1, 2] 2 48.74 75.83

3 Images of Assigning Functions hk and gk

To give a clear illustration of the assigning functions hk and gk, we present several
real-case images of hk and gk in Fig. 1. We draw the images of the initialization
state of hk and gk, and we also draw the images of hk and gk in a model trained
on NYUDv2.

4 Comparisons of Depth Receptive Functions

In Fig. 2 and Fig. 3, we compare depth receptive fields of depth-aware, 2.5D and
malleable 2.5D convolution in NYUDv2 and Cityscapes. In NYUDv2, pixels are
closer in 3D space than those in Cityscapes since they are respectively indoor
and outdoor scenes. Therefore, it is intuitive that convolutions should have larger
depth receptive fields on Cityscapes than NYUDv2. From the figures we can see
that malleable 2.5D convolution indeed learns wider depth receptive fields for
Cityscapes, while depth-aware and 2.5D convolutions cannot automatically fit
different environments.

5 Effects of Kernel Rebalancing

In Fig. 4, we present the effects of kernel rebalancing. We show the kernel rebal-
ancing results of all four malleable 2.5D convolutions in the model trained on
NYUDv2. As we know, in earlier stages, local geometric features play a more im-
portant role. and in later stages, the importance of capturing context increases.
The rebalancing parameters in early stages only fix part of the imbalance prob-
lem and keep the two further kernels decayed compared to the center kernel,
which makes the convolution sensitive to local depth changes. When comes to
the later stages, the rebalancing parameters tend to balance the kernels well and
therefore let the convolution able to handle long-distance relations.
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(a) Initialization of hk
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(b) Initialization of gk
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(c) hk at res2
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(d) gk at res2
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(e) hk at res3
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(f) gk at res3
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(g) hk at res4
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(h) gk at res4
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(i) hk at res5
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(j) gk at res5

Fig. 1. Images of hk and gk. (a) and (b) are the initialization of hk and gk. And the
rest subfigures are hk-s and gk-s of each malleable 2.5D convolution at different ResNet
stages after training
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Fig. 2. Comparison of depth receptive field functions gk on NYUDv2 where the depth
d(ci) = 1m. We compare depth-aware, 2.5D and malleable 2.5D convolution at each
stages of ResNet after training. Note that we scale the y-axis to see better. The overall
scale does not affect output results because of batch normalizations
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Fig. 3. Comparison of depth receptive field functions gk on Cityscapes where the depth
d(ci) = 20m. We compare depth-aware, 2.5D and malleable 2.5D convolution at each
stages of ResNet after training. Note that we scale the y-axis to see better. The overall
scale does not affect output results because of batch normalizations
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(a) Before rebalance (at res2)
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(b) After rebalance (at res2)

1 2 3
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ra
tio

(c) Before rebalance (at res3)
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(d) After rebalance (at res3)
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(e) Before rebalance (at res4)
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(f) After rebalance (at res4)
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(g) Before rebalance (at res5)
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(h) After rebalance (at res5)

Fig. 4. The ratio of pixels assigned to each kernel, before and after rebalance. We
count the sum of gk and sk · gk for each kernel across the whole NYUDv2 dataset and
calculate the ratio.
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6 Visualization of feature maps

In Fig. 5, we visualize the feature maps generated by different kernels of a mal-
leable 2.5D convolution. We save the output feature maps of the malleable 2.5D
convolution in res2 stage of a trained ResNet-101-based model, and select two
channels to draw figures. Generally, the three kernels respectively handle pixels
that are ”in front of”, ”around the same depth with” and ”behind” the center
pixel of a local receptive field. From the feature maps, we can see that the three
kernels indeed learn different relations and can activate accordingly.

Kernel 1 Kernel 2 Kernel 3

Fig. 5. Visualization of the feature maps generated by different kernels in a malleable
2.5D convolution. We draw 2 feature maps for each kernel and each input image. The
feature maps of ”kernel 1” are determined by what is in front of the center pixel of a
local receptive field. The feature maps of ”kernel 2” are determined by what is around
the same depth with the center pixel of a local receptive field. The feature maps of
”kernel 3” are determined by what is behind the center pixel of a local receptive field.
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7 Network Structures

In Fig. 6, we present the network structures we use in NYUDv2 and Cityscapes
respectively. We adopt ResNet-based DeepLabv3+ as our baseline network. To
evaluate the effect of our method, we replace the 3 × 3 convolution with a mal-
leable 2.5D convolution in the first residual unit in each stage of the ResNet. For
the NYUDv2 dataset, we adopt a multi-stage merging block on the backbone
network. And for Cityscapes, we keep the original DeepLabv3+ structure.
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Fig. 6. Network structures


