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1 Introduction

In this supplement we include additional experiments and implementation details
that could not fit into the main paper. In particular:

– Section 2: we discuss the choice of LO-RANSAC [4] for the final robust
pose estimation rather than OpenCV RANSAC.

– Section 3: we report extra metrics for the same experiments as in the main
paper for better comparability with previous and future work. Moreover, we
report inlier rate statistics for our experiments for all methods.

– Section 4: we report our experiments on the NGRANSAC [3] baseline,
showing that the setup we used for our experiments achieves better pose
estimation than the original paper’s setup.

– Section 5: we report breakdowns of the runtime of our current implemen-
tation on different steps of the pipeline.

– Section 6: we report results on the Aachen Day-Night dataset [15,16].

– Section 7: we report several implementation details with the hyperparam-
eters and keypoint preprocessing used in our experiments for better repro-
ducibility.

– Section 8: we report additional qualitative results from our evaluation
pipeline.

2 RANSAC implementation choice

In our evaluation pipeline we opted for an advanced RANSAC implementation,
using the LO-RANSAC [4] implementation provided by COLMAP [17], rather
than a standard implementation as the one found in OpenCV. The superiority in
pose estimation performance of recent state-of-the-art RANSACs [1,4,13,20,11]
compared to the first proposed algorithm [6] has been confirmed several times
by each newly published method, by recent benchmarks [7], and tested again
for our specific pipeline as shown in Table 1. This is not surprising as each new
method builds on the initial idea from [6].
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Table 1: RANSAC Comparison: we compare OpenCV RANSAC and LO-
RANSAC on ratio-test filtered matches to further confirm the superiority of
LORANSAC in our pipeline.

Method TUM [18] SUN3D [21] YFCC100M [19]

AUC5 AUC10 AUC20 AUC5 AUC10 AUC20 AUC5 AUC10 AUC20

RT + LO-RANSAC [4] 16.1 24.8 33.6 5.9 14.1 25.6 51.9 64.9 76.3
RT + OpenCV RANSAC 9.2 16.3 23.7 2.1 5.2 10.2 19.4 31.2 43.1

3 Additional Metrics

Table 2 reports additional metrics for the experiments presented in the main
paper for better comparability with previous and future work. In particular we
add the two following metrics:

1. mAPX: mean average precision under X degrees, i.e. the rate (in percent-
ages) of successful pose estimation considering as success a pose with max-
imum error lower than X degrees. This allows comparability of our results
with the original OA-Net [23] paper.

2. AUCX*: approximate Area Under the Curve below X degrees. As some
previous works [3,10], including NGRANSAC [3], report AUC measures ap-
proximated as the cumulative area under a histogram with 5-degrees bins,
we report the same for comparability with them.

The same observations drawn from the exact AUC are drawn from the ex-
tended metrics: our method greatly outperforms current state of the art both in
outdoor and indoor scenarios.

Moreover, we report in Table 3 inlier statistics for our experiments on all
methods. We collect recall, precision and F1 score with respect to ground truth
inliers for all methods before the application of RANSAC. Note that all methods
have been tuned for relative pose estimation performance, and inlier statistics
may change substantially when methods are tuned for a different metric.

4 Neural Guided RANSAC Baseline

We observed that Neural Guided RANSAC (NGRANSAC) [3] performs better
by re-fitting the essential matrix with LO-RANSAC [4] on its inlier set rather
than directly using the essential matrix that is the output of the authors code.
In Table 4, we report comparative results of using NGRANSAC as originally
designed and with re-fitting. We test on three settings:

1. Original: this is the original NGRANSAC setup as suggested by the authors,
reproducing the results in [3] for the SIFT+Ratio+NG-RANSAC (+SI) la-
bel on essential matrix estimation. As default in the sample code from the
authors, we use a RANSAC threshold of 0.001 and run 25000 iterations. We
then evaluate directly the essential matrix found by NGRANSAC.
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Table 2: Extended metrics results: for better comparability with previous
and future works we report additional metrics of our results. Starred Area under
the Curve is computed as the area below an histogram with five-degrees bins.

Method TUM [18]

AUC5 AUC10 AUC20 AUC5* AUC10* AUC20* mAP5 mAP10 mAP20

Ours 24.7 37.2 48.4 42.2 48.2 54.4 42.2 54.1 62.6
OA-Net 20.9 32.2 43.3 36.3 42.3 48.6 36.3 48.3 56.6
NGR 19.4 29.6 38.7 33.4 38.9 44.1 33.4 44.4 50.6
GMS 19.6 30.5 41.3 34.4 40.2 47.0 34.4 46.0 55.1
RT (10k) 16.1 24.8 33.6 27.7 32.8 38.5 27.7 38.0 46.0
RT (100k) 17.3 26.6 36.2 29.3 34.6 41.1 29.3 39.9 49.1

YFCC100M [19]

Ours 57.8 71.1 81.7 76.2 82.7 88.3 76.2 89.1 94.8
OA-Net 53.5 66.0 76.7 70.6 77.2 82.9 70.6 83.8 89.4
NGR 53.8 66.7 77.7 71.4 78.1 84.0 71.4 84.7 90.9
GMS 52.3 65.0 76.0 69.5 76.2 82.2 69.5 83.0 89.1
RT (10k) 51.9 64.9 76.3 69.5 76.4 82.7 69.5 83.4 89.9
RT (100k) 53.2 66.3 77.5 71.1 78.0 84.0 71.1 84.9 90.9

SUN3D [21]

Ours 7.6 18.2 33.2 18.9 28.1 40.2 18.9 37.3 56.2
OA-Net 6.9 16.3 29.4 17.0 25.1 35.7 17.0 33.2 49.4
NGR 6.2 15.0 27.3 15.5 23.1 33.2 15.5 30.6 46.5
GMS 6.8 15.9 29.1 16.6 24.5 35.4 16.6 32.3 50.0
RT (10k) 5.9 14.1 25.6 14.9 21,7 31.1 14.9 28.5 43.5
RT (100k) 6.1 14.5 26.3 15.2 22.4 32.0 15.2 29.5 44.6

2. Refitting-ST: in this alternative we run the whole NGRANSAC pipeline
exactly as in the Original case, with the same setup and threshold, and then
use the inliers found to fit the essential matrix using the same LO-RANSAC
setup used by all other methods. We found that the default threshold of
0.001, suggested originally for the method, is too strict and reduces the space
for local optimization inside LO-RANSAC as the chosen inliers are already
strictly agreeing on some model. Therefore, we found that larger thresholds
were better for this setup.

3. Refitting-LT: this is the setup that we used and ran on all experiments
reported in the main paper. We run the Original pipeline on essential matrix

Table 3: Inlier statistics: we report inlier statistics for all the competing meth-
ods in our experiments. Note that all methods have been tuned for relative pose
estimation, so results may vary consistently with different tuning. Precision, re-
call and F1 score have been measured with respect to ground truth inliers before
applying RANSAC.

Method TUM [18] SUN3D [21] YFCC100M [19]

Recall Precision F Recall Precision F Recall Precision F

Ours 38.0 72.6 48.1 42.0 61.4 48.4 50.2 85.9 62.0
OA-Net 44.5 61.1 49.7 47.7 53.7 48.7 60.2 81.4 68.1
NGR 18.2 61.5 27.3 22.3 51.8 30.5 33.7 79.8 45.5
GMS 15.8 56.0 23.9 16.4 58.1 24.5 29.1 88.7 40.8
RT 20.3 32.9 24.7 24.5 31.2 26.9 34.4 56.6 42.1
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Table 4: Tuned NGRANSAC baseline setup: we run experiments on
YFCC100M to tune the setup for NGRANSAC within our evaluation pipeline.
We report the metrics explained in Section 3.

Method YFCC100M [19]

AUC5 AUC10 AUC20 AUC5* AUC10* AUC20* mAP5 mAP10 mAP20

Original 39.4 50.8 59.5 55.3 60.6 64.8 55.3 65.9 69.7
Refitting-ST 53.2 66.2 77.2 71.5 77.7 83.7 71.5 83.8 90.5
Refitting-LT 53.8 66.7 77.7 71.4 78.1 84.0 71.4 84.7 90.9

Table 5: Datasets median statistics. We report median number of keypoints
detected per image and median number of matches found by our method on each
dataset to aid interpretation of runtime breakdowns in Table 6.

Dataset Median keypoints per image Median matches found per image couple

YFCC100M [19] 6666 1559
TUM [18] 4125 561
SUN3D [21] 2595 474

estimation with 25000 iterations and a threshold of 0.01, and then fit the
final essential matrix with LO-RANSAC on the inlier set found by NG-
RANSAC. A higher threshold than the original allows more space for the
local optimization to find better poses on average, as seen in Table 4.

5 Runtime Breakdown

We provide a runtime breakdown of our method on different datasets. While we
always try to extract 8000 SIFT keypoints from every images, for small images
with low texture it is common to find less, and the number of detected matches
can vary accordingly, as shown in Table 5. These factors can influence runtimes
of different sections of our algorithm. We report in Table 6 the runtime statistics
of the following sections of our method:

1. Init: the initialization procedure, which includes loading the input keypoints
to GPU and finding the nearest neighbors and ratio test scores.

2. Seed selection: the decision on which correspondences should be used as
seed correspondences.

3. Neighborhood selection: the selection of neighborhood sets for each seed
correspondence, and referencing each set to the local coordinate frame.

4. Local RANSACs: the parallel RANSACs on all local neighborhoods to fit
affinities on multiple thresholds. For this run we use 128 RANSAC iterations
and 4 threshold hypotheses.

5. Match selection: the compensation of the inlier ratio signals from RANSAC
and the selection of the final correspondences to output.
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Table 6: Runtimes breakdown: we split our method into sections to analyze
the impact of each on runtime in different scenarios. Times are all measured in
milliseconds per image pair. Bounds are obtained with 90% confidence.

Section YFCC100M [19]

Mean Median Std. Dev. Lower Bound Upper Bound

Init 10.1 9.5 3.4 8.3 13.5
Seed selection 3.9 3.6 1.5 3.2 6.1
Neighborhood selection 1.9 1.7 0.8 1.5 2.0
Local RANSACs 25.2 22.1 11.47 16.45 36.6
Match selection 1.2 0.9 1.6 0.8 1.5

TUM [18]

Mean Median Std. Dev. Lower Bound Upper Bound

Init 6.0 5.6 5.7 3.6 8.1
Seed selection 2.1 1.8 1.2 1.1 3.1
Neighborhood selection 1.8 1.6 0.9 1.5 2.1
Local RANSACs 23.8 22.1 9.0 15.7 35.9
Match selection 1.2 0.9 0.8 0.8 1.5

SUN3D [21]

Mean Median Std. Dev. Lower Bound Upper Bound

Init 3.9 3.3 2.9 2.5 6.2
Seed selection 1.1 0.9 1.0 0.7 1.4
Neighborhood selection 1.8 1.5 1.2 1.4 2.0
Local RANSACs 22.0 19.1 8.7 14.6 32.5
Match selection 1.2 0.9 1.0 0.8 1.5

6 Aachen Day-Night Challenge

The Aachen Day-Night dataset [15,16] allows to measure pose accuracy achieved
when trying to localize nighttime query images against a 3D model built from
daytime images. We follow the setup of the Local Feature Challenge from the
CVPR 2019 workshop on “Long-Term Visual Localization under Changing Con-
ditions” and use the code provided by the organizers1, but use our match-
ing method rather than the default mutual nearest neighbor matching. Follow-
ing [15], we report the percentage of nighttime queries localized within thresh-
olds on their rotation and position errors with respect to the ground truth poses
(three sets of thresholds are used: (0.5m, 2◦) / (1m, 5◦) / (5m, 10◦)).

While currently the majority of top-scoring methods are using specialized
learned local features, we use our method for outlier rejection on upright Root-
SIFT [8] features. In Table 7 we report scores for the available baselines and
with our method. We also run additional baselines using upright RootSIFT with
simple filters such as mutual nearest neighbor and ratio-test for better com-
parability. We observe that our outlier rejection greatly improves localization
performance on SIFT keypoints and descriptors, elevating its performance to
comparable levels as the current state-of-the-art learned local features.

1 https://github.com/tsattler/visuallocalizationbenchmark/

https://github.com/tsattler/visuallocalizationbenchmark/
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Table 7: Aachen Day-Night: percentage of nighttime queries localized within
given accuracy measures of the ground truth poses

Method (0.5m, 2◦) (1m, 5◦) (5m, 10◦)

UprightRootSIFT (public baseline) 33.7 52.0 65.3
UprightRootSIFT + Mutual Nearest Neighbor 37.8 56.1 76.5
UprightRootSIFT + Ratio-Test (0.8) 41.8 57.1 75.5
UprightRootSIFT + Ours 45.9 64.3 86.7

UR2KID Scape Technologies[22] 46.9 67.3 88.8
D2-Net - single-scale [5] 45.9 68.4 88.8
R2D2 V2 20K [14] 46.9 66.3 88.8
Dense-ContextDesc10k upright OANet [9,23] 48.0 63.3 88.8
densecontextdesc10k upright mixedmatcher [9] 46.9 65.3 87.8

7 Implementation details and hyperparameters

As modern learning approaches run efficiently on highly parallel hardware, we
also designed our algorithm to be extremely parallel to run efficiently on modern
GPUs, and accordingly we provide a full implementation in PyTorch [12]. This
allows a great speedup compared to CPU execution, although it still leaves a
wide space for further low-level optimization.

In particular seed point selection is implemented as a local non-maximum
suppression, where each correspondence is evaluated independently of the evalua-
tion of the others. For affine fitting, random sampling methods such as RANSAC
suit perfectly the needs as all different seed points as well as all iterations can
be processed in parallel, including the sampling, minimal fitting, evaluation of
the residuals and identification of the inliers.

Finally, the evaluation of the best threshold for each seed point and the final
selection of the inliers is again fully independent for each seed point. Having no
efficient closed form solution for the inlier counts compensation Eo

[
C∗
i,tk

]
to be

estimated from the distribution in Eq. (??), we observe that at runtime all of its
parameters are fixed except for variables ‖Ni‖ and tk. Therefore, we estimate
this expectation offline by extensively sampling such distribution, and provide
the method with the table of expectations for different entries of ‖Ni‖ and tk to
be used with virtually no runtime overhead.

All our experiments have been run using the same hyperparameter setup.
We set the radius R for seed point selection to match a fixed ratio ra between
the area of the non-maximum suppression circle R2π and the area of the image

wh. In particular, we set R =
√

wh
πra

with ra = 70. For the purpose of collecting

neighborhoods Ni for each seed point i, we use a radius λ times larger than R,
with λ = 6. This ensures sufficient but controlled overlap between neighboring
regions to be robust to errors in seed correspondences. We observed that the
performance of our method saturates very early when increasing the number
of RANSAC iterations, which are fixed to 128 iterations. When experiment-
ing with SIFT keypoints, we set tσ = 1.5 and tα = 30◦. Code is available at
https://github.com/cavalli1234/AdaLAM with our experimental hyperparame-
ter setting by default.

https://github.com/cavalli1234/AdaLAM
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Moreover, only for our method we preprocess the input set to drop duplicates
of keypoints with exactly overlapping locations, even with different descriptors.
These are usually produced by SIFT when the dominant orientation is ambigu-
ous in a DoG peak. We observed that this preprocessing step generally degrades
performance, as it solves the orientation ambiguity by randomly dropping one
alternative. However, our method appears to benefit from such preprocessing
which makes local inlier distributions to behave more closely to our modeling.
Improvements to fully exploit the input set without the need for this preprocess-
ing step are left for future work.

8 Qualitative results

We report in Figures 1, 2 and 3 additional qualitative comparative results from
our evaluation pipeline. For better visualization of our method’s results, we dis-
abled the hard minimum of 20 output correspondences that are normally added
from the best according to ratio-test score when our criterion cannot validate
enough matches.
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Ratio-test [8] NGRANSAC [3] GMS [2] OA-Net [23] Ours

Fig. 1: Success cases from our experiments. Matches agreeing with ground truth
epipolar geometry are shown in green, others are in red. Examples include cases
with low texture, non-planar object, minimal image overlap.
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Ratio-test [8] NGRANSAC [3] GMS [2] OA-Net [23] Ours

Fig. 2: Success cases from our experiments. Matches agreeing with ground truth
epipolar geometry are shown in green, others are in red. Examples include cases
with repeated structures, strong scale changes and perspective deformations.
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Ratio-test [8] NGRANSAC [3] GMS [2] OA-Net [23] Ours

Fig. 3: Failure cases from our experiments. Matches agreeing with ground truth
epipolar geometry are shown in green, others are in red. Examples include strong
scale changes with repeated structures, limited image overlap, and textureless
surfaces.
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