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Abstract. Photometric loss is widely used for self-supervised depth and
egomotion estimation. However, the loss landscapes induced by pho-
tometric differences are often problematic for optimization, caused by
plateau landscapes for pixels in textureless regions or multiple local min-
ima for less discriminative pixels. In this work, feature-metric loss is
proposed and defined on feature representation, where the feature repre-
sentation is also learned in a self-supervised manner and regularized by
both first-order and second-order derivatives to constrain the loss land-
scapes to form proper convergence basins. Comprehensive experiments
and detailed analysis via visualization demonstrate the effectiveness of
the proposed feature-metric loss. In particular, our method improves
state-of-the-art methods on KITTI from 0.885 to 0.925 measured by δ1
for depth estimation, and significantly outperforms previous method for
visual odometry.

1 Introduction

Estimating depth and egomotion from monocular camera is a fundamental and
valuable task in computer vision, which has wide applications in augmented real-
ity [35], robotics navigation [8] and autonomous driving [31]. Though monocular
camera is cheap and lightweight, the task is hard for conventional SfM/SLAM
algorithms [12,34,42] and continues challenging deep learning based approaches
[4,24,1,2,56].

Deep learning for depth and egomotion estimation can be broadly catego-
rized into supervised and self-supervised learning. For depth estimation, super-
vised learning takes images paired with depth maps as input [11,13,23], where
depth maps are sparsely collected from expensive LiDAR sensors [14] or densely
rendered from simulation engines [29], while supervision from LiDAR limits the
generalization to new cameras and supervision from rendering limits the gen-
eralization to real scenes. For egomotion estimation, supervised signals come
from trajectories computed by classical methods with high precision sensors
like IMU and GPS, which are also costly and cannot guarantee absolute accu-
racy. Self-supervised learning unifies these two tasks into one framework, and
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only uses monocular videos as inputs, and supervision is from view synthe-
sis [56,52,27,16,15]. The setup is simpler, and easy to generalize among cameras.

However, self-supervised approaches are still inferior to supervised ones by
large margins when compared on standard benchmarks. The main problem lies
in the weak supervision added as photometric loss, which is defined as the pho-
tometric difference between a pixel warped from source view by estimated depth
and pose and the pixel captured in the target view. Nevertheless, small photo-
metric loss does not necessarily guarantee accurate depth and pose, especially
for pixels in textureless regions. The problem can be partially solved by adding
smoothness loss on depth map, which encourages first-order smoothness [4,16,15]
or second-order smoothness [50,51,49,26], and forces depth propagation from
discriminative regions to textureless regions. However, such propagation is with
limited range and tends to cause over-smooth results around boundaries.

Considering the basic limitation is from representation, feature-metric loss is
proposed to use learned feature representation for each pixel, which is explicitly
constrained to be discriminative even in textureless regions. For learning feature
representation, a single view reconstruction pathway is added as an auto-encoder
network. To ensure loss landscapes defined on the learned feature representation
having desired shapes, two additional regularizing losses are added to the auto-
encoder loss, i.e., discriminative loss and convergent loss. The discriminative
loss encourages feature differences across pixels modeled by first-order gradients,
while the convergent loss ensures a wide convergence basin by penalizing feature
gradients’ variances across pixels.

In total, our network architecture contains three sub-networks, i.e., DepthNet
and PoseNet for cross-view reconstruction, and FeatureNet for single-view re-
construction, where features generated by FeatureNet are used to define feature-
metric loss for DepthNet and PoseNet.

In experiment, feature-metric loss outperforms widely used first-order and
second-order smoothness losses, and improves state-of-the-art depth estimation
from 0.885 to 0.925 measured by δ1 on KITTI dataset. In addition, our method
generates better egomotion estimation and results in more accurate visual odom-
etry.

In general, our contributions are summarized as three-fold:

– Feature-metric loss is proposed for self-supervised depth and egomotion es-
timation.

– FeatureNet is proposed for feature representation learning for depth and
egomotion estimation.

– State-of-the-art performances on depth and egomotion estimation are achieved
on KITTI dataset.

2 Related Work

In this section, we review related works of self-supervised learning for two tasks,
i.e., monocular depth and egomotion estimation, as well as visual representation
learning.
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Monocular depth and egomotion estimation: SfMLearner is a pioneering
work [56] for this task, where geometry estimation from DepthNet and PoseNet
is supervised by photometric loss. To tackle moving objects that break the as-
sumption of static scenes, optical flow is estimated to compensate these moving
pixels [52,49,26,57], segmentation masks provided by pre-trained segmentation
models are also to handle potential moving objects separately [4,30,17].

More geometric priors are also used to strengthen the self-supervised learn-
ing. Depth-normal consistency loss is proposed as as extra constraint [50,51]. 3D
consistency between point clouds backprojected from adjacent views is consid-
ered in [27,5,2]. In addition, binocular videos are used for training to solve both
scale ambiguity and scene dynamics [24,15,49,26], where only inference can be
carried on monocular video.

In contrast to all above methods where focuses are on the geometry parts
of the task, deep feature reconstruction [53] proposed to use deep features from
pre-trained models to define reconstruction loss. Our method shares the same
spirit, but takes a step further to explicitly learn deep features from the geometry
problem under the same self-supervised learning framework.
Visual representation learning: It is of great interest of self-supervised visual
representation learning for downstream tasks. Without explicitly provided labels,
the losses are defined by manipulating the data itself in different ways, which
could be reconstructing input data [28,45,10,32], predicting spatial transforma-
tions [9,36,37,38], coloring grayscale input images [7,21,22,54] etc. Our work be-
longs to reconstruct the input through an auto-encoder network. Different from
previous works mainly aiming for learning better features for recognition tasks,
our method is designed to learn better features for the geometry task.

3 Method

In this section, we firstly introduce geometry models with required notations,
then define two reconstruction losses, one for depth and ego-motion learning, the
other for feature representation learning. Finally, we present our overall pipeline
and implementation details about loss settings and network architectures.

3.1 Geometry models

Camera model and depth. The camera operator π : R3 → R2 projects a 3D
point P = (X,Y, Z) to a 2D pixel p = (u, v) by:

π(P ) = (fx
X

Z
+ cx, fy

Y

Z
+ cy) (1)

where (fx, fy, cx, cy) are the camera intrinsic parameters. Similarly, a pixel p
is projected to a 3D point P given its depth D(p), i.e., backprojection π−1 :
R2 × R→ R3:

π−1
(
p,D(p)

)
= D(p)

(x− cx
fx

,
y − cy
fy

, 1
)>

(2)
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Ego-motion. Ego-motion is modeled by transformation G ∈ SE(3), together
with π and π−1, we can define a projective warping function ω : R2×R×SE(3)→
R2, which maps a pixel p in one frame to the other frame transformed by G:

p̂ = ω
(
p,D(p), G

)
= π

(
G · π−1

(
p,D(p)

))
(3)

3.2 Cross-view reconstruction

With the above geometry models, target frame It can be reconstructed from
source frame Is via,

Îs→t(p) = Is(p̂) (4)

where p̂ is defined in Eq. 3 and depends on both depth and ego-motion. It(p)
and Is(p̂) should be similar given a set of assumptions, including both depth and
ego-motion are correct; the corresponding 3D point is static with Lambertian
reflectance and not occluded in both views. Then, a multi-view reconstruction
loss can be defined for learning depth and motion, i.e.,

Ls→t =
∑
p

`
(
Is(p̂), It(p)

)
, (5)

where `(, ) is the per-pixel loss which measures the photometric difference, i.e,
photometric loss.

Though the loss works, it is fundamentally problematic since correct depth
and pose is sufficient but not necessary for small photometric error, e.g., pixels
in a textureless with the same photometric values can have small photometric
losses even the depth and pose are wrongly estimated. The problem can be
formally analysed from the optimization perspective by deriving the gradients
with respect to both depth D(p) and egomotion G,

∂Ls→t
∂D(p)

=
∂`
(
Is(p̂), It(p)

)
∂Is(p̂)

· ∂Is(p̂)
∂p̂

· ∂p̂

∂D(p)
, (6)

∂Ls→t
∂G

=
∑
p

∂`
(
Is(p̂), It(p)

)
∂Is(p̂)

· ∂Is(p̂)
∂p̂

· ∂p̂
∂G

, (7)

where both gradients depend on the image gradient ∂Is(p̂)
∂p̂ . For textureless region,

the image gradients are close to zero which further causes zero gradients for Eq. 6
and contributes zero to Eq. 7 for egomotion estimation. In addition, locally non-
smooth gradient directions are also challenging convergence due to inconsistent
update directions towards minima.

Therefore, we propose to learn feature representation φs(p) with better gra-

dient ∂φs(p̂)
∂p̂ to overcome the above problems, and generalizes photometric loss

to feature-metric loss accordingly,

Ls→t =
∑
p

`
(
φs(p̂), φt(p)

)
. (8)
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3.3 Single-view reconstruction

The feature representation φ(p) is also learned in self-supervised manner with
single-view reconstruction through an auto-encoder network. The auto-encoder
network contains an encoder for deep feature extractions from an image and an
decoder to reconstruct the input image based on the deep features. The deep
features are learned to encode large patterns in an image where redundancies and
noises are removed. To ensure the learned representation with good properties
for optimizing Eq. 8, we add two extra regularizers Ldis and Lcvt to the image
reconstruction loss Lrec, i.e.,

Ls = Lrec + αLdis + βLcvt (9)

where α and β are set to 1e-3 via cross validation. These three loss terms are
described in detail below.

For simplicity, we denote first-order derivative and second-order derivative
with respect to image coordinates by ∇1 and ∇2, which equals ∂x + ∂y and
∂xx + 2∂xy + ∂yy respectively.

Image reconstruction loss Image reconstruction loss Lrec is the standard
loss function for an auto-encoder network, which requires the encoded features
can be used to reconstruct its input, i.e.,

Lrec =
∑
p

|I(p)− Irec(p)|1 (10)

where I(p) is the input image, and Irec(p) is the image reconstructed from the
auto-encoder network.

Discriminative loss Ldis is defined to ensure the learned features have
gradients ∂φ(p̂)

∂p̂ by explicitly encouraging large gradient, i.e.,

Ldis = −
∑
p

|∇1φ(p)|1 (11)

Furthermore, image gradients are used to emphasize low-texture regions,

Ldis = −
∑
p

e−|∇
1I(p)|1 |∇1φ(p)|1 (12)

where low-texture regions receive large weights.

Convergent loss Lcvt is defined to encourage smoothness of feature gradi-
ents, which ensures consistent gradients during optimization and large conver-
gence radii accordingly. The loss is defined to penalize the second-order gradients,
i.e.,

Lcvt =
∑
p

|∇2φ(p)|1 (13)



6 C. Shu, K. Yu, Z. Duan and K. Yang

Fig. 1: An illustration of the overall framework, which contains DepthNet,
PoseNet and FeatureNet for depth map prediction, egomotion prediction and
feature learning respectively. FeatureNet uses Ls to learn require visual repre-
sentation, the encoder from FeatureNet is used to extract features for cross-view
reconstruction loss Ls→t.

3.4 Overall pipeline

Single-view reconstruction and cross-view reconstruction are unified to form the
final framework as illustrated in Fig. 1. DepthNet is a monodepth estimator
which takes the target frame as input and outputs a depth map. PoseNet is an
egomotion estimator, which takes two frames from both source and target view
and outputs the relative pose between them. DepthNet and PoseNet provide the
geometry information to establish point-to-point correspondences for cross-view
reconstruction. FeatureNet is for feature representation learning, which follows
the auto-encoder architecture and supervised by single-view reconstruction loss.
Features from FeatureNet are used to define the cross-view reconstruction loss.

Therefore, the total loss for the whole architecture contains two parts, where
Ls constrains the quality of learned features through single-view reconstruction,
whilst Ls→t penalizes the discrepancy from cross-view reconstruction, i.e.,

Ltotal = Ls + Ls→t (14)

Toward better performance, the proposed feature-metric loss is combined
with used photometric loss, i.e.,

Ls→t =
∑
p

Lfm
(
φs(p̂), φt(p)

)
+
∑
p

Lph(Is(p̂), It(p))
(15)

where Lfm and Lph are the feature-metric loss and photometric loss respectively.
Specifically, feature-metric loss is defined by

Lfm = |φs(p̂)− φt(p)|1, (16)
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Fig. 2: Qualitative comparison between Monodepth2 [15] (second row) and our
method (last row). It can be seen that we achieve better performance on the
low-texture regions like walls and billboards, and finer details are present like
silhouette of humans and poles.

and photometric loss is defined following [16] using a combination of L1 and
SSIM losses, i.e.,

Lph = 0.15
∑
p

|Is(p̂)− It(p)|1+

0.85
1− SSIM(Is(p̂), It(p))

2

(17)

Furthermore, we resolve the occlusion problem following the practices in
[15,46,6,53], where two source views are used to define the cross-view recon-
struction loss,

L′s→t =
∑
p

min
s∈V
Ls→t

(
φs(p̂), φt(p)

)
(18)

Where V is a set composed of source frames. When trained on the monocular
videos, V contains the previous and posterior source frames of current target
frame; when trained on the calibrated binocular videos, an extra frame of oppo-
site stereo pair is added.

3.5 Implementation details

For FeatureNet, ResNet-50 [18] with fully-connected layer removed is used as
the encoder, where deepest feature map goes through 5 downsampling stages
and reduces to 1/32 resolution of input image, the decoder contains five 3 × 3
convolutional layers and each followed by a bilinear upsampling layer. Multi-
scale feature maps from convolutional layers of the decoder are used to generate
multi-scale reconstructed images, where feature map of each scale further goes
through a 3×3 convolution with sigmoid function for image reconstruction. The
largest feature map with 64 channels from encoder is regularized by Ldis and
Lcvt and will be used for feature-metric loss.

DepthNet also adopts an encoder-decoder structure, where ResNet-50 with-
out fully-connected layer is used as encoder and multi-scale feature maps are out-
putted. The decoder for depth is implemented in a cascaded refinement manner,
which decodes depth maps in a top-down pathway. Specifically, multiple-scale
features from encoder are used to predict maps of corresponding sizes via a 3×3
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convolution followed by sigmoid, and these maps are refined in a coarse-to-fine
manner towards the final depth map. Both FeatureNet and DepthNet take image
size of 320× 1024 as inputs.

The PoseNet is a pose estimator with a structure of ResNet-18 [18], which
is modified to receive a concatenated image pair and predicts a relative pose
therein. Here axis angle is chosen to represent the 3D rotation. The input res-
olution is 192× 640. Comparing with both FeatureNet and DepthNet, PoseNet
uses lower image resolution and more light-weight backbone, which observes this
has no obvious influence to pose accuracy, but significantly save both memory
and computation.

We adopt the setting in [15] for data preprocessing. Our models are imple-
mented on PyTorch [39] with distributed computing, and trained for 40 epochs
using Adam [20] optimizer, with a batch size of 2, on the 8 GTX 1080Ti GPUs.
The learning rate is gradually warmed up to 1e−4 in 3 steps, where each step in-
creases learning rate by 1e−4/3 in 500 iterations. After warmping, learning rate
1e−4 is used for the first 20 epochs and halved twices at 20th and 30th epoch.
As for online refinement technique we used during testing, we follow the practice
proposed by [5,4]. We keep the model training while performing inference. The
batch size is set to 1. Each batch consists of the test image and its two adja-
cent frames. Online refinement is performed for 20 iterations on one test sample
with the same setting introduced before. No data augmentation is used in the
inference phase.

4 Experiments

In this section we show extensive experiments for evaluating the performance
of our approach. We make a fair comparison on KITTI 2015 dataset [14] with
prior art on both single view depth and visual odometry estimation tasks. And
detailed ablation studies of our approach are done to show the effectiveness of
the feature-metric loss.

KITTI 2015 dataset contains videos in 200 street scenes captured by RGB
cameras, with sparse depth ground truths captured by Velodyne laser scanner.
We follow [56] to remove static frames as pre-processing step. We use the Eigen
split of [11] to divide KITTI raw data, and resulting in 39,810 monocular triplets
for training, 4,424 for validation and 697 for testing.

For depth evaluation, we test our depth model on divided 697 KITTI testing
data. For odometry evaluation, we test our system to the official KITTI odometry
split which containing 11 driving sequences with ground truth odometry obtained
through the IMU and GPS readings. Following previous works [53,2,56], we train
our model on the sequence 00-08 and use the sequence 09-10 for testing.

4.1 Depth evaluation.

Performance metrics. Standard metrics are used for depth evaluation, as
shown in Tab. 1. During evaluation, depth is capped to 80m. For the methods



Feature-metric Loss for Self-supervised Learning of Depth and Egomotion 9

Abs Rel : 1
|D|
∑
d∈D |d∗ − d|/d∗ RMSE :

√
1
|D|
∑
d∈D ||d∗ − d||2

Sq Rel : 1
|D|
∑
d∈D ||d∗ − d||2/d∗ RMSE log :

√
1
|D|
∑
d∈D ||logd∗ − logd||2

δt : 1
|D| |{d ∈ D|max(d

∗

d ,
d
d∗ ) < 1.25t}| × 100%

Table 1: Performance metrics for depth evaluation. d and d∗ respectively denotes
predicted and ground truth depth, D presents a set of all the predicted depth
values of an image, |.| returns the number of the elements in the input set.

trained on monocular videos, the depth is defined up to scale factor [56], which
is computed by

scale = median(Dgt)/median(Dpred) (19)

For evaluation, those predicted depth maps are multiplied by computed scale to
match the median with the ground truth, this step is called median scaling.

Comparison with state-of-the-art. Tab. 2 shows performances of current
state-of-the-art approaches for monocular depth estimation. They are trained on
different kinds of data — monocular videos (M), stereo pairs (S), binocular videos
(MS) and labelled single images (Sup), while all of them are tested with single
image as input.

We achieve the best performance compared to all self-supervised methods,
no matter which training data is used. Our method achieves more significant
improvement in the performance metric Sq Rel. According to Tab. 1, this metric
penalizes more on large errors in short range, where more textureless regions
exist due near objects are large in images and our method handles well. The
closest results in self-supervised methods are from DepthHint [47], which uses the
same input size but adds an extra post processing step. It utilizes a traditional
stereo matching method — SGM [19] to provide extra supervisory signals for
training, since SGM is less likely to be trapped by local minimums. However, in
its settings, the object function of SGM is still photometric loss, the drawbacks
of photometric loss are still inevitable. In contrast, proposed feature-metric loss
will largely avoid the interference of local minimums.

Moreover, compared with state-of-the-art supervised methods [13,23], which
achieve top performances on the KITTI depth prediction competition, our model
with online refinement technique even exceeds in many metrics. Our advantage
over supervised methods is that the gap between the distributions of training
and testing data does exist, we can make full use of online refinement technique.
What is more, as shown in Sec. 4.3, the introduction of feature-metric loss can
obtain more performance gain from online refinement technique.

Fig. 2 shows the qualitative results. Compared with state-of-the-art method
MonoDepth2 [15], we achieve better performance on low-texture regions and
finer details, e.g., walls, billboards, silhouette of humans and poles.

However, MonoDepth2 is built on the photometric loss, which is easily trapped
by local minimums especially on low-texture regions like walls and billboards. In
contrast, the introduction of feature-metric loss leads the network into jumping
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Method Train
The lower the better The higher the better

Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

SfMLearner [56] M 0.208 1.768 6.958 0.283 0.678 0.885 0.957
DNC [51] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Vid2Depth [27] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968
LEGO [50] M 0.162 1.352 6.276 0.252 0.783 0.921 0.969
GeoNet [52] M 0.155 1.296 5.857 0.233 0.793 0.931 0.973
DF-Net [57] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
DDVO [46] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
EPC++ [26] M 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2Depth [4] M 0.141 1.036 5.291 0.215 0.816 0.945 0.979
SIGNet [30] M 0.133 0.905 5.181 0.208 0.825 0.947 0.981
CC [43] M 0.140 1.070 5.326 0.217 0.826 0.941 0.975
LearnK [17] M 0.128 0.959 5.230 0.212 0.845 0.947 0.976
DualNet [55] M 0.121 0.837 4.945 0.197 0.853 0.955 0.982
SuperDepth [40] M 0.116 1.055 - 0.209 0.853 0.948 0.977
Monodepth2 [15] M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Ours M 0.104 0.729 4.481 0.179 0.893 0.965 0.984

Struct2Depth [4] M∗ 0.109 0.825 4.750 0.187 0.874 0.958 0.983
GLNet [5] M∗ 0.099 0.796 4.743 0.186 0.884 0.955 0.979
Ours M∗ 0.088 0.712 4.137 0.169 0.915 0.965 0.982

Dorn [13] Sup 0.099 0.593 3.714 0.161 0.897 0.966 0.986
BTS [23] Sup 0.091 0.555 4.033 0.174 0.904 0.967 0.984

MonoDepth [16] S 0.133 1.142 5.533 0.230 0.830 0.936 0.970
MonoDispNet [48] S 0.126 0.832 4.172 0.217 0.840 0.941 0.973
MonoResMatch [44] S 0.111 0.867 4.714 0.199 0.864 0.954 0.979
MonoDepth2 [15] S 0.107 0.849 4.764 0.201 0.874 0.953 0.977
RefineDistill [41] S 0.098 0.831 4.656 0.202 0.882 0.948 0.973
UnDeepVO [24] MS 0.183 1.730 6.570 0.268 - - -
DFR [53] MS 0.135 1.132 5.585 0.229 0.820 0.933 0.971
EPC++ [26] MS 0.128 0.935 5.011 0.209 0.831 0.945 0.979
MonoDepth2 [15] MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979
DepthHint [47] MS† 0.100 0.728 4.469 0.185 0.885 0.962 0.982
Ours MS 0.099 0.697 4.427 0.184 0.889 0.963 0.982

Ours MS∗ 0.079 0.666 3.922 0.163 0.925 0.970 0.984

Table 2: Comparison of performances are reported on the KITTI dataset. Best
results are in bold, second best are underlined. M: trained on monocular videos.
S: trained on stereo pairs. MS: trained on calibrated binocular videos. Sup:
trained on labelled single images. ∗: using the online refinement technique [4],
which advocated keeping the model training while performing inference. †: using
post processing steps.

out of local minimums, since our features are designed to form a desirable loss
for easier optimization.

4.2 Odometry evaluation

Performance metric. Average translational root mean square error drift (terr)
and average rotational root mean square error drift (rerr) on length of 100 m - 800
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Method
Seq. 09 Seq. 10
terr rerr terr rerr

ORB-SLAM [33] 15.30 0.26 3.68 0.48
SfMLearner [56] 17.84 6.78 37.91 17.78
DFR [53] 11.93 3.91 12.45 3.46
MonoDepth2 [15] 10.85 2.86 11.60 5.72
NeuralBundler [25] 8.10 2.81 12.90 3.17
SC-SfMlearner [2] 8.24 2.19 10.70 4.58
Ours 8.75 2.11 10.67 4.91

Table 3: Comparison of performances are reported on the KITTI odometry
dataset [14]. Best results are in bold.

m are adopted for evaluation. For the methods who suffer from scale ambiguity,
one global scale that best align the whole sequence is used.

Comparison with state-of-the-art. As shown in Tab. 3, we report the
performance of ORB-SLAM[33] as a reference and compare with recent deep
methods. our method gets top performances in two metrics and comparable per-
formance in the rest metrics compared to other deep learning methods. When
compared to traditional SLAM method [33], our translation performance is com-
parable, while in the rotation estimation we still fall short like other deep learning
methods. We believe that it is because the bundle adjustment of the traditional
SLAM method can optimize subtler rotation errors along a long sequence which
can’t be observed in a small sequence used by current deep learning based meth-
ods. Moreover current reconstruction process may be not sensible to variation
of rotation [3].

4.3 Ablation study

To get a better understanding of the contribution of proposed losses—feature-
metric loss, discriminative loss and convergent loss—to the overall performance,
we perform an ablation study in Tab. 4.

The losses for cross-view reconstruction. In Tab. 4a, different compo-
nents of Ls→t have been tried. The smoothness losses which are widely used are
used as baselines:

Lids =
∑
p

e−|∇
iI(p)|1 |∇iD̂(p)|1 (20)

where D̂(p) = D(p)/D̄, this operation is the mean normalization technique ad-
vocated by [46]. i denotes the order of the derivatives. These smoothness losses
are used as baselines to verify the effectiveness of the feature-metric loss.

Compared with smoothness losses, feature-metric loss leads to much better
effect. We can see that a biggest performance boost is gained by introducing the
feature-metric loss. As we discussed before, the propagation range of smooth-
ness losses is limited, in contrast, the feature-metric loss enable a long-range
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Method OR
The lower the better The higher the better

Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3
Lph + L1

ds × 0.105 0.748 4.835 0.191 0.878 0.956 0.979
Lph + L2

ds × 0.103 0.740 4.754 0.187 0.881 0.959 0.981
Lph + L1

ds + L2
ds × 0.103 0.735 4.554 0.187 0.883 0.961 0.981

Lph + L1
ds + L2

ds X 0.088 0.712 4.237 0.175 0.905 0.965 0.982
Lph + Lfm × 0.099 0.697 4.427 0.184 0.889 0.963 0.982
Lph + Lfm X 0.079 0.666 3.922 0.163 0.925 0.970 0.984

(a) Different loss combinations in Ls→t (Eq. 8), the term ’OR’ denotes
whether the online refinement [4] is used.

Loss
The lower the better The higher the better Seq. 09 Seq. 10

Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3 terr rerr terr rerr
Lrec 0.105 0.739 4.585 0.191 0.883 0.961 0.982 4.30 1.18 8.50 4.06
Lrec + Ldis 0.103 0.723 4.535 0.187 0.884 0.961 0.982 4.10 1.07 8.03 3.94
Lrec + Lcvt 0.100 0.721 4.474 0.187 0.885 0.962 0.982 3.29 1.16 5.91 3.48
Lrec + Ldis + Lcvt 0.099 0.697 4.427 0.184 0.889 0.963 0.982 3.07 0.89 3.83 1.78

(b) Different loss combinations in Ls (Eq. 9).

Table 4: The ablation study of different loss settings of our work.

propagation, since it has a large convergence radius. We also observe that when
feature-metric loss can benefit more from the performance gain provided by
online refinement than other loss combination. Higher performance gain is at-
tributed to better supervised signal provided by feature-metric loss during online
refinement phase, where incorrect depth values can be appropriately penalized
with larger losses based on more discriminative features.

The losses for single-view reconstruction. Tab.4b shows that the model
without any of our contributions performs the worst. When combined together,
all our components lead to a significant improvement.

And as shown in right part of Tab. 4b, although small deviations are less
obvious in some metrics of the depth evaluation, small errors will be magnified
via accumulation and propagation during trajectory prediction, big differences
are shown in the odometry evaluation. Note that different from previous odom-
etry evaluation, we directly applied the model trained on the kitti raw data to
sequence 09-10 to get terr and rerr.

Merely using Lrec gets similar performance as merely using photometric loss
(the third row in Tab. 4a), since it plays a similar role as the photometric loss at
textureless regions. Results get better when equipped with Ldis, since discrim-
ination at low-texture regions is improved. Best performance is achieved when
added Lcvt, which means discrimination is not enough, a correct optimization
direction is also important.

Visualization analysis. In order to see whether learned visual represen-
tations have promised properties, we visualize it in Fig. 3. The feature maps
learned with different loss combinations: Lrec, Lrec+Ldis and Lrec+Ldis+Lcvt
are sequentially shown from the second to the fourth row. Although we require
our feature to be discriminative, this effect is not sufficient to be shown in a
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Fig. 3: A visualization of a learned visual representation, which is achieved by
selecting one principle channel through PCA decomposition, then showing the
feature map as a heat map, hotter color indicates a higher feature value. First row
shows a typical image which is full of textureless regions like walls and shadows.
The visualization of corresponding feature maps is shown in second to fourth
rows. The feature maps are respectively learned with different loss combinations,
which sequentially correspond with the settings in the first three rows in Tab. 4b.
In order to get a better understanding, we crop three typical textureless regions
as shown in (a-c), cropped feature maps are visualized according to the dynamic
range after cropping.

large view, since the gap between the features of different sorts are much larger
than that of spatially adjacent features. Therefore, we cropped three typical tex-
tureless regions, and visualize them again according to the dynamic range after
cropping.
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We can see that merely using Lrec get small variations at textureless regions.
The close-ups of original images are similar to feature maps only trained with
Lrec, which verifies the proposed losses in improving feature representations.
The feature map learned with Lrec + Ldis is not smooth and disordered, since
Ldis overemphasizes the discrepancy between adjacent features, the network
degenerates to form a landscape of a zigzag shape. This phenomenon can be
approved by the results in the second row of Tab. 4b, which is only slightly
higher than merely using Lrec.

A desired landscape for feature maps is a smooth slope, in this way, feature-
metric loss will be able to form a basin-like landscape. The feature map learned
with all the proposed losses approximates this ideal landscape, from zoom-in
views we can see a clear and smooth transition along a certain direction. On
this landscape, gradient descent approaches can move smoothly toward optimal
solutions.

5 Conclusion

In this work, feature-metric loss is proposed for self-supervised learning of depth
and egomotion, where feature representation is additionally learned with two
extra regularizers to ensure convergence towards correct depth and pose. The
whole framework is end-to-end trainable in self-supervised setting, and achieves
state-of-the-art depth estimation which is even comparable to supervised learn-
ing methods. Furthermore, visual odometry based on estimated egomotion also
significantly outperforms previous state-of-the-art methods.
Acknowledgements This research is supported by Beijing Science and Tech-
nology Project (No. Z181100008918018).
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