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Abstract. We present a method for novel view synthesis from input
images that are freely distributed around a scene. Our method does not
rely on a regular arrangement of input views, can synthesize images for
free camera movement through the scene, and works for general scenes
with unconstrained geometric layouts. We calibrate the input images via
SfM and erect a coarse geometric scaffold via MVS. This scaffold is used
to create a proxy depth map for a novel view of the scene. Based on
this depth map, a recurrent encoder-decoder network processes repro-
jected features from nearby views and synthesizes the new view. Our
network does not need to be optimized for a given scene. After training
on a dataset, it works in previously unseen environments with no fine-
tuning or per-scene optimization. We evaluate the presented approach on
challenging real-world datasets, including Tanks and Temples, where we
demonstrate successful view synthesis for the first time and substantially
outperform prior and concurrent work.
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1 Introduction

Suppose you want to visit the Sagrada Famı́lia in Barcelona but cannot travel
there in person due to a coronavirus pandemic that shut down travel across the
globe. Virtual reality could offer a surrogate for physically being there. For the
experience to be maximally compelling, two requirements must be met. First,
you should be free to move through the scene: you should be able to go anywhere
in the environment, freely moving your head and body. Second, the synthesized
images should be photorealistic: perceptually indistinguishable from reality.

In this paper, we present a method for free view synthesis from unstructured
input images in general scenes. Given a set of images or a video of a scene, our
approach enables the rendering of a completely new camera path. See Figure 1
and the supplementary video for examples. We use 3D proxy geometry to map
information from the source images to the novel target view. Rather than map-
ping the color values of the source images, we first encode them using a deep
convolutional network. Utilizing the proxy geometry, we map the encoded fea-
tures from the source images into the target view and blend them via a second
network. Since the target views can deviate significantly from the source views,
we develop a recurrent blending network that is invariant to the number of input
images.
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Fig. 1: Novel view synthesis from unstructured input images. The first three
images show our synthesized results on the Truck scene from Tanks and Tem-
ples [21]. The unstructured image sequence was recorded using a handheld cam-
era in natural motion. We repurpose the Tanks and Temples dataset to evaluate
view synthesis by using a subset of the images as input (green cameras in the
bottom right image). The other views, which significantly deviate from the input,
act as target poses for view synthesis (red cameras).

Experimental results indicate that our approach works much better than
state-of-the-art methods across challenging real-world datasets. On the Tanks
and Temples dataset [21], we reduce the LPIPS error [48] by more than a factor
of 2 on all scenes with respect to state-of-the-art methods such as EVS [8] and
LLFF [26]. On the DTU dataset [1], we also significantly reduce LPIPS relative
to EVS and LLFF.

Furthermore, we convincingly outperform methods that are published con-
currently with our work: Neural Radiance Fields (NeRF) [27] and Neural Point-
Based Graphics (NPBG) [2]. We reduce LPIPS relative to these concurrent meth-
ods on Tanks and Temples and perform on par on DTU. We also observe that
NPBG performs well on Tanks and Temples and poorly on DTU, NeRF performs
well on DTU and poorly on Tanks and Temples, while our approach performs
well across datasets.

2 Related Work

Image-based rendering without deep learning. Image-based rendering
aims to enable the synthesis of new views of a scene directly from a set of
input images [6,11,14,17,24,36,37,50]. Different methods map information from
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the input images to the target view in different ways. Early light-field meth-
ods [14,24,36] do not require any information about the scene geometry, but
either require a fairly dense and regularly-spaced camera grid, or restrict the
target view to be a linear combination of the source views. Heigl et al. [17]
compute depth maps per view via stereo matching and use them for view syn-
thesis. Bilinear blending of viewpoints is possible if the cameras are located
approximately on the surface of a sphere and the object is centered [10]. These
approaches impose restrictions on the layout of the input views, while we target
unstructured settings in which the input views are distributed freely around the
scene, for example with a single handheld video sequence.

Approaches for unstructured view synthesis are commonly based on con-
structing 3D proxy geometry that guides the synthesis. Buehler et al. [3] describe
the Unstructured Lumigraph, which utilizes dense and accurate 3D geometry to
map and blend the input images in a novel target view. Chaurasia et al. [4]
estimate a per-view depth map and use these to map color values and blend-
ing weights into the target view. The method leverages superpixels to make up
for missing depth values. Hyperlapse [22] also uses 3D proxy geometry obtained
via structure-from-motion (SfM) and multi-view stereo (MVS). To composite a
clean image in the target view, the method optimizes a Markov random field.

Rather than estimate depth from input color images, some systems assume
that the input views were acquired by an RGB-D sensor that provided dense
depth maps of the scene. Hedman et al. [16] utilize such an RGB-D sensor to aid
their fast rendering pipeline. Penner and Zhang [32] use a volumetric approach
that associates each voxel with a confidence value which indicates whether the
voxel encloses free space or a physical surface.

Image-based rendering with deep learning. Deep learning has come to
play an important role in image-based rendering. Deep networks have been used
to blend input images in the target view [15,43], to construct neural scene rep-
resentations [2,29,39,40,42], and to unify geometry estimation and blending in a
single model [12,19].

Flynn et al. [13] used a plane-sweep volume [9] within a network architecture
for image-based rendering. A color branch predicts the color values for each
depth plane in the target view and a second branch predicts the probability for
a given depth plane. Kalantari et al. [19] propose a similar system for a light-
field setting: four cameras placed on a plane with the same viewing direction.
Their method also constructs a plane-sweep volume with the four given images
and computes mean and standard deviation per plane as features. Based on
these features, one network estimates a disparity map and another reprojects the
images and processes them. Hedman et al. [15] use a deep convolutional network
to blend source images that have been warped into the target view. Given a dense
and accurate proxy geometry obtained by two independent MVS methods, four
image mosaics are generated and are then fed to a network to estimate blending
weights. Our work is related as we also emphasize the role of the mapping and
blending network, but we do not require the construction of input mosaics based
on hand-crafted heuristics. Instead, our method can handle an arbitrary number



4 G. Riegler and V. Koltun

of input images and we output full color images together with blending weights,
which enables a certain degree of inpainting. Thies et al. [43] extend the ideas
of Hedman et al. [15] to better handle view-dependent effects. They train an
additional network per scene that estimates view-dependent effects given a depth
map of the target view. Xu et al. [45] also focus on view-dependent effects, but
use a structured setup and directional lighting.

Zhou et al. [49] introduce a multi-plane image representation that is estimated
by a convolutional network for stereo magnification. The image is represented
over multiple RGB-α planes, where each plane is related to a certain depth. Given
this representation, new views can be rendered using back-to-front composition.
Choi et al. [8] build upon MVSNet [46] for view extrapolation. The method
estimates a depth probability volume for each input view that is then warped
and fused into the target view. From the fused volume an initial novel view is
synthesized. This is then further refined by comparing and integrating candidate
patches from the source images. Similarly, the method of Srinivasan et al. [41]
synthesizes views from a narrow-baseline pair of images. The work extends the
idea of multi-plane images [49] and shows the relation between the range of views
that can be rendered from a multi-plane image and the depth plane sampling
frequency. Mildenhall et al. [26] further improve this method with practical user
guidance and refined network architectures together with local layered scene
representations. Flynn et al. [12] considerably improve the view synthesis quality
of light-field setups. They use plane sweep volume inputs [9] and multi-plane
image outputs [49] together with a network based on regularized gradient descent
to gradually refine the generated images.

Instead of mapping features from source images to novel target views, some
very recent methods train neural scene representations. In a work that is pub-
lished concurrently with ours, Aliev et al. [2] describe Neural Point-Based Graph-
ics, where each 3D point is associated with a learned feature vector. These fea-
tures are splatted into the target view and translated via a rendering network
to synthesize the output image. The feature vectors are optimized per scene:
application to a new scene requires training the feature extractor for that scene.
Thies et al. [42] use a mesh instead of 3D points to embed the feature vectors.
Sitzmann et al. [39] avoid explicit proxy geometry and project source images
into a neural voxel grid, where each voxel is associated with a trainable feature
vector. This representation is likewise trained for each object it is applied to.
Lombardi et al. [25] avoid memory-intensive high-resolution neural voxel grids
by computing warp fields. In another concurrent work, Mildenhall et al. [27]
represent the 5D radiance field by an MLP that can be queried in a volume
rendering framework to synthesize new views. In all these methods, dedicated
per-scene training is required to apply the representation to a new scene. We
train our image encoding and blending networks only once on a training set and
apply them to new scenes without any per-scene adaptation or fine-tuning.

In a related line of work, new views are synthesized from a single input
image [30,44]. These approaches only allow small deviations from the initial
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viewpoint, rather than the unrestricted travel through the scene that motivates
our work.

3 Method

Our method begins with a preprocessing stage that involves estimating the poses
of the input images and computing 3D proxy geometry via multi-view stereo and
meshing. Given a target view, we select nearby source images, map them into
the target view, and blend them using a recurrent convolutional network. We
now describe each step in detail.

3.1 Preprocessing

Pose estimation. Our input is a set of N images {In}Nn=1, for example from
a handheld video of a scene. We begin by estimating the poses of these images.
For this purpose, we rely on well-established structure-from-motion (SfM) tech-
niques. Specifically, we utilize COLMAP [35] to compute camera poses and a
sparse 3D point cloud of the scene. The poses are represented by rotation matri-
ces {Rn}Nn=1 and translation vectors {tn}Nn=1. The SfM pipeline also estimates
the intrinsic parameters of the cameras {Kn}Nn=1 and distortion coefficients.1

We use these to undistort all images. In the remainder of the paper, the set of
images {In}Nn=1 refers to the set of undistorted images.
Proxy geometry. For the mapping of the source images to the target view and
also for the selection of the source images that are used to synthesize a novel
view Ît, we need 3D proxy geometry M. We run a standard multi-view stereo
(MVS) method [34] to estimate a depth map for each source image. The depth
maps are further fused into a coherent 3D point cloud using the fusion algorithm
implemented in COLMAP [34,35]. We also experimented with more recent MVS
methods [46,47], but did not observe significant improvements in the mapping
and blending performance on large scale scenes.

For the mapping of the source image features, we rely on a depth map in the
novel target view Dt that is derived from the proxy geometry. However, rendering
depth maps from 3D point clouds is problematic for two reasons. First, 3D points
that are in the background and should be occluded by a surface can be projected
into the foreground, leading to invalid depth values. Second, in larger untextured
regions it is likely that no 3D points are reconstructed. Both problems can be
alleviated by fitting a surface mesh to the 3D point cloud. We utilize a Delaunay-
based reconstruction [18,23] as it can tolerate a certain amount of outliers. The
roughness of the resulting surface can be handled by our subsequent blending
network. The resulting surface mesh M is used to derive depth maps of the
source views {Dn}Nn=1 and of any target view Dt. Figure 2 shows our computed
proxy geometry for a Tanks and Temples scene [21].

1 In the case of video input data we assume that the intrinsics are shared for all views.
∀i 6= j : Ki = Kj .
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(a) Point cloud (b) Mesh

Fig. 2: Proxy geometry for view synthesis. We use a surface mesh extracted from
a Delaunay tetrahedralization (right). While it is more complete than the point
cloud from MVS (left), it also introduces spurious triangles.

3.2 Selection of Source Images

A core advantage of the mapping and blending network described in the next
section is that it supports an arbitrary number of source input images. However,
in practical situations, many source images will have no overlap with the target
view, because they are facing into the opposite direction, or are taken from a
very different location. Also during network training, we are limited by GPU
memory and can only use a fixed number of input images. For these reasons,
we have a simple but effective source selection strategy. Based on the proxy
geometryM we select the K out of N source images that maximize the overlap
with the target view.

Specifically, we derive for each target view a depth map Dt. Each pixel of
the depth map Dt with a valid depth value is projected into the domains of all
source images based on the user defined intrinsic and extrinsic parameters of the
target view Kt, Rt, and tt and the estimated intrinsic and extrinsic parameters
of the source images {Kn}Nn=1, {Rn}Nn=1, and {tn}Nn=1. For each source image,
we count the number of pixels from the target view that are mapped to the valid
source image domain and select the top K images that maximize that score. To
further handle occlusions and other outliers in this process, we only count pixels
where the projected target depth is within 1% of the source depth.

3.3 Mapping and Blending

Once we have selected the source images {Ik}Kk=1, we need to map them into

the novel target view and blend the information to an output image Ît. For this
purpose, we have developed a recurrent mapping and blending network. We first
encode each source image via a U-Net based convolutional network [33]. The fea-
tures are then mapped into the novel target view and sequentially processed by a
blending network that is based on convolutional gated recurrent units (GRU) [7].
For each source image Ik, the blending network outputs per-pixel confidence val-
ues and a color image in the target view. The final image Ît is then generated by
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a soft-argmax over these confidence values and color images. Figure 3 provides
an overview of the recurrent mapping and blending network.

Encoding source images. In the first part of the mapping and blending net-
work, we encode each source image Ik with a U-Net based convolutional net-
work. The encoder of the U-Net consists of the first three stages of an ImageNet
pretrained VGG network [38] where we replaced the max-pooling with average
pooling layers. In the decoder of the U-Net, we upsample the output features of
the previous stage using nearest-neighbor interpolation, concatenate them with
the encoder output of the same resolution, and process this by two additional
convolutional layers. All convolutional layers are followed by a ReLU [28].

Mapping into the target view. The encoded source images must then be
mapped into the target view. For this, we rely on the depth map in the target
view Dt that is derived from the proxy geometryM. We can gather the feature
vectors from the source views via a warping operation Wk(Dt). For a pixel in
homogeneous coordinates ut in the target view, we select the feature vector in
the source image k at the location uk = Kk(RrDt(ut)K

−1
t ut +tr), with relative

rotation Rr = RkR
T
t and relative translation tr = ts−Rrtt. As the locations uk

will not be located at the center of the pixel in general, we bilinearly interpolate
the features in the warping. Further, in several cases uk will not be inside the
source image domain. In those instances, we set the warped feature to zero
and additionally indicate those locations in a mask that is concatenated to the
warped features. A major problem with the proxy geometry is that several areas
do not have associated depth values, especially structures that are far away, or
the sky. To alleviate this problem, we warp features that do not have a valid
depth value associated using +∞ as depth value and also concatenate a mask
that indicates those features. This greatly reduces artifacts in the background.

Blending. At this point, we have the feature maps of K source images warped
into the target view and now we need to aggregate the information to obtain
a single blended output image It. A suitable network structure for this kind of
problem is a recurrent architecture. More specifically, we utilize a U-Net based
convolutional architecture with gated recurrent units (GRU) [7] that regularizes
and blends the source feature maps along the spatial dimensions and across the
source views. In principle, all convolutional layers of the blending network can
be replaced by a convolutional GRU. However, we observed that just replacing
the last convolutional layer per stage in the encoder, and the first convolutional
layer per stage in the decoder works as well and decreases the time needed
for training and evaluation of the overall network. For each source image Ik,
the blending decoder outputs confidence values Ck and color information Îtk
per pixel in the target view. The final output Ît is then generated by a soft-
argmax Ît =

∑
k w(Ck)Îtk , where w are weights computed by a softmax over

the confidence values.

Training. To train the mapping and blending network we require a supervi-
sion signal. We use a natural setup [12,15,43]: sample one of the source images,
withhold it, and use it as ground-truth It.
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Fig. 3: Overview of the recurrent mapping and blending network. The input is a
set of source images {Ik}Kk=1 that are first encoded by a shared convolutional net-
work, the image encoder. We map the resulting features into the target view using
the depth map Dt, derived from the proxy geometry M. The features are then
aggregated by a recurrent network, the blending decoder. For each input image
Ik, we output a confidence image Ck and a color image Îtk , which are then aggre-

gated to a final output Ît via a soft-argmax using w(Ck) = exp(Ck)/
∑

j exp(Cj).

As training loss we utilize the perceptual loss of Chen and Koltun [5]. Given
our estimated image Ît and the ground-truth target It, the loss is

L(Ît, It) = ||Ît − It||1 +
∑

l

λl||φl(Ît)− φl(It)||1 , (1)

where φl are the outputs of the layers ‘conv1 2’, ‘conv2 2’, ‘conv3 2’, ‘conv4 2’,
and ‘conv5 2’ of a pretrained VGG-19 network [38]. The weighting coefficients
{λl}5l=1 are set as in [5].

We use ADAM [20] with a learning rate of 10−4 and set β1 = 0.9, β2 = 0.9999,
and ε = 10−8 to train the recurrent mapping and blending network. We train
the model for 450,000 iterations with a batch size of 1.
Acceleration. The recurrent nature of our mapping and blending network al-
lows the integration of an arbitrary number of source images with a low memory
footprint. To further speed up processing, we precompute the feature embeddings
of the source images. This avoids the repeated encoding of the source images for
different synthesized views.

4 Experimental Evaluation

We first evaluate our design choices in controlled experiments and then com-
pare to the state of the art. For each scene, we first run the COLMAP SfM
pipeline [35] to get camera poses and a sparse reconstruction as described in
Section 3.1. We also create a dense reconstruction of all models using MVS [34]
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Table 1: Evaluation of architectural choices on the Tanks and Temples dataset.
(Leave-one-out protocol.) See the text for a detailed description of the conditions.

Truck Train M60 Playground

↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR

Fixed Identity 0.116 0.819 21.22 0.201 0.751 18.53 0.110 0.871 22.67 0.119 0.824 22.38
Fixed Encoding 0.096 0.828 21.19 0.168 0.769 19.01 0.096 0.876 22.80 0.107 0.831 22.40
Cat Global Avg. 0.089 0.842 21.49 0.175 0.773 18.73 0.093 0.887 23.41 0.098 0.845 22.92
Ours w/o Encoding 0.093 0.849 22.13 0.174 0.778 19.33 0.094 0.887 23.79 0.099 0.851 23.45
Ours w/o GRU 0.094 0.845 21.74 0.159 0.782 19.26 0.087 0.893 23.49 0.095 0.849 23.30
Ours w/o Masks 0.087 0.847 21.58 0.152 0.784 19.42 0.082 0.897 24.07 0.087 0.850 23.16
Ours w/o inf. depth 0.093 0.847 21.94 0.169 0.782 18.96 0.087 0.896 24.08 0.094 0.853 23.47
Ours w/o soft-argmax 0.091 0.845 21.74 0.159 0.786 19.43 0.086 0.891 23.79 0.090 0.857 23.50
Ours full 0.082 0.852 22.03 0.147 0.794 19.54 0.081 0.894 23.98 0.084 0.859 23.51

and Delaunay-based surface reconstruction [18,23] as outlined in Section 3.1. To
train the network we use the Tanks and Temples dataset [21]. We select 17 of
the 21 scenes in the dataset for training and supervise the model by designating
one image as the ground-truth target and using the remaining ones as source
images. For testing we use scenes that are not included in our training set: Truck,
Train, M60, and Playground. We chose these scenes for evaluation because the
camera paths in these scenes were amenable to extraction of longer subsequences
that can be withheld to evaluate significant deviations from the source images.
Note that none of the images from the evaluation scenes have been seen during
the training of our method. See Figure 1 for a visualization of the target and
source cameras for the Truck scene. For training, we downsample the images by
scaling the image height and width by a factor of four each. We implemented
our recurrent mapping and blending network in PyTorch [31].

In all of our evaluations, we report three different image metrics. We in-
clude PSNR and SSIM to evaluate low-level image differences. However, those
metrics have only weak correlation with human perception [48]. Therefore, we
also include the LPIPS metric, which is based on perceptual features in trained
convolutional networks and was shown to better correlate with human percep-
tion [48].
Architectural choices. In the first set of experiments we evaluate our architec-
tural design choices. See Table 1 for an overview of the results on the Tanks and
Temples test scenes. For these experiments, we also use the quarter resolution
images for evaluation. This evaluation is conducted in the leave-one-out setting,
i.e., we select each image per scene once as the unseen ground-truth target and
utilize the other images as source images.

Our first baseline, Fixed Identity, is a network that is related to the one pre-
sented in [15]. It is a U-Net architecture with the same capacity as our blending
network, but it receives as input a fixed number (K = 4) of mapped source im-
ages concatenated along the channel dimension and directly outputs the image
in the target view. We use the same source image selection strategy as in our
method. Fixed Encoding differs in that we use the same VGG-19 based encod-
ing network prior to mapping as in our approach. Cat Global Avg. is the same
architecture as our proposed one without recurrent units, but a global average
concatenated to each blending head. We also ablate our recurrent mapping and
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Table 2: Results on Tanks and Temples. (Whole sequences withheld.)
Truck Train M60 Playground

↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR

EVS [8] 0.41 0.563 14.99 0.64 0.454 11.81 0.62 0.473 9.66 0.39 0.610 16.34
LLFF [26] 0.61 0.432 10.66 0.70 0.356 8.88 0.69 0.427 8.98 0.56 0.517 13.27
NeRF [27] 0.61 0.690 19.47 0.74 0.532 13.16 0.62 0.691 15.99 0.54 0.734 21.16
NPBG [2] 0.22 0.822 20.32 0.25 0.801 18.08 0.36 0.716 12.35 0.17 0.876 23.03
Our 0.11 0.867 22.62 0.22 0.758 17.90 0.29 0.785 17.14 0.16 0.837 22.03

blending architecture. Ours w/o GRU uses no GRU in the blending decoder. In
Ours w/o Encoding we directly map the input images to the recurrent blending
network, and in Ours w/o Masks we do not append the mapping masks to the
blending network input. Ours w/o inf. depth does not set the invalid depth val-
ues in Dt to +∞, and Ours w/o soft-argmax uses a single output head after the
evaluation of the last blending decoder instead of the soft-argmax.

The results presented in Table 1 validate the design choices of our method.
A clear advantage is the encoding of the source images before mapping and
blending. We see an overall improvement for the fixed input architecture and
our recurrent mapping and blending network. The difference between our results
and the results of Ours w/o GRU and Cat Global Avg. also highlights the benefit
of the recurrent network, i.e., propagating blending information between source
images via a recurrent unit.
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Fig. 4: The effect of in-
creasing the number of
source views.

In Figure 4 we evaluate the performance of our
method with an increasing number of source images.
We see that image fidelity improves with the number
of source images up to 7 images and then saturates.
Note that a higher number of source images is espe-
cially important if the novel view is farther away from
the scene or object than any of the source images. In
this setting, more source images are needed to cover
the view frustum.

Tanks and Temples. In this evaluation, we com-
pare our approach to state-of-the-art methods on
novel view sequences extracted from Tanks and Tem-
ples [21]. As we want to evaluate novel view synthesis from unstructured source
images, we manually select a subset of camera poses from the test scenes as
targets that we want to reconstruct. These target images are taken out of the
dataset and only serve as ground truth for evaluation of our synthesized results.
The scenes we use for evaluation have never been seen during the training of our
method. An example of the setup for the Truck scene is depicted in Figure 1.

We compare our method to two recent state-of-the-art and two concurrent
methods. Extreme View Synthesis (EVS ) [8] mainly focuses on extreme stereo
baseline magnification and utilizes the multi-view stereo network MVSNet [46].
Specifically, it warps the 3D feature volumes of the source images into the target
view and fuses them. We utilize the code provided by the authors and as no
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Fig. 5: Qualitative results on Tanks and Temples. (Whole sequences withheld.)

training code is available, we also apply the pretrained model that is provided.
Local Light Field Fusion (LLFF ) [26] is based on the multi-plane image idea
and assumes that the poses of the source images lie on a plane. For this method
as well, we use the code provided by the authors and the provided pretrained
model weights as no training code is available.

We also compare to Neural Radiance Fields (NeRF ), which is concurrent
work that is published alongside ours [27]. Finally, we benchmark Neural Point-
Based Graphics (NPBG), which is likewise a concurrent publication [2]. We
train the descriptors per 3D point and fine-tune the provided rendering network
per scene, utilizing the available code. Note that NeRF and NPBG have to be
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Fig. 6: Qualitative results on new recordings.

trained on the test scenes, whereas our approach does not need any adaptation
or fine-tuning on new scenes.

Quantitative results are summarized in Table 2 and qualitative results are
shown in Figure 5 and the supplementary video. LLFF clearly fails in this chal-
lenging unstructured setting: The assumptions of LLFF are not met, which leads
to strong ghosting artifacts. EVS works better, but often fails on fine details and
sometimes misses whole parts of the image, although we used the very same set
of source images as input as we selected for our method. The latter artifacts are
the main reason for the low quantitative performance of EVS. NeRF struggles
on the Tanks and Temples scenes. The results are either blurry or fail completely,
for example on the Train scene. NPBG produces good images that are compet-
itive with ours. Our method produces sharp details and is superior to all other
methods is terms of the LPIPS metric.
New recordings. We also evaluate the presented method on new recordings
that stress the unstructured setting. We use a handheld camera in natural motion
and record videos of different scenes to extract source images. We then record
each scene again to gather ground-truth data for new target views. Results are
shown in Figure 6 and the supplementary video.

Fig. 7: DTU evaluation
setup. Gray cameras de-
note the source views.
Green and blue cam-
eras denote interpola-
tion and extrapolation
poses, respectively.

DTU. We now compare our method to state-of-the-
art alternatives in a more constrained view interpola-
tion and extrapolation setting. For this we use the
DTU dataset [1], which includes over 100 tabletop
scenes. The image poses are identical for all scenes,
as the camera has been mounted on a robotic arm
and the views roughly cover an octant of a sphere.
Figure 7 visualizes the poses.

Of the 49 camera poses we selected 10 as targets
for novel view synthesis and used the rest as source
images. We test the view extrapolation capabilities of
all methods by having four target views on the corners
of the camera grid. Interpolation is tested on 6 center
views. We use the object masks for scenes 65, 106, and
118, which are provided by [29] for all source images.

We summarize the quantitative results in Table 3.
Qualitative results are shown in Figure 8 and the supplementary video. We no-
tice blending artifacts in the images produced by EVS [8], which are reflected in
the lower quantitative performance. On the other hand, the results of LLFF [26]
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Table 3: Quantitative results on the DTU dataset. Numbers on the left are for
view interpolation, numbers on the right are for extrapolation.

Scan 65 Scan 106 Scan 118

↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR

EVS [8] 0.61/0.53 0.938/0.917 23.07/21.23 0.75/0.53 0.903/0.880 19.95/18.62 0.47/0.42 0.931/0.911 23.00/20.47
LLFF [26] 0.51/0.44 0.939/0.926 22.44/22.04 0.61/0.39 0.907/0.893 24.08/24.61 0.47/0.30 0.932/0.929 28.95/27.40
NeRF [27] 0.17/0.32 0.987/0.963 34.41/27.81 0.36/0.40 0.973/0.931 34.52/24.36 0.24/0.27 0.985/0.952 37.16/28.39
NPBG [2] 0.82/0.96 0.896/0.839 17.77/15.59 0.94/0.53 0.856/0.879 20.70/22.54 0.74/0.41 0.876/0.905 24.10/24.97
Our 0.25/0.30 0.972/0.950 26.96/24.08 0.25/0.26 0.963/0.938 27.24/24.63 0.16/0.20 0.975/0.951 29.21/25.75

and especially of NeRF [27] are clearly better compared to their performance on
Tanks and Temples. This comes as no surprise because the DTU setup is much
closer to the basic assumptions of these methods: the scene is a clearly bounded
object and the camera poses are densely and regularly sampled by the source
views. NPBG [2] struggles in this setting and often intermixes background and
foreground. In contrast, our method yields sharp results, including in the extrap-
olation setting, and performs reasonable inpainting when geometry is missing.
Note that the illumination varies with the viewing direction in DTU scenes.
While we are still able to synthesize realistic results, low-level metrics such as
PSNR are not very reliable.
Limitations. While our method is a clear step forward compared to prior work,
it has limitations. The first limitation is apparent when we examine videos ren-
dered from a sequence of new views. We only synthesize images frame-by-frame
and do not enforce any temporal consistency. Thus synthesized videos exhibit
temporal instability. The second limitation stems from the use of proxy 3D ge-
ometry. If the 3D model used for mapping misses large parts of the scene or has
gross outliers, our pipeline will produce visible artifacts. The flip side is that
our approach can directly benefit from future improvements in SfM and MVS
pipelines [21].

5 Conclusion

We presented a method for novel view synthesis in the challenging setting of
unstructured input images acquired by natural motion through the scene. After
preprocessing the input using standard SfM and MVS to get camera parame-
ters and 3D proxy geometry, we showed that a recurrent mapping and blending
architecture can produce sharp images for new views of the scene that depart sig-
nificantly from the input. The recurrent architecture enables using an arbitrary
number of source images per target view, which mostly eliminates the need for
hand-crafted heuristics for source image selection and demonstrably helps in the
unstructured setting. In future work, we plan to improve temporal consistency.
We also expect that the results of our method will continue to improve as new
techniques for SfM, MVS, and surface reconstruction are introduced.
Acknowledgements. We thank Kai Zhang for the evaluation of NeRF.
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Fig. 8: View extrapolation results on the DTU dataset.
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