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Abstract. In this paper, motivated by human natural ability to per-
ceive unseen surroundings imaginatively, we propose a novel Spiral Gen-
erative Network, SpiralNet, to perform image extrapolation in a spiral
manner, which regards extrapolation as an evolution process growing
from an input sub-image along a spiral curve to an expanded full im-
age. Our SpiralNet, consisting of ImagineGAN and SliceGAN, disen-
tangles image extrapolation problem into two independent sub-tasks as
semantic structure prediction (via ImagineGAN) and contextual detail
generation (via SliceGAN), making the whole task more tractable. The
design of SliceGAN implicitly harnesses the correlation between gen-
erated contents and extrapolating direction, divide-and-conquer while
generation-by-parts. Extensive experiments on datasets covering both
objects and scenes under different cases show that our method achieves
state-of-the-art performance on image extrapolation. We also conduct
ablation study to validate efficacy of our design. Our code is available at
https://github.com/zhenglab/spiralnet.
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1 Introduction

Suppose that, given a sub-image (e.g., part of a human face), what happens
in your mind when you are asked to draw the entire image (i.e., a whole face)
beyond its boundary? Actually, although the surrounding regions are unseen, we
humans usually first imagine the entire image preliminarily according to the prior
knowledge [21,23], while then draw the details outward from inside progressively
based on the sub-image and the imaginary image [36].

Image extrapolation [48] is such a task in computer vision, which aims to fill
the surrounding region of a sub-image, e.g., completing an object appearance
with part of it or predicting the unseen view from a scene picture. This task
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Fig. 1. (a) Our SpiralNet expands a sub-image in four directions evolving along a spiral
curve to reach a full image. (b) Exemplar results on different datasets in different cases.

is extremely challenging since that: (a) the extrapolated image must be realis-
tic with a reasonable and meaningful context; and (b) the extrapolated region
should be consistent in structure and texture with the original sub-image.

Recently, although extrapolating an image is so challenging even for our hu-
mans, thanks to the development of Generative Adversarial Network (GAN) [11],
a lot of efforts have been made on this task to step forward achieving good
performance as well. However, existing GAN-based methods [418,43] for image
extrapolation mainly generate a whole image and paste the given part onto it,
making the final image look jarring. In addition, due to distant contextual gen-
eration problem, directly applying inpainting methods [27,51] tends to generate
blurry or repetitive pixels with inconsistent semantics [13].

In this work, motivated by human natural ability to perceive unseen sur-
roundings imaginatively, we propose a novel Spiral Generative Network, Spiral-
Net for short, performing the extrapolation in a spiral fashion. We regard image
extrapolation as an evolution process, as illustrated in Fig. 1a, growing from an
input sub-image along a spiral curve to an expanded full image. Essentially, Spi-
ralNet is a progressive part-to-whole generation method, “drawing” a full image
in four directions slice by slice in a spiral way. In such a way, generation of large
surrounding area is divided into turns of easier slice generations, thus yielding
results with semantic consistency and vivid details. Fig. 1b shows our extrapo-
lating examples in different cases, and we can see that the extrapolating results
are all realistic themselves while consistent with original sub-images.

Our contributions include: (a) A novel generative framework that extrap-
olates a sub-image to a full image in a spiral fashion; (b) A SliceGAN that tack-
les slice-wise image generation and an ImagineGAN that generates imaginary
output guiding SliceGAN, equipping a new hue-color loss; (c) State-of-the-art
performance on a variety of datasets for image extrapolation in different cases.

2 Related Work

2.1 Generative Adversarial Networks

Starting from the groundbreaking work by Goodfellow et al. [11], GANs have
drawn wide attention in computer vision world. Then, many efforts have been
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made on GANSs to improve the generative performance [37,29,1,12,31,19,4,20].
Thereinto conditional GAN (cGAN) [30] is allowed to generate images that have
certain conditions or attributes, which can be widely used in many tasks, for
instance, image-to-image translation [17,55,16,25,5]. Image extrapolation aims to
generate the surrounding regions from the visual content, thus can be considered
as an image-conditioned generation task.

Recent ¢cGAN-based models have shown promising results on similar tasks
like image inpainting [50,27,51,32], image editing [54,7], and texture synthe-
sis [26,49,12]. But for image extrapolation task, it’s really hard for a cGAN to
generate semantically consistent content with visually pleasing details, while di-
rectly using inpainting methods to image extrapolation is prone to resulting in
poor results due to distant contextual generation problem [48,43].

2.2 Image Extrapolation

Image extrapolation fills content outside of visual images. Previous possible solu-
tions can be typically categorized as non-parametric [9,35,2,3,52,45,40] and para-
metric [48,43] methods. Non-parametric methods mainly formulate the problem
into matching and stitching based on a pre-constructed dataset, specifically, they
usually retrieve the candidate images by subimage matching, and stitch these
wrapped images into the input. Thereby they work in a data-driven manner that
is strictly limited by the used dataset, also it’s hard to be applied in complex
cases like fine texture or sophisticated scene. Recently GAN-based approaches
have made great efforts in overcoming weaknesses of non-parametric methods.
Particularly, Wang et al. [18] first proposed a cGAN-based approach to address
the issues of size expansion and one-side constraints. Teterwak et al. [43] also
followed the cGAN framework by introducing semantic conditioning to the dis-
criminator for one-side image extension.

Compared to current cGAN-based extrapolation methods, our method dis-
entangles image extrapolation problem into two relatively independent sub-tasks
as semantic structure prediction (via ImagineGAN) and contextual detail gen-
eration (via SliceGAN), making the whole task more tractable. The design of
SliceGAN implicitly harnesses the correlation between generated contents and
extrapolating direction, divide-and-conquer while generation-by-parts.

3 Spiral Generative Network

We regard image extrapolation as an evolution process shown in Fig. 2, growing
from an input sub-image along a spiral curve to an expanded full image. Given

an input image X € RMwx¢ and filling margin m = (m!, m*, m", m®), where m/!,

mt, m”, and m® refer to left, top, right, and bottom ﬁlhng margm respectlvely
The goal of image extrapolatlon is to output an 1mage Y € RMxw'xe with a
visually pleasing appearance, where b’ = h +m! + m®, w’ = w +m! + m", and

X is a sub-image of Y.
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Fig. 2. Our spiral growing evolution for image extrapolation. Refer to text for details.

We consider that X evolves along a series of points P = {p1,p2,--+ ,pn} on
a spiral curve until it reaches Y after N growth. Each point p on the spiral curve
is represented by its turn number and corresponding growing direction (i.e., left,
top, right, and bottom). For convenience, we consider that the growing size 7 at
each point is the same.

According to given margin m and growing size 7, we can figure out total
number of points N and total number of turns T for the spiral growing. As
to point p on spiral curve, we denote growing function at p as G,(+). For the
k-th point pg, the input X, grows to X,, ., by X, ., = G}, (X}, ), where pry1
represents next point on spiral curve. While growing from X, to X, , sizes
of input/output and filling margin change accordingly. Finally, X € Rh>xwxe
evolves to Y € RM*®'*¢ through growing at N points in 7' turns, and the
evolution can be expressed as:

Y = F(X) = Gpy (Gpy, (- (G, (X)) (1)

Meanwhile, h and w change to h’' and w’ respectively, m,,, becomes (0,0,0,0).

Notably, four total numbers of turns in four directions are not necessarily
equal, since sub-image X may not be located in the center of Y, such that the
growth in four directions will not stop at the same time.

3.1 ImagineGAN

We present ImagineGAN to “draw” an imaginary result of extrapolation accord-
ing to given sub-image, regarded as a coarse reference for SliceGAN to refine.
We propose this strategy by mimicking human imagination [21,23] to address
the image extrapolation task.

Our ImagineGAN is essentially a cGAN with an encoder-decoder generator
G1, encoding given sub-image X € R"*®X¢ with a margin mask M and an
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uniform noise distribution Z, to generate an imaginary output I € R/xwxe: T =
G1(X,M, Z). Both inputs X, M, Z and output I have the same small size (e.g.,
128 x 128), taking full advantage of GAN for low-resolution image generation.
Except for adversarial loss, our ImagineGAN is designed with extra losses
for better performance. In particular, we propose a novel hue-color loss in this
task, to eliminate bright color spots and avoid dark while stabilize the training.
Hue-Color Loss. Hue is the most basic element of a color and what most

people think of when they think “color” [28,10]. Thus, it would be helpful to keep
consistent hue during extrapolation. However, according to cylindrical HSL/HSV
representations of an RGB colorcube [13], same hue may lead to quite different

color appearance, which should be avoided for extrapolation. To constrain both
hue consistency and color harmony, we formulate a new hue-color loss as:

1 1
hue_th

L

Z {1 — min [COS(Iij,Y,‘j),COS(ﬂ — Iij7 71— Yij)} + f}’y y (2)

2¥)

where Y € R"*®*¢ ig the downscaled result of real image Y, ¢ is a very small
number added to avoid zero, v < 1 is used to stretch the difference for better
optimization, and we set ¢ = 0.001 and v = 0.4 in our experiments.

Compared to color loss [17] and reconstruction loss [17], our hue-color loss
cares about real “color” regardless of gray (please refer to supplementary file for
mathematical derivation), which is really beneficial to tasks like image extrap-
olation, which requires both semantic consistency and visual realism. Actually,
in our work, we find that synthesized images usually become dark while bright
color spots appear on much colorful situations (e.g., Flowers [33]), and our hue-
color loss does solve this issue. Furthermore, we surprisingly find that this loss
can stabilize the training as well. Please see Section 4.5 for ablative experiments.

Perceptual Loss. Following previous works [32,18], we also use perceptual
loss E;erc to penalize imaginary output I for that is not perceptually similar to

Y, by defining a distance measure between activation maps:

1 _

‘C;})erc =E Z EHUU(I) - Uu(Y)Hl ) (3)
where N, is the number of elements in the u-th activation layer, o, is the
activation map of the u-th layer of a pretrained network (e.g., VGG-19 [41]).

Adversarial Loss. The adversarial loss ﬁ}ldv of ImagineGAN is:

L3,4,(Gr, D) = Eg x)[log(D1(Y, X))] + Eq x)[log(1 — Di(I, X))}, (4)

where the generator Gt is trained to minimize this objective against an adver-
sarial discriminator Di that tries to maximize it.
Total Loss. The total loss of ImagineGAN is:

I I I I I I I
‘Ctotal = )‘adv‘cadv + )‘hueﬁhue + )‘percﬁperc’ (5)
where AL, AL,., and AL are weights to balance different losses. We empirically
set ALy, = 0.1, A}, = 10, and Al_,.. = 1 for our experiments in this work.
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3.2 SliceGAN

We devise a novel slice-wise GAN, dubbed SliceGAN, to implement growing
function G,(+) (at point p). As shown in Fig. 2, SliceGAN (at point p) consists
of slice operator 1, slice generator Gf , extrapolate operator ¢,, as well as a
spiral discriminator Dg and an extrapolate discriminator Dg (both unshown in
Fig. 2).

For the k-th point py, (k =1,2,--- ,N), SliceGAN G, takes an extrapolated
image X,, and an imaginary image I as inputs, and outputs an extrapolated
image X, ,,. The imaginary image T has the same size of Y, and is upscaled
from I which has the same size of X and is generated by our ImagineGAN.

Slice Operator. Slice operator aims to cut slice from image. The cutting size
of slice operator is equal to growing size at each point, namely 7. For SliceGAN
at pg, there are two slice operators that cut slices S;i and SZI)Ic from X,, and I
respectively, i.e., SX =, (X,,) and S} = oy, (I).

Slice Generator. To better use the information from imaginary slice Szl)k,
original sub-image X, and closest slice S;i for slice-wise extrapolation both se-
mantically and visually, we design a new Encoder-AdaIN-SPADE|Decoder struc-
ture for slice-wise generator Gf;k shown in Fig. 3. The encoder takes in charge
of imaginary slice, fusing sub-image style in its latent space by AdaIN [15],
and then the decoder combines with semantic information from closest slice via
SPADE [31], yielding extrapolated slice: S5 = Gy (X, SX, 5L ).

It is worth mentioning that slice S;fc in X,,, is closest to extrapolated slice
Spok in Xy, ., while SZI))c in I is corresponding to extrapolated slice Spok in Xy, .-
In such a way, we semantically combine meaningful slice information from sub-
image and imaginary image for slice-wise extrapolating. Notably, our SliceGAN
is designed without independent discriminator, for considering semantic coher-
ence and computational complexity (see Section 3.3).

Extrapolate Operator. Extrapolate operator aims to output an extrap-
olated image X,  , by stitching output slice Spok back to input X, : X, ., =
Dpi (Sz?k , X, ). Now, we complete extrapolation at point py using one SliceGAN.

Previous turn ‘ Next turn

Fd Fofd

-
|

‘>:I:E<]:[]5Iice generator [ |AdaIN [|SPADE DVGG ® @@ @Extrapolate

Fig. 3. Four SliceGANS in one spiral turn.
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Shared Spiral SliceGAN. Our SpiralNet includes N slice generators for N
points on spiral curve, while a complete spiral turn has four slice generators in
four directions as shown in Fig. 3. When we need to grow more for extrapolation,
we will have more slice generators, and accordingly the number of parameters
for the whole SpiralNet will be huge. To tackle this issue, we share the weights of
all slice generators. That is, our SpiralNet only has one independent SliceGAN.

3.3 Spiral Loss Design

Adversarial Loss. We devise a spiral discriminator Dg and an extrapolate
discriminator D to distinguish the whole spiral evolving result Y and the partial
extrapolating region E from the corresponding real ones Y and E, where E =
Yo(1-—M)and E=Y o (1-M) (M e RM*¥'*1 o represents Hadamard
product). Then, the adversarial losses are:

Lza(F, Ds) = Ey[log(Ds(Y))] + Eg[log(1 — Ds(Y))], (6)
Ly (F, Dg) = Egllog(Dp(E))] + Eglog(1 — Dr(E))], (7)

where F is evolving function in Eq. 1, which is trained to minimize this objective
against Dg and Dp that try to maximize it. The spiral adversarial loss is:

»C'adv - ('Cadv + ‘Cadv) /2 (8)

Here spiral discriminator takes care of overall consistency, while extrapolate
discriminator mainly focuses on stitching continuity.
L1 Loss. We minimize reconstructed differences between Y and Y by:

Li1=Egy) IV =Y. (9)

Style Loss. We adopt style loss [38] to measure differences between covari-
ances of activation maps:

Loy = E, [1G5(¥) = GIY)] | (10)

where G¢ is a G, x GG, Gram matrix constructed from activation maps o,.
Total Loss. The total loss of our SpiralNet is:

ACtotal = )\advﬁadv + )\L1£L1 + )\styleﬁstyle + Ahueﬁhue; (11)

where L, is defined the same as Eq. 2, Agdy, AL1, Astyle, and Apye are weights
to balance different losses. We empirically set Agqp = 0.1, A1 = 10, Ageyie = 250,
and Apye = 10 for our experiments in this work.

3.4 Case of Unknown Margin

Suppose that only given input sub-image X € R"*“*¢ and output size b’ xw’ xc,
it’s hard to know the position of X in Y, such that margin m is unknown. In this
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case, previous approach [18] is unable to work. While, for our approach, thanks
to the design of imaginary strategy (without margin mask input), we can match
input sub-image X within upscaled imaginary output I to locate position of X
in Y. In such a way, we actually obtain the filling margin indirectly. Meanwhile,
this strategy is also helpful to other approaches such as SRN [18]. We adopt
normalized cross-correlation template matching method [39] for experiments.

3.5 Implementation Details

Network architecture. We adopt encoder-decoder structure similar to Cycle-
GAN [55] for our ImagineGAN’s and slice generators. Differently, for slice gen-
erator, we replace eight residual blocks to six in bottleneck, and moreover, we
insert one AdalN layer before bottleneck residual blocks to fuse style information,
and two SPADE layers before two transposed convolution layers respectively to
combine semantic information, yielding a new Encoder-AdaIN-SPADE|Decoder
structure. In addition, we use patch discriminator based on pix2pix [17] for
ImagineGAN’s and our extrapolate discriminators with replacing batch normal-
ization with spectral normalization [31], and Inspired by MUSICAL [16], we
adopt a similar structure to DenseNet [14] as our spiral discriminator. See the
details in supplementary file.

Training Details. ImagineGAN is trained independently beforehand, whose
generator and discriminator are trained jointly using Adam optimizer [22] with
the same parameters of learning rate o = 0.0002, 51 = 0.5, and 52 = 0.9. Then,
all SliceGANs and spiral/extrapolate discriminators are trained using the same
settings of Adam optimizer as those in ImagineGAN.

4 Experiments

To evaluate the performance of our proposed method on image extrapolation,

we conduct experiments on eight datasets: CelebA-HQ [19], Stanford Cars [24],
CUB [44], Flowers [33], Paris StreetView [3], Cityscapes [0], Place365 Desert
Road and Sky [53] , considering the cases of objects (faces, cars, birds and

flowers) as well as scenes (streetview, cityscapes, desert road and sky).

For Stanford Cars and CUB, we crop the objects using given bounding box
and then resize them to 256 x 256, also we drop severely distorted objects for
extrapolation task. We list training and testing split on eight datasets in Table 1,
where we keep default official split on Cityscapes and Place365 datasets, and
select samples randomly on other datasets.

We consider three different cases of image extrapolation task for evaluation:
(1) four-side extrapolation for 128 x 128 — 256 x 256 on CelebA-HQ, Stanford
Cars, CUB and Flowers; (2) two-side extrapolation for 256 x 256 — 512 x 256
on Cityscapes and Place365 Sky; and (3) one-side extrapolation for 256 x 256
— 512 x 256 on Paris StreetView and Place365 Desert Road.

We compare our method with state-of-the-art Boundless [43] in one-side case
and SRN [18] in all three cases. Besides, we deal with the case of unknown margin
(see Section 3.4, namely SpiralNet-UM) on CelebA-HQ for instance.
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Table 1. Training and testing split on
eight datasets. The first four are object
datasets and the rest are scene datasets.

Table 2. User study results. Each en-
try shows percentage of cases where re-
sults by SpiralNet are judged more realis-
tic than Boundless and SRN.

Dataset #Train #Test #Total
CelebA-HQ [19] 28,000 2,000 30,000 SpiralNet >Boundless >SRN
Stanford Cars [24] 4,166 1,000 5,166 CelebA-HQ - 88.25%
CUB [44] 4,200 915 5,115 Stanford Cars - 88.33%
Flowers [33] 7,000 1,189 8,189 CUB - 80.00%
Cityscapes [0] 2,975 1,525 4,500 Flowers - 86.67%
Place365 Sky [53] 5,000 100 5,100 Cityscapes - 77.50%
Paris Street- Place365 Sky - 80.83%
View [8] 13,000 1,900 14,900 Paris StreetView 93.33% 71.67%
Place365 Desert 5,000 100 5,100 Place365 Desert 63.33% 59.17%
Road [53] Road
4.1 Quantitative Comparison
Table 3. Quantitative comparison results in different cases.
l()czgzjet Metrics Boundless SRN ImagineGAN (SP?E;SLT_%M)
PSNR - 15.17 15.09 16.05 (15.82)
CelebA-HQ SSIM - 0.6752 0.6361 0.6815 (0.6350)
(four-side) FID - 32.25 45.92 21.17 (23.88)
PSNR - 13.34 13.56 14.31
Stanford Cars SSIM - 0.5479 0.5107 0.5775
(four-side) FID - 37.11 53.12 23.64
PSNR - 15.31 15.44 16.22
CUB SSIM - 0.5112 0.4805 0.5313
(four-side) FID - 80.13 97.61 56.50
PSNR - 13.49 14.98 15.67
Flowers SSIM - 0.4660 0.4681 0.5078
(four-side) FID . 66.01 75.11 52.14
PSNR - 20.33 20.12 20.43
Cityscapes SSIM - 0.6980 0.6642 0.7125
(two-side) FID - 28.90 114.00 22.34
PSNR - 21.44 19.90 21.75
Place365 Sky SSIM - 0.7716 0.7479 0.7834
(two-side) FID - 52.50 94.41 51.55
PSNR 16.70 16.37 16.39 17.43
Paris StreetView SSIM 0.5846  0.5641 0.5377 0.5970
(one-side) FID 52.02 30.27 75.19 35.58
PSNR 19.04 19.45 19.07 20.22
Place365 Desert Road SSIM 0.6825  0.6877 0.6761 0.7026
(one-side) FID 86.10 85.59 122.50 80.66
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Following Boundless [13] and SRN [18], we use peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM) and Frechet Inception Distance (FID)
as metrics for evaluating semantic consistency and visual realism (higher is bet-
ter for PSNR and SSIM, lower is better for FID), and results in Table 3 validate
that our SpiralNet outperforms Boundless and SRN in almost all cases. Also
note that our ImagineGAN (as a ¢cGAN) performs worse than final SpiralNet
and extremely poor in terms of FID, indicating visually unpleasing results.

To compare photorealism and faithfulness of extrapolated outputs, we also
conduct a user study of pairwise A/B tests [17,18]. Our settings are similar to
SRN [48]. For each dataset, we randomly choose 40 pairwise results extrapolated
by SpiralNet vs. Boundless and SpiralNet vs. SRN separately from the same

SpiralNet

Boundless SpiralNet

Fig. 4. Qualitative comparison results in different cases. (a) Four-side on CelebA-HQ),
Stanford Cars, CUB and Flowers. (b) Two-side on Cityscapes and Place365 Sky. (c)
One-side on Paris StreetView and Place365 Desert Road.
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{

Sub-image R . ImagineGAN ' SpiralNet-UM

Fig. 5. Case of unknown margin on CelebA-HQ.

inputs. The users are required to select the more realistic image in each pair,
and they are given unlimited time to make the decision. Each pair is judged by at
least 3 different users. The results shown in Table 2 validate that our SpiralNet
performs better than Boundless and SRN on all available datasets.

4.2 Qualitative Comparison

We also show qualitative comparison of Boundless, SRN and our SpiralNet in
Fig. 4. Our method extrapolates more reasonable results with semantic consis-
tency and vivid details avoiding meaningless content and cluttered background.
Moreover, Fig. 5 and Table 3 (CelebA-HQ) shows that our SpiralNet-UM also
works well. More results are shown in supplementary file for further reference.

4.3 Why Spiral Is Necessary

Our spiral architecture is necessary for tasks like image extrapolation condi-
tioned on three aspects below, with various cases of ablation study for validating
necessity of each one (results are shown in Table 4 and Fig. 6):

A. turn-by-turn extrapolation: (1) one-by-one directional extrapolation (A.one-
by-one); (2) horizontal-then-vertical directional extrapolation (A.horizontal-vertical);
and (3) vertical-then-horizontal directional extrapolation (A.vertical-horizontal).
One exemplar in Fig. 6 shows that, destroying the equilibrium of slice growth in
four directions, will lead to inharmonious generators for horizontal small slices
and vertical large slices, yielding semantic inconsistency with cluttered content.
B. dependency of directional slices in adjacent turns: (1) without closest
slice input (B.w/o closest slice); and (2) replace closest slice with sub-image slice
(B.w/ sub-image slice). Figs. 6d and 6e display blurry details and unrealistic tex-
tures on parts far away from original sub-image region.

C. correlation between adjacent slices in one turn: (1) generate four direc-
tional slices simultaneously (C.simultaneous); (2) horizontal-then-vertical slice
generation (C.horizontal-vertical); and (3) vertical-then-horizontal slice genera-
tion (C.vertical-horizontal). Figs. 6f, 6g and 6h illustrate that some slice corners
are influenced by noncontinuous slice generation in one turn.

While SpiralNets with anticlockwise or clockwise (default) slice generation in one
turn, perform better both quantitatively (Table 4) and qualitatively (Fig. 6), in-
dicating that it’s effective to do image extrapolation in our spiral way.
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Fig.6. Qualitative results on why spiral is necessary. (a) A.one-by-one. (b)
A horizontal-vertical. (¢) A.vertical-horizontal. (d) B.w/o closest slice. (e¢) B.w/ sub-
image slice. (f) C.simultaneous. (g) C.horizontal-vertical. (h) C.vertical-horizontal. (i)
SpiralNet.anticlockwise. (j) SpiralNet.clockwise. Please zoom in for better comparison.

Table 4. Quantitative results on ablation
study of why spiral is necessary.

Table 5. Quantitative results on ablation
study of ternary SliceGAN inputs.

Method PSNR SSIM FID

Method
Baseline

PSNR SSIM FID
13.95 0.5683 26.10

14.04 0.5724 23.80
14.12 0.5697 24.00
14.09 0.5661 26.79

A.one-by-one
A .horizontal-vertical
A .vertical-horizontal

w/ sub-image 14.02 0.5652 24.41
w/ closest slice 14.18 0.5727 24.64

exchange imaginary ;4 o0 () 5745 96 g6
& closest slices

14.02 0.5652 24.41
14.08 0.5662 22.77

B.w/o closest slice
B.w/ sub-image slice

14.18 0.5708 21.96
14.22 0.5741 24.47
14.25 0.5756 24.09

C.simultaneous
C.horizontal-vertical
C.vertical-horizontal

SpiralNet.anticlockwise 14.27 0.5753 24.20
SpiralNet.clockwise 14.310.577523.64

SpiralNet 14.31 0.5775 23.64

Table 6. Quantitative results on ablation
study of different slice sizes for SliceGAN.

T 4 8 16 32 64

PSNR 13.58 13.70 13.80 14.31 14.05
SSIM 0.5486 0.5566 0.5632 0.5775 0.5694
FID 2711 26.14 20.59 23.64 21.07

4.4 Analysis of SliceGAN

Ternary SliceGAN Inputs. Our SliceGAN (see Section 3.2) is designed with a
new Encoder-AdaIN-SPADE|Decoder structure, to encode imaginary slice (En-
coder) into a latent space, and fuse style information from sub-image (AdalN)
with the latent code, then combine with semantic information from closest slice
(SPADE) when decode composite latent code back to image space (Decoder),
resulting in extrapolated slice with consistency of style, semantic, and context.
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Fig. 7. Qualitative ablation study on ternary SliceGAN inputs. (a) Baseline. (b) w/
sub-image. (¢) w/ closest slice. (d) exchange imaginary and closest slices. (e) SpiralNet.

Sub-image (a)

Fig. 8. Qualitative ablation study on different slice sizes. (a) 7 = 4. (b) 7 = 8. (c)
7=16. (d) 7 =32. (e) T = 64.

We thus conduct ablation study on the ternary SliceGAN inputs: imaginary
slice, sub-image, and closest slice, for validating efficacy of them together with
corresponding structures. We construct an Encoder-Decoder with the only input
of imaginary slice as baseline, then add sub-image and closest slice with Encoder-
AdaIN-Decoder and Encoder-SPADE|Decoder respectively for comparison. Be-
sides, we also exchange imaginary slice and closest slice for further analysis.

Table 5 and Fig. 7 show results of ablation study on ternary SliceGAN in-
puts, which validate strength of our structure. Visually, the style between sub-
image and generated slices looks more harmonious with sub-image input (Figs. 7a
vs. 7b); and generated slices seems more semantically consistent with sub-image
via closest slice input (Figs. 7a vs. 7c); also distorted content with inconsistent
semantic appears if we exchange imaginary and closest slices (Fig. 7d); while
SpiralNet improves over all the others thanks to our ternary inputs (Fig. 7e).

Different Slice Sizes. We then study the impact of slice size 7, and em-
ploy four different sizes of 7 = {4, 8,16,32,64} for ablation. Table 6 and Fig. 8
report the results, showing that, small slice size might introduce unclear texture
(Fig. 8a), and big slice size may result in a more obvious stitching block effect
(Fig. 8d). Considering effectiveness and efficiency, we set 7 = 32 for balance.

4.5 Efficacy of Hue-Color Loss

We finally analyze efficacy of hue-color loss. For convenience, we conduct abla-
tive experiments using ImagineGAN on Flowers and Stanford Cars, by removing
hue-color loss as baseline and replacing it with color loss [47] and L1 loss [17]
for comparison. Results in Table 7 indicate that hue-color loss is more helpful in
terms of PSNR, SSIM and FID. Figs. 9a and 9b illustrate step-by-step extrap-
olation in training with different losses, from which we observe that it appears
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Table 7. Quantitative results on ablation study of ImagineGAN with different losses.

Model Flowers Stanford Cars

PSNR SSIM FID PSNR SSIM FID
Baseline 10.49 0.0832 136.55 10.63 0.1005 120.33
w/ Lo, 9.45 0.1294 250.30 10.75 0.2882 186.46
W/ CILl 12.50 0.1266 109.36 11.78 0.2129 104.09
w/ Lh.. 14.98  0.4681 75.11 13.56  0.5107  53.12

-
)

-
o

o

Total Loss

~
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Global Step (Flowers)
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~
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Fig. 9. (a) and (b): Qualitative results on Flowers and Stanford Cars: baseline, with
color loss, with L1 loss, and with hue-color loss, from left to right. (c¢) Corresponding
total loss curves on Flowers and Stanford Cars in training by steps.

dark and bright color spots exist in baseline, L1 loss and color loss may alleviate
one of these issues, while our hue-color loss handle both issues very well (Figs. 9a
and 9b). Corresponding loss curves in Fig. 9¢ demonstrate that, by using hue-
color loss, total loss descends very quickly at the beginning, thereby the model
identifies right color to stabilize training process.

5 Conclusion and Limitations

We propose a novel generative framework, SpiralNet, to extrapolate an image
by evolving along a spiral curve, and input image grows a little bit slice in
four directions after each spiral turn. With the help of our design, both exten-
sive experiments and ablation study demonstrate the superiority of our method.
However, it still has limitation that the results inevitably have trivial block ef-
fects. We hope to further explore SpiralNet for this limitation, as well as more
extension in general image generation tasks.
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