Few-shot Compositional Font Generation
with Dual Memory — Appendix

A Network Architecture Details

A.1 Memory addressors

Algorithm 1: Unicode-based Korean letter decomposition function

Input: A character label y.

Output: Component labels u§, u§, and u§

Data: The number of components for each i-th component type N;.
unicode = ToUnicode (y.)

// 0xACOO is the initial Korean Unicode

code = unicode - 0xAC00

u§ = code mod N3

u§ = (code div N3) mod N

u§ = code div (N3 x Na)

The memory addressor converts character label y. to the set of component
labels u$ by the pre-defined decomposition function fq : y. — {u§ |i=1... M.},
where u§ is the label of i-th component of y, and M, is the number of sub-glyphs
for y.. In this paper, we employ Unicode-based decomposition functions specified
to each language. We describe the decomposition function for Korean script as an
example in Algorithm 1. The function disassembles a character into component
labels by the pre-defined rule. On the other hand, each Thai character consists
of several Unicodes, each of which corresponds to one component. Therefore,
each Unicode constituting the letter is a label itself. The Thai decomposition
function only needs to determine the component type of each Unicode.

A.2 Network architecture

The proposed architecture has two important properties: global-context aware-
ness and local-style preservation. Global-context awareness allows the relational
reasoning between components to the network, boosting to disassemble source
glyphs into sub-glyphs and assemble them to the target glyph. Local-style preser-
vation indicates that the local style of source glyph is reflected in the target.

For the global-context awareness, the encoder adopts global-context block
(GCBlock) [3] and self-attention block (SABlock) [19,17], and the decoder em-
ploys hourglass block (HGBlock) [16,12]. These blocks extend the receptive field
globally and facilitate relational reasoning between components while preserving
locality. For the local-style preservation, the network handles multi-level features
based on the dual memory framework. The specific architecture overview is de-
scribed visually in Figure A.1.
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Fig. A.1: The encoder holds multiple heads according to the number of compo-
nent types 7. We denote the spatial size of each block in the figure.

The generator consists of five modules; convolution block (ConvBlock), resid-
ual block (ResBlock), self-attention block, global-context block, and hourglass
block. Our SABlock is adopted from Transformer [17] instead of SAGAN [19],
i.e., the block consists of multi-head self-attention and position-wise feed-forward.
We also use two-dimensional relative positional encoding from [1]. The hourglass
block consists of multiple convolution blocks and downsampling or upsampling
operation follows each block. Through hourglass structure, the spatial size of the
feature map is reduced to 1 x 1 and restored to the original size, which extends
the receptive field globally preserving locality. The channel size starts at 32 and
doubles as blocks are added, up to 256 for the encoder and 512 for the decoder.

We employ a simple structure for the discriminator. Several residual blocks
follow the first convolution block. Like the generator, the channel size starts at
32 and doubles as blocks are added, up to 1024. The output feature map of the
last residual block is spatially squeezed to 1 x 1 size and it is fed to the two linear,
font and character discriminators. Each discriminator is a multi-task discrimi-
nator that performs binary classification for each target class. Therefore, the
font discriminator produces |Y ¢| binary outputs and the character discriminator
produces |Y.| binary outputs, where |Y| denotes the number of target classes.

Since the persistent memory (PM) is independent of local styles, we set the
size of PM same as the size of high-level features, the final output of the encoder,
i.e., 16 x16. The learned embedding is refined via three convolution blocks, added
to the high-level features of dynamic memory (DM), and then fed to the decoder.
The component classifier comprises two residual blocks and one linear layer and
identifies the class of the high-level component features from the DM.
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B Experimental Setting Details

B.1 DM-Font implementation details

We use Adam [10] with a learning rate of 0.0002 for the generator and 0.0008 for
the discriminator, following the two time-scale update rule [7]. The component
classifier use same learning rate with the generator. The discriminator adopts
spectral normalization [15] for the regularization. We train the model with hinge
GAN loss [19,15,2,14,11] during 200K iterations. We employ exponential moving
average of the generator [3,18,14,9]. For the Thai-printing dataset, we use a
learning rate of 0.00005 for the generator and 0.0001 for the discriminator with
250K training iterations while other settings are same as the Korean experiments.

B.2 Evaluation classifier implementation details

Two different ResNet-50 [5] are separately trained for the content and the style
classifiers with Korean and Thai scripts. The classifiers are optimized using the
Adam optimizer [10] with 20 epochs. We expect that more recent Adam variants,
e.g., RAdam [13] or AdamP [0], further improve the classifier performances. The
content classifier is supervised to predict a correct character, while the style
classifier is trained to predict a font label. We randomly use 85% of the data
points as the train data and the remained data points are used for the validation.
Unlike the DM-Font training, this strategy shows all characters and fonts to
classifiers. In our experiment, every classifier achieves over 96% of validation
accuracy: 97.9% Korean content accuracy, 96.0% Korean style accuracy, 99.6%
Thai content accuracy, and 99.99% Thai style accuracy. Note that all classifiers
are only used for the evaluation but not for the DM-Font training.

B.3 User study details

30 different styles (fonts) from the Korean-unrefined dataset are selected for the
user study. We randomly choose 8 characters for each style and generate the
characters with four different methods: EMD [21], AGIS-Net [4], FUNIT [14],
and DM-Font (ours). We also provide ground truth characters for the selected
characters to the users for the comparison. Users chose the best method in 3
different criteria (content / style / preference). For each question, we randomly
shuffle the methods to keep anonymity of methods. To sum up, we got 3,420
responses from 38 Korean natives with 30 x 3 items.

C Additional Results

C.1 Reference set sensitivity

In all experiments, we select the few-shot samples randomly while satisfying the
compositionality. Here, we show that the reference sample selection sensitivity
of the proposed method. Table C.1 shows the Korean-handwriting generation
results of the eight different runs with different sample selections. The results
support that DM-Font is robust to the reference sample selection.
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Table C.1: Reference sample sensitivity. Eight different runs of DM-Font
with different reference samples in the Korean-handwriting dataset.

Pixel-level Content-aware Style-aware
SSIM MS-SSIM ~ Acc(%) PD mFID Acc(%) PD mFID

Run1 0.704  0.457 98.1% 0.018 22.1 64.1% 0.038 34.6
Run 2 0.702  0.452 98.8% 0.016 19.9 64.2% 0.038 37.2
Run 3 0.701  0.456 98.0% 0.018 234 66.0% 0.037 35.2
Run 4 0.702  0.451 97.8% 0.019 22.9 65.0% 0.038 36.7
Run 5 0.701  0.453 98.2% 0.018 22.9 64.8% 0.038 364
Run 6 0.703  0.460 97.2% 0.020 24.8 67.8% 0.036 34.0
Run 7 0.700  0.447 98.3% 0.018 21.9 64.8% 0.037 36.6
Run 8 0.701  0.451 98.2% 0.018 22.2 65.8% 0.037 354

Avg. 0.702  0.453 98.1% 0.018 225 65.3% 0.037 35.8
Std.  0.001  0.004 0.4% 0.001 14 1.2% 0.001 1.1

Table C.2: Quantatitive Evaluation on the Korean-unrefined dataset.
Higher is better, except perceptual distance (PD) and mFID.

Pixel-level Content-aware  Style-aware
SSIM  MS-SSIM PD mFID PD mFID

EMD [21] 0.716  0.340 0.106  99.2 0.079 93.3
FUNIT [14] 0.711 0.311 0.080 87.0 0.066 79.4
AGIS-Net [1] 0.708  0.334 0.052  67.2 0.089 134.5

DM-Font (ours) 0.726 0.387 0.048 46.2 0.046 31.5

C.2 Results on the Korean-unrefined dataset

Table C.2 shows the quantitative evaluation results of the Korean-unrefined
dataset used for the user study. We use the classifiers trained by the Korean-
handwriting dataset for the evaluation. Hence, we only report the perceptual
distance and mFID while accuracies are not measurable by the classifiers. In all
evaluation metrics, DM-Font consistently shows the remarkable performance as
other datasets. The example visual samples are shown in Figure C.1.

C.3 Ablation study

Table C.3 shows the full ablation study results including all evaluation metrics.
As the observations in the main manuscript, all metrics show similar behavior
with the averaged accuracies; our proposed components and objective functions
significantly improve the generation quality.
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Table C.3: Ablation studies on the Korean-handwriting dataset. Higher
is better, except perceptual distance (PD) and mFID.

(a) Impact of components. DM, PM, and Comp. G denote dynamic memory, persistent
memory, and compositional generator, respectively.

Pixel-level Content-aware Style-aware
SSIM MS-SSIM  Acc(%) PD mFID Acc(%) PD mFID

Evaluation on the seen character set during training

Baseline 0.689 0.373 96.7 0.026 33.6 6.5 0.084 132.7
+ DM 0.702 0.424 99.7 0.015 19.5 31.8 0.060 77.6
+ PM 0.704 0.435 97.7 0.020 26.9 46.6  0.049 57.1
+ Comp. G 0.704 0.457 98.1 0.018 22.1 64.1 0.038 34.6
Evaluation on the unseen character set during training
Baseline 0.693 0.375 96.6  0.027 34.3 6.5 0.084 134.8
+ DM 0.705 0.423 99.8 0.015 19.5 32.3  0.060 81.0
+ PM 0.707 0.432 97.6 0.022 28.9 45.9 0.050 61.4
+ Comp. G 0.707 0.455 98.5 0.018 20.8 62.6 0.039 40.5

(b) Impact of objective functions.

Pixel-level Content-aware Style-aware
SSIM MS-SSIM ~ Acc(%) PD mFID Acc(%) PD mFID

Evaluation on the seen character set during training

Full 0.704 0.457 98.1 0.018 22.1 64.1 0.038 34.6
Full —£n 0.695  0.407 97.0 0.022 27.9 53.4 0.046 48.3
Full —Lfeqr 0.699  0.427 97.8  0.020 23.8 51.4 0.047 514
Full -L4s  0.634  0.223 3.0 0488 965.3 16.2 0.082 118.9
Evaluation on the unseen character set during training
Full 0.707 0.455 98.5 0.018 20.8 62.6 0.039 40.5
Full —£n 0.697  0.401 97.5 0.023 26.8 54.3 0.046 52.3
Full —Lfeqr 0.701  0.423 97.8  0.020 24.1 51.2  0.048 56.0

Full —Las  0.636 0.220 3.2 0.486  960.7 15.9 0.082 123.7
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Fig. C.1: Samples for the user study. The Korean-unrefined dataset is used.
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(a) content failure (b) style failure (c) content and style
failure

Fig. C.2: Failure cases. Examples of generated samples by DM-Font with in-
correct content or insufficient stylization.

Fig. C.3: Varying shape of single component. Six visual examples show the
variety of a component (with red boxes) across different characters. The results
show that DM-Font generates samples with various component shapes by the
compositionality.

C.4 Failure cases

We illustrate the three failure types of our method in Figure C.2. First, DM-Font
can fail to generate the glyphs with the correct content due to the high complex-
ity of the glyph. For example, some samples lose their contents — See from the
first to the third column of Figure C.2 (a). In practice, developing a content fail-
ure detector and a user-guided font correction system can be a solution. Another
widely-observed failure case caused by the multi-modality of components, i.e.,
a component can have multiple styles. Since our scenario assumes that a model
only observes one sample for each component, the problem is often ill-posed.
Similar ill-posedness problem is also occurred in the colorization problem, and
usually addressed by a human-guided algorithm [20]. Similarly, a user-guided
font correction algorithm will be an interesting future research.

Finally, we report the cases caused by the errors in the ground truth sam-
ples. Note that the samples in Figure C.2 are generated by the Korean-unrefined
dataset which can include inherent errors. When the reference glyphs are dam-
aged as the two rightmost samples in the figure, it is difficult to disentangle style
and content from the reference set. Due to the strong compositionality regular-
ization by the proposed dual memory architecture, our model tries to use the
memorized local styles while ignoring the damaged reference style.

C.5 Examples of various component shape in generated glyphs

We provide more examples of the generated samples by DM-Font with the same
component in Figure C.3. The figure shows that the shape of each component
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Table C.4: Style generalization gap on the Korean-handwriting dataset.
We compute the differences of style-aware scores between seen and unseen font
sets. The evaluation uses unseen character set. Smaller gap indicates better gen-
eralization.

Seen fonts Unseen fonts Gap
Acc(%) PD mFID Acc(%) PD mFID Acc(%) PD mFID

Evaluation on the Korean-handwriting dataset

EMD 74.0 0.032 31.9 5.2 0.089 139.6 68.9 0.057 107.8
FUNIT 98.6 0.015 8.3 5.6 0.087 149.5 93.0 0.072 141.2
AGIS-Net 95.8 0.018 134 7.5 0.089 146.1 88.3 0.071 132.7
DM-Font  82.1 0.026 16.9 62.6 0.039 40.5 19.5 0.013 23.6

Evaluation on the Thai-printing dataset

EMD 99.5 0.001 1.0 3.4 0.087 171.6 96.1 0.086 170.6
FUNIT 97.0 0.004 5.0 4.7 0.084 166.9 92.4 0.080 161.9
AGIS-Net 84.6 0.016 28.6 15.8 0.074 145.1 68.8 0.058 116.5
DM-Font  90.2 0.009 13.5 50.6 0.037 69.6 39.6 0.029 56.1

is varying by different sub-glyphs compositions as described in Figure 2 of the
main manuscript. Note that all components are observed a few times (usually
once) as the reference. These observations support that our model does not
simply copy the reference components, but can properly extract local styles and
combine them with global composition information and intrinsic shape stored
in persistent memory. To sum up, we conclude that DM-Font disentangles local
style and global composition information well, and generates the high quality
font library with only a few references.

C.6 Generalization gap between seen and unseen fonts

We provide additional benchmarking results on the seen fonts in Table C.4. Note
that Table 1 and 2 in the main manuscript are measured in the unseen fonts
only. Simply, “seen fonts” can be interpreted as the training performances, and
“unseen fonts” as the validation performances. The comparison methods such
as EMD [21], FUNIT [14], AGIS-Net [], show remarkably good results on the
training data (seen fonts) but fail to generalize the performance on the validation
set (unseen fonts). We also report the generalization gap between the seen and
unseen fonts in Table C.4. The results show that comparison methods suffer
from the style memorization issue, what we discussed in the nearest neighbor
analysis, and cannot be generalizable to the unseen font styles. In contrast, our
method shows significantly better generalization gap comparing to others.



Few-shot Compositional Font Generation with Dual Memory 9

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bello, 1., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented convo-
lutional networks. In: Proceedings of the IEEE International Conference on Com-
puter Vision. pp. 3286-3295 (2019) 2

Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity
natural image synthesis. In: International Conference on Learning Representations
(2019) 3

Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: Non-local networks meet squeeze-
excitation networks and beyond. In: IEEE International Conference on Computer
Vision Workshops (2019) 1

Gao, Y., Guo, Y., Lian, Z., Tang, Y., Xiao, J.: Artistic glyph image synthesis via
one-stage few-shot learning. ACM Transactions on Graphics (2019) 3, 4, 8

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (2016) 3

Heo, B., Chun, S., Oh, S.J., Han, D., Yun, S., Uh, Y., Ha, J.W.: Slowing
down the weight norm increase in momentum-based optimizers. arXiv preprint
arXiv:2006.08217 (2020) 3

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In:
Advances in Neural Information Processing Systems (2017) 3

Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for
improved quality, stability, and variation. In: International Conference on Learning
Representations (2018) 3

Karras, T., Laine, S., Aila, T.: A style-based generator architecture for genera-
tive adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition (2019) 3

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015) 3

Lim, J.H., Ye, J.C.: Geometric gan. arXiv preprint arXiv:1705.02894 (2017) 3
Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: IEEE Conference on Computer Vision
and Pattern Recognition (2017) 1

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Han, J.: On the variance of
the adaptive learning rate and beyond. In: International Conference on Learning
Representations (2020) 3

Liu, M.Y., Huang, X., Mallya, A., Karras, T., Aila, T., Lehtinen, J., Kautz, J.: Few-
shot unsupervised image-to-image translation. In: IEEE International Conference
on Computer Vision (2019) 3, 4, 8

Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. In: International Conference on Learning Repre-
sentations (2018) 3

Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-
mation. In: European Conference on Computer Vision (2016) 1

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998-6008 (2017) 1, 2

Yazic, Y., Foo, C.S., Winkler, S., Yap, K.H., Piliouras, G., Chandrasekhar, V.: The
unusual effectiveness of averaging in GAN training. In: International Conference
on Learning Representations (2019) 3



10

19.

20.

21.

J. Cha, S. Chun, G. Lee, B. Lee, S. Kim, H. Lee

Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative ad-
versarial networks. In: International Conference on Machine Learning (2019) 1, 2,
3

Zhang, R., Zhu, J.Y., Isola, P., Geng, X., Lin, A.S., Yu, T., Efros, A.A.: Real-
time user-guided image colorization with learned deep priors. ACM Transactions
on Graphics (2017) 7

Zhang, Y., Zhang, Y., Cai, W.: Separating style and content for generalized style
transfer. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
3,4,8



