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Abstract. Face anti-spoofing is crucial to security of face recognition
systems. Previous approaches focus on developing discriminative models
based on the features extracted from images, which may be still entangled
between spoof patterns and real persons. In this paper, motivated by the
disentangled representation learning, we propose a novel perspective of
face anti-spoofing that disentangles the liveness features and content fea-
tures from images, and the liveness features is further used for classifica-
tion. We also put forward a Convolutional Neural Network (CNN) archi-
tecture with the process of disentanglement and combination of low-level
and high-level supervision to improve the generalization capabilities. We
evaluate our method on public benchmark datasets and extensive exper-
imental results demonstrate the effectiveness of our method against the
state-of-the-art competitors. Finally, we further visualize some results to
help understand the effect and advantage of disentanglement.

Keywords: Face anti-spoofing, generative model, disentangled repre-
sentation

1 Introduction

With superior performance than human, face recognition techniques are widely
used in smart devices, access control and security scenarios. However, the asso-
ciated safety issues raise concern of public since the accessment of human face is
low-cost and a well-designed makeup can easily fool this biometric mechanism.
These face spoofs, also called Presentation Attacks (PA), vary from simpler
printed facial images, video replays to more complicated 3D mask and facial
cosmetic makeup. Theoretically, face recognition systems are vulnerable to all
spoofs without specific defense, which incurs malicious attacks of hackers, but
also encourages the boosting of robust face anti-spoofing algorithm.

* equal contribution.
† corresponding author.
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Fig. 1. Comparison between previous entangled framework and our disen-
tangled framework. Previous works learn entangled features which are easily overfit-
ting to the training dataset. In contrast, our disentangled framework distills the liveness
features with proper constraints and supervision.

Since the primary facial spoof images or videos contain artifacts, researchers
put forward several methods based on texture analysis. Some handcrafted fea-
tures are combined with anti-spoofing algorithms, such as Local Binary Pat-
tern(LBP) [6, 14, 15, 27], Histogram of Oriented Gridients(HOG) [21, 41], Scale
Invariant Feature Transform(SIFT) [30], etc. These cue-based methods use hand-
crafted features to detect the motion cues such as lip movement or eye blinking
for authentication. However, these methods couldn’t deal with the replay attacks
with high-fidelity. Recently, Convolutional Neural Network(CNN)-based meth-
ods have achieved great progress in face anti-spoofing [40, 29, 23]. Basically, these
methods treat the security issue as a binary classification problem with softmax
loss. However, they are lack of generalization capability for overfitting on the
training dataset. Despite many methods use auxiliary information (i.e., facial
depth map, rppg signals, etc.) to further guide the network in telling the differ-
ence between real and spoof [18, 19, 24], these pre-defined characteristics are still
insufficient for depicting the authentic abstract spoof patterns since exhausting
all possible constraints is impossible.

Thus the crucial step of face anti-spoofing does not lie in how to precisely
pre-define the spoof patterns, but how to achieve the spoof patterns from high-
dimensional extracted representations. One possible solution is disentangling
representations into separate parts. In disentangle learning [38, 17], it’s a con-
sensus that high-dimensional data can be explained by substantially lower di-
mensional and semantically meaningful latent representation variables. While in
face anti-spoofing, the spoof patterns can be viewed as one kind of attributes of
face, not just a certain irrelevant noise type or the combination. Hence, the prob-
lem is transformed into how we can directly target to the liveness information
from all the variations of facial images.

As shown in Fig. 1, we propose a novel disentangled face anti-spoofing tech-
nique via separating the latent representation. Motivated by [17], we assume the
latent space of facial images can be decomposed into two sub-spaces: liveness
space and content space. Liveness features corresponds to the liveness-related
information, while content features integrate remaining liveness-irrelated infor-
mation in the input images, such as ID and lighting. However, in disentangled
learning procedure, there exist two challenges on missing 1) corresponding gen-
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uine images for spoof images in translation process and vice versa, 2) clear
research about properties of liveness features in face anti-spoofing literature.

To tackle above challenges, we introduce low-level texture and high-level
depth characteristics to further facilitate disentanglement. For the first chal-
lenge, we adopt a Generative Adversarial Network(GAN)-like discriminator to
guarantee the plausibility of the translated images. An auxiliary depth esti-
mator is then introduced to ensure that the liveness information has also been
exchanged between genuine and spoof images. For the second challenge, checking
the properties of liveness features is equivalent to making liveness and content
features independent in disentangled framework. In order to spilt liveness and
content space, we encode the translated images to get reconstructed liveness fea-
tures again. With bidirectional reconstruction loss on images and latent codes,
liveness features of diverse spoof patterns are thoroughly extracted in a self-
supervised way. To further regularize liveness space, we introduce a novel LBP
map supervision. Finally, the spoof classification could be solved in a smaller
and more discriminative liveness feature space. Hence, our architecture is more
likely to achieve good generalization capability.

To sum up, the contributions of this work are three-fold:
• We address face anti-spoofing via disentangled representation learning,

which separates latent representation into liveness features and content features.
• We combine low-level texture and high-level depth characteristics to regu-

larize liveness space, which facilitates disentangled representation learning.
• Abundant experiments and visualizations are presented to reveal the prop-

erties of liveness features, which demonstrates the effectiveness of our method
against the state-of-the-art competitors.

2 Related Work

Our method introduces disentangled representation learning to solve face anti-
spoofing. Previous related work lies in two perspectives: face anti-spoofing and
attributes disentanglement.

Face Anti-spoofing. Early researches focused on hand-crafted feature descrip-
tors, such as LBP [6, 14, 15, 27], HOG [21, 41], SIFT [30] and SURF [7], to project
the faces into a low-dimension feature space, where traditional classifiers such as
SVM are utilized for judgement. There are also some methods using information
from different domains, such as HSV and YCrCb color space [6, 8], temporal
domain [34, 2, 12, 39], and Fourier spectrum [22]. However, these hand-crafted
feature-based methods cannot achieve high accuracy due to limited representa-
tion capacity.

With the rise of deep learning, researchers attempted to tackle the face anti-
spoofing with CNN-based features. Initially, [40, 29, 23] treated the task as a
binary classification problem with softmax loss. Compared to hand-crafted fea-
tures, such models gained higher accuracy in intra-testing settings. However, due
to the overfitting on training data, their generalization ability are relatively poor.
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In order to improve the generalization ability, many methods attempted to utilize
auxiliary supervision to guide networks. [24] attempted to guide networks with
auxiliary supervision of facial depth information and remote-photoplethysmo-
graphy (r-ppg) signal. [18] utilized the spoof images to estimate the spoofing-
relevant noise pattern. [33] adopted the strategy of domain generalization to
achieve improvements in cross-testing. These auxiliary supervision indeed im-
prove generalization. However these methods all handle this problem in the whole
feature space, which is disturbed by irrelevant factors.

Disentangled Representation. The key intuition about disentangling is that
disentangled representation could factorize the data into distinct informative
factors of variations [25]. [16, 10] aimed to learn disentangled representations
without supervision. [38] divided latent features of an facial image into different
parts, where each part encodes a single attribute. [17] assumed that latent space
of images can be decomposed into a content space and a style space.

These works inspire us decompose the features of an facial image into content
features and liveness features. In face anti-spoofing, content features correspond
to the liveness-irrelated information in the images, such as ID, background, Scene
lighting, etc. On the contrary, liveness features are the key to distinguishing be-
tween real persons and attacks. Obviously, we could tackle the face anti-spoofing
in the liveness feature space. However, there are many challenges in disentangled
learning procedure, such as without the ground truth of the recombined images,
diverse styles of spoof, etc. In this paper, we combine low-level texture and high-
level depth characteristics to facilitate disentangled representation learning.

3 Disentanglement Framework

Our framework mainly consists of two parts: the disentanglement process and
the auxiliary supervision. As the core component of our framework explained in
Sec.3.1, the disentanglement process separates the representation into two inde-
pendent factors, which are liveness features and content features, respectively. As
illustrated in Sec.3.2, depth, texture, and discriminative constraints are utilized
as auxiliary supervision. By introducing these three auxiliary nets, we consoli-
date liveness features and further facilitate the disentanglement process. Fig.2
illustrates the overview of our method and the entire learning process.

3.1 Disentanglement Process

Disentanglement process is designed to separate liveness features and content
features by exchanging and recombining these two features. Inputs of the disen-
tanglement part are two unpaired images A and B, where A is randomly chosen
from live face images and B is chosen from spoof images. In the encoder part,
we first use a convolution block to extract latent code Z from inputs. And then
two independent convolutional sub-networks encode latent code Z into liveness
features L and content features C respectively. This specific structure separates
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Fig. 2. Overview of our disentanglement framework. The features of an image
are divided into two parts, content features and liveness features. By exchanging the
liveness features of the real person and the attack, we can get different reconstructed im-
ages with the same content but their liveness attributes are changed. Texture net, depth
net and discriminator are proposed to facilitate disentangled representation learning.

two features from convolving with each other. According to the above process,
we can get LA, CA and LB , CB respectively by encoding images A, B. Then,
we exchange the liveness part LA and LB to obtain images Ab and Ba.

Ab = Dec(CA, LB), Ba = Dec(CB , LA). (1)

Because the liveness features determine the liveness attributes of the image, we
suppose that Ab is a spoof version of image A, and Ba is a genuine version of
image B. To better decode the latent code back into images, the architecture
we used for the decoder is symmetrical with the encoder. Besides, following
the U-Net [32] structure, the shortcuts are added from the middle layers in
encoder to the corresponding layers in decoder to bring the original information
as an auxiliary context for improving visual quality. To further guarantee that
liveness information and content information can be split completely, we encode
images Ab, Ba again to get C ′A, L

′
B and C ′B , L

′
A, and introduce a bidirectional

reconstruction loss [17] to encourage reconstruction in two sequential processes
(i.e., from images to images and from latent features to latent features).
Image Reconstruction. The combination of the encoder and decoder should
be capable of reconstructing any image xi from the datasets:

Lrec
xi

= Exi∼p(xi) ‖D(E(xi))− xi‖1 , (2)

where p(xi) is the distribution of original images in the datasets, E is the encoder
and D is the decoder.
Latent Reconstruction. Given a pair of liveness features and content fea-
tures at translation time, we should be able to reconstruct it after decoding and
encoding.

Lrec
zi = Ezi∼q(zi) ‖E(D(zi))− zi‖1 (3)
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Table 1. The details of Auxiliary nets of our method.

LBP Net Depth Net Discriminator
Layer chan./Stri. Out.Size Layer chan./Stri. Out.Size Layer chan./Stri. Out.Size
Input:liveness features Input:image Input:image

conv2-0 64/1 256
conv1-0 384/1 32 conv2-1 128/1 256 conv3-1 64/1 256

conv2-2 196/1 256 pool3-1 -/2 128
conv2-3 128/1 256
pool2-1 -/2 128

conv1-1 128/1 32 conv2-4 128/1 128 conv3-2 128/1 128
conv2-5 196/1 128 pool3-2 -/2 64
conv2-6 128/1 128
pool2-2 -/2 64

conv1-2 64/1 32 conv2-7 128/1 64 conv3-3 256/1 64
conv2-8 196/1 64 pool3-3 -/2 32
conv2-9 128/1 64
pool2-3 -/2 32

conv1-2 pool2-1+pool2-2+pool2-3 vectorize
conv2-10 128/1 32
conv2-11 64/1 32

conv1-3 1/1 32 conv2-12 1/1 32 fc3-1 1/1 2

where zi is the combination of liveness features Li and content features Ci, and
q(zi) is the distribution of latent code.

3.2 Auxiliary Supervision

In this section, we introduce three auxiliary supervision: LBP map, depth map
and discrimination supervision, which promote the disentanglement process col-
laboratively. Discrimination supervision ensures the visual quality of generated
image. Depth and LBP supervision are plugged into different parts to guaran-
tee the generated image being in correct category when their liveness features
are exchanged. The LBP map and depth map together regularize the liveness
feature space, making it the key factor to distinguish between real persons and
spoof patterns. The detailed structure of three auxiliary nets are illustrated in
Tab. 1. Each convolutional layer is followed by a batch normalization layer and
a Rectified Linear Unit (ReLU) activation function with 3× 3 kernel size.

Texture Auxiliary Supervision. Liveness features are the essential charac-
teristic of a face image, which determine the liveness categories of the image.
Thus when swapping liveness features between a real person and an attack, cat-
egories of images and estimated depth maps should be changed simultaneously.
And the estimated depth map is usually considered to be related to factors such
as facial lighting and shadows, which are contained in the texture information
of the face. What’s more, previous works have proven that texture is an im-
portant clue in face anti-spoofing. Therefore, LBP map is adopted to regularize
the liveness features in disentanglement framework. Although LBP features con-
tain some additional information, proposed disentanglement framework utilize
Latent Reconstruction Loss to constrain liveness features to learn only essential
information. To make the features distinctive, for the genuine faces, we use the
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LBP map extracted by the algorithm in [1] as texture supervision. While for the
spoof face, a zero map serves as the ground truth.

Llbp = Eli∼P (li),xi∼P (xi) ‖LBP (li)− lbpxi‖1
+ Eli∼N(li),xi∼N(xi) ‖LBP (li)− 0‖1

(4)

where LBP is the LBP Estimator Net, P (xi) is the distribution of live face
images in the datasets, P (li) is the distribution of liveness space of live face
images, N(xi) is the distribution of spoof images in the datasets, N(li) is the
distribution of liveness space of spoof images, lbpxi

means the lbp map of live
face images xi and 0 means the zero maps for spoof images.

Depth Supervision. Depth map is commonly used as an auxiliary supervision
in face anti-spoofing tasks. In our disentanglement framework, we combine LBP
map and depth map supervision to regularize the liveness feature space. Simi-
larly as LBP branch, we use pseudo-depth as ground truth for live face images
and zero map for spoof images. The pseudo-depth is estimated by the 3D face
alignment algorithm in [13]. During training stage, depth net only provides the
supervision and does not update parameters. Since the reconstructed images A′

and generated Ba are live images, and the reconstructed images B′ and gener-
ated Ab are spoof images, the corresponding depth map of above images should
be the depth of the face in images A, B and two zero maps. Then the loss of
depth is formulated as:

Ldep = Exi∼N(xi) ‖Dep(xi)− 0‖1 + Exi∼P (xi) ‖Dep(xi)− depxi‖1 (5)

where Dep is the parameters fixed depth net, P (xi) is the distribution of live
face images, N(xi) is the distribution of spoof images, depxi

is the depth map of
live face images xi and 0 means the zero maps for spoof images correspondingly.

Discriminative Supervision. For ensuring the visual plausibility of gener-
ated images, we apply discriminative supervision on the generated images. Dis-
criminative supervision is used for distinguishing between the generated images
(A′, B′, Ab, Ba) and the original images (A,B). At the same time, disentangle-
ment framework aims to produce plausible images which would be classified as
non-synthetic images under discriminative supervision. Nevertheless, the recep-
tive field of a single discriminator is limited for large images. We use multi-scale
discriminators [36] to address this problem. Specifically, we deploy two identi-
cal discriminators with varied input resolution. The discriminator with a larger
input scale is denoted as D1, which guides the disentanglement net to generate
finer details. And the other discriminator with a smaller input scale is denoted as
D2, which guides the disentanglement net to preserve more global information.
In the training process, there are two consecutive steps in each iteration. In the
first step, we fix disentanglement net and update the discriminator,
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LDis
D =− EI∈Rlog(D1(I))− EI∈Glog(1−D1(I))

− EI∈Rlog(D2(I))− EI∈Glog(1−D2(I))
(6)

where R and G are the sets of real and generated images respectively. In the
second step, we fix the discriminator and update the disentanglement net,

LGen
D = −EI∈Glog(D1(I))− EI∈Glog(D2(I)) (7)

Loss Function. The final loss function of training process is the weighted
summation of the loss functions above,

L = LGen
D + λ1Lrec

xi
+ λ2Lrec

zi + λ3Ldep + λ4Llbp (8)

where λ1, λ2, λ3, λ4 are the weights. Following common adversarial training pipeline,
we alternately optimize discriminator and disentanglement net. The weights are
empirically selected to balance each loss term.

4 Experimental Results

4.1 Experimental Setting

Databases. We test our method on four face anti-spoofing databases: Oulu-
NPU [9], SiW [24], CASIA-MFSD [43] and Replay-Attack [11]. We evaluate our
intra-testing performance on Oulu-NPU and SiW datasets, and conduct cross-
testing by training on Replay-Attack or CASIA-MFSD and testing on the other.
Metrics. To compare with previous works, we report the performance via the
following metrics: Attack Presentation Classification Error Rate (APCER) [4],
Bona Fide Presentation Classification Error Rate (BPCER) [4], Average Clas-
sification Error Rate (ACER) = (APCER+BPCER)/2 [4] and Half Total Error
Rate (HTER) = (False Acceptance Rate + False Rejection Rate)/2 [4].
Implementation Details. All datasets above are stored in video format. We
use a face detector or face location files in datasets to crop the face and resize it to
256 × 256. For each frame, we combine scores of estimated LBP map and Depth
map to detect attack for fully utilizing the low-level texture information and
high-level global information, as the methods in [18], i.e., score = (‖maplbp‖ +
‖mapdepth‖)/2. We implement method in Pytorch [28]. Models are trained with
batch size of 4. In each epoch, we select negative images and positive images
with the ratio 1 : 1. To train network, we use learning rate of 1e-5 with Adam
optimizer [20] and set λ1 to λ4 in Eqn. 8 as 10, 1, 1 and 2. Depth net is pre-trained
and remains fixed during the training of other three nets, and all networks are
trained with the same data in each protocol. In inference stage, reconstruction
and translation procedure are both detached, thus the speed of our method is
acceptable, which achieves 77.97±0.18 FPS on GeForce GTX 1080.
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Table 2. The intra-testing results of four protocols of Oulu-NPU dataset.

Protocol Method APCER(%) BPCER(%) ACER(%)

1

STASN[42] 1.2 2.5 1.9
Auxiliary[24] 1.6 1.6 1.6
FaceDe-S[18] 1.2 1.7 1.5
FAS-TD[37] 2.5 0.0 1.3

Ours 1.7 0.8 1.3

2

Auxiliary[24] 2.7 2.7 2.7
GRADIANT[5] 3.1 1.9 2.5

STASN[42] 4.2 0.3 2.2
FAS-TD[37] 1.7 2.0 1.9

Ours 1.1 3.6 2.4

3

FaceDe-S[18] 4.0±1.8 3.8±1.2 3.6±1.6
Auxiliary[24] 2.7±1.3 3.1±1.7 2.9±1.5
STASN[42] 4.7±3.9 0.9±1.2 2.8±1.6
BASN[19] 1.8±1.1 3.6±3.5 2.7±1.6

Ours 2.8±2.2 1.7±2.6 2.2±2.2

4

FAS-TD[37] 14.2±8.7 4.2±3.8 9.2±6.0
STASN[42] 6.7±10.6 8.3±8.4 7.5±4.7

FaceDe-S[18] 5.1±6.3 6.1±5.1 5.6±5.7
BASN[19] 6.4±8.6 3.2±5.3 4.8±6.4

Ours 5.4±2.9 3.3±6.0 4.4±3.0

4.2 Experimental Comparison

In this section, we show the superiority of disentanglement and further illus-
trate translation results. To verify the performance of our method, we conduct
experiments on Oulu-NPU and SiW for intra-testing results, CASIA and Replay-
Attack for cross-testing results. Then we demonstrate some examples to show
details of translation, which verifies the validity of the liveness features.

Intra-Testing. Intra-testing is evaluated on Oulu-NPU and SiW datasets. We
utilize the protocols defined in each dataset. Tab. 2 shows the comparison of
our method with the best four methods on Oulu dataset. Our method achieves
better results in protocols 1, 3 and 4, while gets slightly worse ACER in protocol
2. For protocol 4 evaluating all variations in Oulu, our method gets the best
results, which verifies that our method has better generalization performance.
Following [19], we report the ACER on three protocols of SiW. Tab. 3 shows
that our method achieves better results among the frame based methods.

Cross-Testing. We evaluate the generalization capability by conducting cross-
dataset evaluations. Following the related work, CASIA-MFSD and Replay-
Attack are used for the experiments and the results are measured in HTER.
The results are shown in Tab. 4. For fair comparison, we compare with methods
using only single frame information. Our method achieves 1.2 pp lower HTER
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Table 3. The intra-testing results of three protocols of SiW dataset.

Protocol Method APCER(%) BPCER(%) ACER(%)

1

Auxiliary[24] 3.58 3.58 3.58

STASN[42] - - 1.00

FAS-TD[37] 0.96 0.50 0.73

BASN[19] - - 0.37

Ours 0.07 0.50 0.28

2

Auxiliary[24] 0.57±0.69 0.57±0.69 0.57±0.69

STASN[42] - - 0.28±0.05

FAS-TD[37] 0.08±0.17 0.21±0.16 0.15±0.14

BASN[19] - - 0.12±0.03

Ours 0.08±0.17 0.13±0.09 0.10±0.04

3

STASN[42] - - 12.10±1.50

Auxiliary[24] 8.31±3.81 8.31±3.80 8.31±3.81

BASN[19] - - 6.45±1.80

FAS-TD[37] 3.10±0.79 3.09±0.83 3.10±0.81

Ours 9.35±6.14 1.84±2.60 5.59±4.37

Table 4. The cross-testing results on CASIA-MFSD and Replay-Attack.

Method

Train Test Train Test

CASIA Replay Replay CASIA

MFSD Attack Attack MFSD

Motion-Mag[3] 50.1% 47.0%

Spectral cubes[31] 34.4% 50.0%

LowPower[35] 30.1% 35.6%

CNN[40] 48.5% 45.5%

STASN[42] 31.5% 30.9%

FaceDe-S[18] 28.5% 41.1%

Auxiliary[24] 27.6% 28.4%

BASN[19] 23.6% 29.9%

Ours 22.4% 30.3%

than the state-of-the-art from CASIA-MFSD to Replay-Attack and gets compa-
rable HTER from Replay-Attack to CASIA-MFSD. This results also prove that
our method with disentanglement has better generalization capability.

Translation Result. We demonstrate some examples of translation from Oulu
protocol 1 in three groups: live-spoof, live-live, spoof-spoof, as shown in Fig. 3.
In the live-spoof group, depth map changes with the exchange of the liveness
features. While in live-live group and spoof-spoof group, the liveness features
changing doesn’t result in the change of depth map, which implies that liveness
features indeed determine whether the image is live. The difference between each
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Fig. 3. Illustrations of translation results with corresponding depth map and
LBP map. We swap liveness features between every two columns. The exchanging of
depth and LBP map verifies that liveness features are the key part of live face images.

Fig. 4. Illustrations of exchanging live and spoof details. The first row is the
original image, and the second row is the translation results. Red rectangular is referred
as the details of live images while blue refer to the details of the spoof images.

two columns of live face and spoof images is light, ID, background respec-
tively. As the translation shows, there are no changes about these factors with
the category changing, which means that liveness features do not contain these
factors. Fig. 4 shows two sets of live and attack images and their local area de-
tails. As shown in the figure, there is a big difference between the local details
of the real person and the attack, and the attack images often have some repet-
itive streaks. And after combining the liveness features from the attack images,
the local details of the translation results are similar to the corresponding at-
tacks, which shows that the liveness features have not only learned the difference
between real people and attacks, but also learned different attack details.
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Fig. 5. Visualization of feature distributions from different methods. We use
different constraint on livness feature or whole feature and draw the corresponding
feature in brackets by t-SNE [26].

Table 5. The comparison of different supervision and combination.

ACER

Method
BC-Depth 0/1 Map-Depth LBP-LBP Depth-Depth Depth-LBP Ours

liveness features 3.64 3.02 1.87 1.69 1.65 1.56

fusion 2.78 2.50 2.40 1.80 1.50 1.25

4.3 Ablation Study

To study the effect of disentanglement, different supervision and score fusion
methods, we conduct ablation experiments on Oulu-NPU protocol 1 respectively.

Liveness Feature Distribution. We use t-SNE [26] to visualize the features
from different methods, which includes 500 live face images and 2, 000 spoof
images, as illustrated in Fig. 5. Comparing (a) with (b), we conclude that disen-
tanglement indeed finds a sub-space where the features of live and spoof can be
distinguished more easily. For comparison between (b) and our method (c), low
level LBP supervision on the liveness features improves discrimination between
live and attack. The difference between (c) and (d) proves that liveness features
indeed can distinguish between real and attack while content features can’t.

Different Supervision. a In our method, we propose the supervision com-
bining low-level LBP texture and high-level depth information. We compare
this combination of supervision with other five ablation methods, which are all
based on the proposed disentanglement framework: (1) Binary classification (BC-
Depth) method which uses binary classification on the liveness space. (2) 0/1
Map-Depth method means restricting liveness space by regressing the features to
0/1 Map, where 0 map is for attack and 1 map is for live. (3) LBP-LBP method
supervises feature space and translated images with LBP map. (4) Depth-Depth
method refers to two depth supervision on feature space and image space. (5)
Depth-LBP method uses depth supervision on feature space and LBP supervi-
sion on translated images, which is a reverse version of our method.
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Fig. 6. Distribution of liveness features under two different settings: (a) and (b)
display liveness features of different attack and live with the same devices; (c), (d) and
(e) are about features of different devices with the same attack or live.

Table 6. The results of score fusion.

Method LBP Map Depth Map
Fusion

Maximum Average

APCER 1.25 2.50 2.92 1.67

BPCER 1.67 0.83 0.83 0.83

ACER 1.56 1.67 1.88 1.25

Tab. 5 shows the performance of each method on liveness features and the fu-
sion results with depth network. Compared with different supervison on liveness
features, LBP as a low-level texture supervision regularizes the feature space
efficiently and performs better. The results of four combinations about LBP and
Depth supervision show that the same supervision on feature space and images
performs worse than different supervision. And the order of the two supervisions
has little effect on the results, but the result of our method is slightly better.

Score Fusion. Using Oulu-NPU protocol 1, we perform studies on the effect of
score fusion. Tab. 6 shows the results of each output and the fusion with maxi-
mum and average. It shows using LBP map or depth map, the performance is si-
miliar. And the fusion of LBP map and depth map achieves the best performance.
Hence, for all experiments, we evaluate the performance by utilizing the fusion
score of the LBP map and the depth map, score = (‖maplbp‖+ ‖mapdepth‖)/2.

5 Further Exploration

We have ruled out the effects of some factors on liveness features in Sec. 4.2. For
better understanding the essence of the liveness features, we do some qualitative
experiments to explore what factors are related to it.
Spoof Type. We randomly pick up 200 images, which are collected by one
certain device. Then we extract the liveness features of images and visualize them
by t-SNE [26]. We demonstrate results under Samsumng and HTC mobiles in
Fig. 6(a) and (b). Although no additional constraints on attacks are used, there
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Fig. 7. The delta maps for different attacks with same device and different devices
with same attack.

are at least three distinct clusters: live images, paper attack and screen attack in
all equipment, which implies liveness features may be related to the spoof type.
Collection Equipment. We randomly pick up 200 images for each type of
attack and live with six different devices. Then we visualize the liveness features
in Fig. 6(c), (d) and (e). The liveness features from different devices are clustered
for attacks, but scattered for live person. It shows that the liveness features of real
person may not related to collection equipment. However, the liveness features
of attack may include information on collection equipment.

We further display the pixel-wise delta map between generated images and
original images of each type, as shown in Fig. 7. The original images, which are
shown in the first row, exchange the liveness features with the same one live
image to generate the results in the third row. Then we subtract translation
images from original images to get delta maps, which are mapped into color
space for a better visualization in the second row. From Fig. 7, we may get
the following conclusions: (1) When exchanging liveness features between real
faces, the delta maps are almost zero. However the delta maps become bigger
when between live faces and spoof images. (2) Delta maps of the same type of
attack (paper or screen) are similar but are distinguishing between two kinds of
attacks. (3) For the same type of attack, delta maps are different under different
collection equipment.

6 Conclusions

This paper introduces a new perspective for face anti-spoofing that disentangles
the liveness and content features from images. A novel architecture combining the
process of disentanglement is proposed with multiple appropriate supervisions.
We combine low-level texture and high-level depth characteristics to regularize
the liveness space. We visualize the translation process and analyze the content of
the liveness features which provides a deeper understanding of face anti-spoofing
task. Our method is evaluated on widely-used face anti-spoofing databases and
achieves outstanding results.
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