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A Proofs of Results

A.1 Proof of Theorem 1

We need the following lemma which guarantees the uniform convergence ofRS(θ)
towardsR(θ) for all θ when the loss function is Lipschitz continuous and smooth,
and the optimization is limited on a bounded domain.

Lemma 1. Assume that the domain of interest Θ ⊆ Rp is bounded by R and the
loss function `(fθ(x), y) is G-Lipschitz continuous and H-smooth with respect
to θ. Also assume that 0 ≤ `(fθ(x), y) ≤ B for all {fθ(x), y}. Then for any
δ ∈ (0, 1), the following bound holds with probability at least 1 − δ over the
random draw of sample set S for all θ ∈ Θ,

|R(θ)−RS(θ)| ≤ O

B
√

log(1/δ) + p log(
√
MGR(1 + ηH)/B)

M

 .

Proof. For any task T , let us denote ˜̀(θ;T ) := LDquery
T

(
θ − η∇θLDsupp

T
(θ)
)

.

Since `(fθ(x), y) is G-Lipschitz continuous with respect to θ, we can show that

|˜̀(θ;T )− ˜̀(θ′;T )| ≤G‖θ − η∇θLDsupp
T

(θ)− θ′ + η∇θLDsupp
T

(θ′)‖

≤G
(
‖θ − θ′‖+ η‖∇θLDsupp

T
(θ)−∇θLDsupp

T
(θ′)‖

)
≤G(1 + ηH)‖θ − θ′‖,

which indicates that ˜̀(θ;T ) is G(1 + ηH)-Lipschitz continuous for any task T .
As a subset of an L2-sphere, it is standard that the covering number of Θ

with respect to the L2-distance is upper bounded by

N (ε, Θ, L2) ≤ O
((

1 +
R

ε

)p)
.

Since the task-level loss function ˜̀(θ;T ) is G(1 + ηH)-Lipschitz continuous as
shown above, it can be verified that the covering number of the class of functions
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L̃ =
{
T 7→ ˜̀(θ;T ) | θ ∈ Θ

}
with respect to L∞-distance L∞(˜̀(θ1; ·), ˜̀(θ2; ·)) :=

supT |˜̀(θ1;T )− ˜̀(θ2;T )| is given by

N (ε, L̃, L∞) ≤ N
(

ε

G(1 + ηH)
, Θ, L2

)
≤ O

((
1 +

GR(1 + ηH)

ε

)p)
.

Therefore, there exists a set of pointsΩ ⊆ Rp with cardinality at mostN (ε, L̃, L∞)
such that the following bound holds for any θ ∈ Θ:

min
ω∈Ω
|˜̀(θ;T )− ˜̀(ω;T )| ≤ ε, ∀T.

For an arbitrary ω ∈ Ω, based on Hoeffdings inequality (note that `(·, ·) ≤ B
implies ˜̀(·, ·) ≤ B) we have

P (|RS(ω)−R(ω)| > t) ≤ exp

{
−Mt2

2B2

}
.

For any θ ∈ Θ, based on triangle inequality we can show that there exits ωθ ∈ Ω
such that

|RS(θ)−R(θ)| =|RS(θ)−RS(ωθ) +RS(ωθ)−R(ωθ) +R(ωθ)−R(θ)|
≤2ε+ |RS(ωθ)−R(ωθ)| ≤ 2ε+ max

ω∈Ω
|RS(ω)−R(ω)|.

Applying uniform bound we know that

P
(

sup
θ∈Θ
|R(θ)−RS(θ)| ≥ 2ε+ t

)
≤N (ε,L, `∞) exp

(
−Mt2

2B2

)
≤ O

((
1 +

GR(1 + ηH)

ε

)p
exp

(
−Mt2

2B2

))
.

Let us choose ε = B/
√
M and

t =
√

2B

√
log(1/δ) + p log(GR(1 + ηH)/ε)

M

such that the right hand side of the previous inequality equals δ. Then we obtain
that with probability at least 1− δ

sup
θ∈Θ
|R(θ)−RS(θ)| ≤ O

B
√

log(1/δ) + p log(
√
MGR(1 + ηH)/B)

M

 .

This proves the desired result.

Based on this lemma, we can readily prove the main result in the theorem.
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Proof (Proof of Theorem 1). For any fixed supporting set J ∈ J , by applying
Lemma 1 we obtain that the following uniform convergence bound holds for all
θ with supp(θ) ⊆ J with probability at least 1− δ over S:

|R(θ)−RS(θ)| ≤ O

B
√

log(1/δ) + k log(
√
MGR(1 + ηH)/B)

M

 .

Since by constraint the parameter vector θ is always k-sparse, we thus have
supp(θ) ∈ J . Then by union probability we get that with probability at least
1− δ, the following bound holds for all θ with ‖θ‖0 ≤ k:

|R(θ)−RS(θ)| ≤ O

B
√

log(|J |) + log(1/δ) + k log(
√
MGR(1 + ηH)/B)

M

 .

It remains to bound the cardinality |J |. From [3, Lemma 2.7] we know |J | =(
p
k

)
≤
(
ep
k

)k
, which then implies the desired generalization gap bound. This

completes the proof.

A.2 Proof of Corollary 1

Proof. Let Rγ be a population version of Rγ,S with margin-based loss function
`γ used for computing both LDsupp

T
and LDquery

T
. Since `γ is a surrogate of the

binary loss as used by R̃ for query classification error evaluation, we must have
R̃ ≤ Rγ . Then the desired bound follows directly by invoking Theorem 1 to the
considered margin loss.

B Detailed Experimental Settings

B.1 Model

The model used in our experiments is consistent with that considered for Rep-
tile[2]. The model used throughout the experiment contains 4 sequential mod-
ules. Each module has a convolutional layer with 3×3 kernel, followed by a batch
normalization and a ReLU activation. Additionally for the experiments on Mini-
ImageNet, a 2× 2 max-pooling pooling is used on the batch normalization layer
output while for Omniglot a stride of 2 is used in convolution. The above net-
work structure design is consistent with those considered for Reptile in [2]. We
test with varying channel number {32, 64, 128, 256} in each convolution layer to
show the robustness of our algorithms to meta-overfitting.

B.2 Datasets

There are three popular benchmark datasets used in our experiments.
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Task 1

Task 2

Task 3

(a) 5-way 1-shot tasks generated from Om-
niglot

Task 1

Task 2

Task 3

(b) 5-way 1-shot tasks generated from
MiniImageNet or TieredImageNet dataset

Fig. 1. Tasks used in our experiments. (a). Tasks generated from Omniglot. (b). Tasks
generated from MiniImageNet or TieredImageNet dataset.

Omniglot The Omniglot dataset has 1623 characters from 50 alphabets.
Each character contains 20 instances drawn by different individuals. The size
of each image is 28×28. We randomly select 1200 characters for meta training
and the rest are used for meta testing. Following [5], we also adopt a data
augmentation strategy based on image rotation to enhance performance.

MiniImageNet The MiniImageNet dataset consists of 100 classes from
the ImageNet dataset [1] and each class contains 600 images of size 84× 84×3.
There are 64 classes used for training, 12 classes for validation and 24 classes for
testing.

TieredImageNet The TieredImageNet dataset consists of 608 classes from
the ILSVRC-12 dataset [4] and each image is scaled to 84 × 84 × 3. There are
351 classes used for training, 97 classes for validation and 160 classes used for
testing.

B.3 Detailed Experimental Settings

The experimental details of DSD-based Reptile and IHT-based Reptile can re-
spectively be seen in Table 1 and Table 2. There are two points of hyperparameter
settings that should be highlighted.

– The outer learning rate has an initial value 1.0 which will decay with iteration
added.

– For MiniImageNet [6] with DSD-based Reptile, the iteration number of prun-
ing phase for 32-channel case is 5 × 104 and for 64/128/256-channel case is
6 × 104. Correspondingly, the iteration number of retraining phase for 32-
channel case is 2× 104 and for 64/128/256-channel case is 104.

– For study of complex networks in Section 5.3, since our experiments are con-
ducted on 4 RTX 2080Ti GPUs(11GB) while MetaOptNet is trained on 4
Titan X GPUs(12GB), we have to reduce the training shots from 15 to 10
in our experiments. For fair comparison, we rerun the baseline on the same
model as in that paper with 10 training shots. We respectively set the number
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Table 1. Detailed experimental settings for Omniglot, MiniImageNet, TieredImageNet
datasets with DSD-based Reptile.

Hyperparameters Omniglot MiniImageNet TieredImageNet

classes 5 5 5
shot 1 or 5 1 or 5 1 or 5
inner batch 10 10 6
inner iterations 5 8 8
outer learning rate 1 1 1
meta batch 5 5 5
meta iterations 104 104 104

evaluation batch 5 5 5
evaluation iterations 50 50 50
inner learning rate 0.001 0.001 0.001
pre-train iterations 3× 104 3× 104 3× 104

pruning iterations(32c) 5× 104 5× 104 5× 104

retrain iterations(32c) 2× 104 2× 104 2× 104

pruning iterations(64/128/256c) 5× 104 6× 104 5× 104

retrain iterations(64/128/256c) 2× 104 104 2× 104

of iterations of pre-training, pruning and retraining as 5 epochs, 20 epochs
and 15 epochs. The learning rate is 0.1 in the first 30 epochs, 0.006 in next 5
epochs and 0.0012 in the final 5 epochs.

– For CAVIA, in DSD-based CAVIA case, the numbers of the iterations for pre-
training, pruning and retraining phase are respectively 20K, 20K and 20K. In
IHT-based CAVIA case, the iteration number of pre-training is 20K, and the
iterative phase include 2 sparse-dense processes. Each sparse-dense process
contains 20K iterations in which 16K iterations are for pruning fine-tuning
and 4K iterations are for dense retraining.

C Additional Experimental Results

This appendix contains complete experimental results for Omniglot, MiniIm-
ageNet and TieredImageNet datasets. We performed our methods on 4-layer
CNNs with varying channel number {32, 64, 128, 256} as mentioned in Section
B.

C.1 Results on Omniglot dataset

The baselines and all the results of Omniglot dataset are reported in Table 3. For
each case, both DSD-based Reptile approach and IHT-based Reptile approach
are evaluated on various pruning rates. The settings are the same as proposed
in Section B.3.

For 32-channel case and 64-channel cases, which is less prone to be overfit-
ting, both DSD-based Reptile approach and IHT-based Reptile approach tend to
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Table 2. Detailed experimental settings for Omniglot, MiniImageNet, TieredImageNet
datasets with IHT-based Reptile.

Hyperparameters Omniglot MiniImageNet TieredImageNet

classes 5 5 5
shot 1 or 5 1 or 5 1 or 5
inner batch 10 10 6
inner iterations 5 8 8
outer learning rate 1 1 1
meta batch 5 5 5
meta iterations 104 104 104

evaluation batch 5 5 5
evaluation iterations 50 50 50
inner learning rate 0.001 0.001 0.001
epoch numbers 5 5 5
iteration numbers per interval 2× 104 2× 104 2× 104

pruning iterations 1.5× 104 1.5× 104 1.5× 104

retrain iterations 5× 103 5× 103 5× 103

achieve comparable performance to baselines. When the channel size increases to
128 and 256, slightly improved performance can be observed. This is consistent
with our analysis that overfiting is more likely to happen when channel number is
relatively large and weight pruning helps alleviate such phenomenon to improve
the generalization performance, which then leads to accuracy improvement with
retraining operation.

C.2 Results on MiniImageNet dataset

In this section, we report the detailed results of experiments on MiniImageNet
dataset.

From the table, it can be obviously observed that our method achieves re-
markable performance consistently. For one thing, with the number of channels
increasing, the accuracies of our methods keep being improved while the base-
lines perform oppositely. For example, in the 32-channel setting in which the
model is less prone to overfit, when applying DSD-based Reptile with 10% and
40% pruning rate, the accuracy gain is 0.35% and 0.5% on 5-way 1-shot tasks
and 1.02% and 1% on 5-way 5-shot tasks. In the 64-channel setting, DSD-based
Reptile respectively achieves 0.83%, 0.83%, 0.88% improvements over 5-way 1-
shot baseline and 1.75%, 1.77%, 1.18% improvements over 5-way 5-shot baseline
with pruning rates 20%, 30%, 40%. Meanwhile our IHT-based Reptile approach
respectively improves about 1.15%, 1.05%, 1.51% on 5-way 1-shot tasks and
0.62%, 1.32% and 1.95% on 5-way 5-shot tasks with pruning rates 10%, 20%,
40%. In the setting of 128-channel, all the cases of our method outperform the
baseline remarkably, and the best accuracy of DSD-based Reptile on 5-way 1-
shot tasks is nearly 3% higher than the baseline while on 5-way 5-shot tasks the
gain is about 4.47%.
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CAVIA [7] is also an effective approach to alleviate overfitting. In CAVIA, ad-
ditional context parameters are introduced to be updated in task-specific phase
while the network parameters are updated during outer loop. In our experiment,
we also compare our method with CAVIA. As we can see in Table 4, our method
can outperform CAVIA in all cases when the networks have the same number
of channels.

C.3 Results on TieredImageNet dataset

In this section, we present the detailed results of experiments on TieredImageNet
dataset in Table 5.

From the table, we can observe that our method achieves good performance
on 5-way 1-shot classification tasks. For example, in 32-channel settings, the
accuracy of DSD-based Reptile with 10% pruning rate is ∼ 0.5% higher than
baseline; in 64-channel settings, both DSD-based Reptile and IHT-based Reptile
improve the performance evidently, respectively are 0.64% and 1.24%; and in
256-channel settings, the best performance achieves 0.44% improvement over
the baseline.

However, in most 5-way 5-shot classification tasks, the performance of our
method drops. We conjecture that the reason is TieredImageNet dataset, com-
pared with MiniImageNet dataset, contains more classes.
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Table 3. Few Shot Classification results on Omniglot dataset for 4-layer convolutional
network with different channels on 5-way 1-shot and 5-way 5-shot tasks. The “±” shows
95% confidence intervals over tasks. The evaluation baselines are run by us.

Methods Backbone Rate 5-way 1-shot 5-way 5-shot

Reptile baseline

32-32-32-32 0% 96.63±0.17% 99.31±0.07%
64-64-64-64 0% 97.68±0.10% 99.48±0.06%
128-128-128-128 0% 97.99±0.11% 99.60±0.13%
256-256-256-256 0% 98.05±0.13% 99.65±0.06%

DSD-based Reptile

32-32-32-32

10% 96.42±0.17% 99.38±0.07%
20% 95.98±0.18% 99.33±0.07%
30% 96.22±0.17% 99.23±0.08%
40% 96.53±0.17% 99.37±0.07%

64-64-64-64

10% 97.64±0.02% 99.50±0.05%
20% 97.60±0.07% 99.49±0.04%
30% 97.47±0.05% 99.49±0.05%
40% 97.43±0.01% 99.45±0.03%

128-128-128-128

10% 98.04±0.10% 99.61±0.10%
20% 97.99±0.10% 99.62±0.12%
30% 97.96±0.12% 99.63±0.12%
40% 97.99±0.10% 99.61±0.10%

256-256-256-256

10% 98.12±0.12% 99.68±0.05%
20% 98.02±0.13% 99.66±0.05%
30% 97.96±0.13% 99.67±0.05%
40% 97.99±0.10% 99.63±0.06%

IHT-based Reptile

32-32-32-32

10% 96.65±0.16% 99.49±0.06%
20% 96.54±0.17% 99.57±0.06%
30% 96.45±0.17% 99.52±0.06%
40% 96.21±0.18% 99.48±0.07%

64-64-64-64

10% 97.63±0.14% 99.49±0.06%
20% 97.60±0.13% 99.57±0.06%
30% 97.77±0.15% 99.52±0.06%
40% 97.51±0.1% 99.48±0.07%

128-128-128-128

10% 98.12±0.12% 99.63±0.06%
20% 98.22±0.12% 99.64±0.05%
30% 98.01±0.13% 99.65±0.05%
40% 98.06±0.12% 99.63±0.06%

256-256-256-256

10% 98.16±0.12% 99.66±0.05%
20% 98.08±0.13% 99.69±0.05%
30% 98.05±0.13% 99.64±0.05%
40% 97.90±0.13% 99.65±0.05%
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Table 4. Few Shot Classification results on MiniImageNet dataset for 4-layer convolu-
tional network with different channels on 5 way setting. The “±” shows 95% confidence
intervals over tasks. The evaluation baselines are run by us.

Methods Backbone Rate 5-way 1-shot 5-way 5-shot

Reptile baseline

32-32-32-32 0% 50.30±0.40% 64.27±0.44%
64-64-64-64 0% 51.08±0.44% 65.46±0.43%
128-128-128-128 0% 49.96±0.45% 64.40±0.43%
256-256-256-256 0% 48.60±0.44% 63.24±0.43%

CAVIA baseline
32-32-32-32 0% 47.24±0.65% 59.05±0.54%
128-128-128-128 0% 49.84±0.68% 64.63±0.54%
512-512-512-512 0% 51.82±0.65% 65.85±0.55%

DSD-based Reptile

32-32-32-32

10% 50.65±0.45% 65.29±0.44%
20% 49.94±0.43% 64.65±0.43%
30% 50.18±0.43% 65.78±0.41%
40% 50.83±0.45% 65.24±0.44%

64-64-64-64

10% 51.12±0.45% 65.80±0.44%
20% 51.91±0.45% 67.21±0.43%
30% 51.91±0.45% 67.23±0.43%
40% 51.96±0.45% 67.17±0.43%

128-128-128-128

30% 51.98±0.45% 68.16±0.43%
40% 52.15±0.45% 68.19±0.43%
50% 52.08±0.45% 68.87±0.42%
60% 52.27±0.45% 68.44±0.42%

256-256-256-256 60% 53.00±0.45% 68.04±0.42%

IHT-based Reptile

32-32-32-32

10% 50.45±0.45% 63.91±0.46%
20% 50.26±0.47% 63.63±0.45%
30% 50.21±0.44% 65.05±0.45%
40% 49.74±0.46% 64.15±0.45%

64-64-64-64

10% 52.23±0.45% 66.08±0.43%
20% 52.13±0.46% 66.78±0.43%
30% 51.98±0.45% 66.14±0.43%
40% 52.59±0.45% 67.41±0.43%

128-128-128-128

30% 51.64±0.45% 67.05±0.43%
40% 52.73±0.45% 68.69±0.42%
50% 52.76±0.45% 67.63±0.43%
60% 52.95±0.45% 68.04±0.42%

256-256-256-256 60% 49.85±0.44% 66.56±0.42%
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Table 5. Few Shot Classification results on TieredImageNet dataset for 4-layer con-
volutional network with different channels on 5 way setting. The “±” shows 95% con-
fidence intervals over tasks. The evaluation baselines are run by us.

Methods Backbone Rate 5-way 1-shot 5-way 5-shot

Reptile baseline

32-32-32-32 0% 50.52±0.45% 64.63±0.44%
64-64-64-64 0% 51.98±0.45% 67.70±0.43%
128-128-128-128 0% 53.30±0.45% 69.29±0.42%
256-256-256-256 0% 54.62±0.45% 68.06±0.42%

DSD-based Reptile

32-32-32-32
10% 50.94±0.46% 64.65±0.44%
20% 49.85±0.46% 63.72±0.44%

64-64-64-64
10% 52.62±0.46% 66.69±0.43%
20% 51.95±0.45% 66.05±0.43%

128-128-128-128
10% 53.39±0.46% 67.22±0.43%
20% 52.61±0.46% 66.39±0.43%

256-256-256-256
10% 54.55±0.45% 68.60±0.43%
20% 54.98±0.45% 67.98±0.43%

IHT-based Reptile

32-32-32-32
10% 50.58±0.46% 63.09±0.45%
20% 50.19±0.46% 63.42±0.44%

64-64-64-64
10% 51.75±0.45% 65.20±0.44%
20% 53.22±0.46% 66.15±0.44%

128-128-128-128
10% 53.48±0.45% 69.36±0.42%
20% 52.98±0.45% 66.22±0.43%

256-256-256-256
10% 55.06±0.45% 67.60±0.43%
20% 54.38±0.45% 69.36±0.42%
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