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Abstract. In this paper, we consider the problem to automatically re-
construct garment and body shapes from a single near-front view RGB
image. To this end, we propose a layered garment representation on top
of SMPL and novelly make the skinning weight of garment independent
of the body mesh, which significantly improves the expression ability of
our garment model. Compared with existing methods, our method can
support more garment categories and recover more accurate geometry.
To train our model, we construct two large scale datasets with ground
truth body and garment geometries as well as paired color images. Com-
pared with single mesh or non-parametric representation, our method can
achieve more flexible control with separate meshes, makes applications
like re-pose, garment transfer, and garment texture mapping possible.
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1 Introduction

Applications like virtual try-on, VR/AR, and entertainment need detailed and
accurate reconstruction of both body and dressed garments with simple input
like color image. However, the variety of body shapes, postures and garment
categories, makes it a very challenging problem. A simulation-based method [52]
explores this problem, but their solution is dedicated and time-consuming. In
this paper, we aim to automatically reconstruct both body and cloth shapes
from just a single near-front view image, utilizing the powerful fitting ability of
the deep neural network.

In recent years, body shape reconstruction from images has made significant
progress [23, 36, 24, 29]. A common way is to infer the shape and pose parameter
of a statistical body model, like SMPL [32]. These methods are robust for dif-
ferent posture, but the reconstructed geometry is constrained to be within the
model space, which can not capture the complex cloth shape.

To infer detailed geometry beyond body shape, some non-parametric repre-
sentations have been proposed [46, 57, 35, 43]. These non-parametric representa-
tions based on voxel and implicit function can recover arbitrary shapes. However,
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voxel representation is hard to recover shape details due to their large memory
consumption for high resolution. Although implicit representation is more mem-
ory efficient, it may generate infeasible results like broken arms. Moreover, the
lack of semantic information limits their applications like garment transfer.

Expanding the representation ability of the statistical model of body shape is
another solution. Several prior works [7, 38, 3, 4] utilize the vertex displacements
of body shape represented by SMPL to represent garment geometry. Under this
configuration, tight garments can be reconstructed. However, this representation
cannot recover the feature of garment edges. More importantly, binding garments
with SMPL points causes the problem that garments have the same skinning
weights and connectivity with SMPL. Therefore, large scale displacements of
loose garments may cause artifacts because of inappropriate skinning weights.
More importantly, garments like skirts which have a different topology with body
shape, are beyond the representation range.

Like Bhatnagar et al. [7], we train a model to reconstruct body mesh and
layered garment meshes separately. The difference in input is that our method
only requires a single RGB image and no additional semantic information and
body rough A-pose constrain. Another difference is that our garment mesh is not
bound with the body mesh, and can reconstruct more garment categories. To
this end, we address three major challenges: learning a shared skinning weight
network for all garments, garment detail inference, and dataset construction.
Our method supports six garment categories, including upper garment, pants,
and skirts with short and long templates for each type. For all garment types,
we train a network to predict skinning weights related to SMPL’s skeleton. For
each type, we use graph convolution to recover the details. To train the model,
a dataset with various RGB images and their corresponding body and cloth
shapes is needed. However, there is no available public datasets that satisfy our
demands. Instead, for each type of garment, we design different sizes of clothes
dressed on different SMPL neutral bodies and repose these clothes to various
postures utilizing a physics engine. Besides, a commercial 3D human dataset
with high-definition texture is added to increase the diversity of training data.

Our method can infer both body and garment shapes from a single image
with different poses, and also supports loose garment types, like skirts. Based
on the reconstruction results by our method, applications like garments and
poses transferring between different images can be achieved. In summary, the
contributions of this work include the following aspects:

– We present a novel garment representation on top of SMPL and a neural
network-based method to reconstruct the shapes of body and garment from
a single near-front viewpoint color image.

– Rather than binding the skinning weight of garment with body mesh, we
propose a generic skinning weights generating network, which enables our
approach to support garments with different topologies.

– We design a complete algorithm pipeline for dressed SMPL body data con-
struction with different types of garments. The constructed dataset, includ-
ing synthetic images and clothed body shapes, will be publicly available.
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2 Related Work

Template-Free Clothed Human Estimation. Some non-parametric meth-
ods based on voxel or implicit function have been proposed to address the com-
plex topology of garments. BodyNet [46] directly infers a voxel representation of
clothed bodies with a deep network. Due to the large memory cost for high reso-
lution, high-frequency details are often missed. Jackson et al. [20] reconstruct the
shape of humans via volumetric regression and show the ability to output fine-
scale details. Zheng et al. [57] infer clothed body volume representation with an
initial aligned SMPL body, and combine image features to enhance reconstruc-
tion details. Natsume et al. [35] propose a reconstruction method based on a
multi-view framework using synthesizing new silhouettes from a single image.
More recently, [43] proposes a promising clothed body reconstruction network
using a memory-efficient implicit representation. Template-free methods do not
utilize the human body prior to obtain complex topology modeling ability, at
the cost of lacking semantic information and control of reconstructed results.
Template-Based Clothed Human Estimation. Based on human body sta-
tistical model [32, 5, 21], many works can estimate naked body shape from im-
age [23, 27, 38, 36, 9, 14, 54]. For better representation ability, a displacement vec-
tor is added for each vertex. [3, 1, 2] adopt this strategy to reconstruct clothed
body with skin-tight garment. Alldieck et al. [4] estimate detailed normal and
vector displacement on the UV map, which leads to finer-scale details. Zhu et
al. [59] model fine-scale details by adding free-form 3D deformation on top of
parametric model. Instead of using a single surface to represent both garment
and body, [7] separates SMPL mesh to represent upper garment and pant inde-
pendently, leading to more flexible control. However, binding garment vertices
to body model strictly restricts the topology of support garment categories, and
it is hard to represent more loose garment types, such as skirts. [39, 55] also use
separate body and garment templates to register clothed body motion sequences.
Garment Dataset Construction. BUFF [56] supplies high-quality 4D scans of
clothed bodies, but it only has 5 subjects and 2 suits for each subject. Lahner et
al. [26] collect high-quality 4D scans of garments, but the method leaves out
body reconstruction, and their dataset is not publicly available. Recently, [7]
constructs a training dataset with garment and body shapes from real scan
data, but the training dataset is also unavailable. Moreover, many prior works
generate ground truth dataset based on physics-based simulation [29, 28, 44, 49,
12, 17, 40]. [29, 28] dress SMPL bodies and construct more truthful images than
SURREAL [47]. [49] simulates three types of garment and dress them on neutral
SMPL bodies to learn garments design from sketches. All mentioned datasets do
not meet our requirements. Therefore, we build a dataset containing a variety
of garments and body types with different sizes and postures.
Garment Deformation Representation. How to represent the deformation
of a garment is also related to our work. De Aguiar et al. [13] represent the gar-
ment dynamic dressed on a specific virtual avatar with a linear combination of
pre-computed multiple deformations. DRAPE [17] regresses garment deforma-
tion from body shape with a technique derived from SCAPE [5]. Xu et al. [50]
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Fig. 1. The architecture of our proposed network. The CNN encodes image into latent
feature, then we get reconstructed SMPL parameters β̂, θ̂, t̂ and shared garment latent
feature l with respective FC layers. From l, we reconstruct garment shape parameter α̂
and garment type scores {û, d̂} for upper and lower garment separately. With the clas-
sifier, α̂ and β̂, we reconstruct neutral clothed body. Followed a displacement network
and skinning weight network, we predict garment vertex displacements and skinning
weights separately. Finally, utilizing predicted pose parameters θ̂, t̂ and Ŵg, we re-pose
neutral body and garments with displacements to reference posture.

combine rotation and translation weights to approximate the non-local and non-
linear clothing deformation and introduce a pose sensitive rigging scheme. Lah-
ner et al. [26] recover high-frequency garment details from a normal map created
from Generative Adversarial Network. Yang et al. [51] model garments with dif-
ferent connectivity based on a body template and use PCA to parameterize
garment deformation. Santesteban et al. [44] propose to deform base garment
conditioned on body parameters and then add high-frequency wrinkles.

3 Algorithm

The target of this work is to automatically reconstruct both body and cloth
shapes from a single near-front view image. Our model currently supports six
garment categories and can be easily extended to other new types. In the fol-
lowing, we first describe our garment representation model. Then, we introduce
our network structure and training loss design.

3.1 Garment Model

We use SMPL [32] as our parametric human body model. SMPL is a function
which maps shape parameters β ∈ R10 and pose parameters θ ∈ R72 to a body
mesh Mb(β,θ) ∈ R3|Vb|, where Vb is SMPL mesh vertices set. The mapping can
be summarized as the following equation:

Mb(β,θ) = W (Tb(β,θ),J(β),θ,Wb), Tb(β,θ) = B + Bsβ + Bpθ, (1)

where SMPL applies linear displacement bases Bs and Bp on a T-posed template
mesh B, and then utilize standard skeleton skinning operation W to get posed
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body mesh. J(β) ∈ R24×3 is SMPL body’s neutral skeleton and Wb ∈ R|Vb|×24
is the skinning weights of each vertex of SMPL.

As most clothes follow the deformations of the body, we compute our garment
mesh Mg ∈ R3|Vg| similarly based on the skin deformation of SMPL:

Mg(α,β,θ,D) = W (Tg(α,D),J(β),θ,Wg(α,β)), Tg(α,D) = G+Bgα+D.
(2)

For each garment category, a T-posed template mesh G is defined. On top of the
base mesh, we add linear displacement deformation Bg controlled by PCA coeffi-
cients α ∈ R64. This low dimensional representation is effective in capturing size
variations of a specific garment category under T-pose. To deform garments with
dressed SMPL body, we share garment pose parameter θ with SMPL and use
SMPL’s skeleton J(β) as the binding skeleton of the garment. Instead of directly
using the skinning weights of SMPL, a neural network is utilized to estimate the
skinning weights Wg of the garment. This design makes garment mesh indepen-
dent with SMPL mesh and makes our garment model can support more garment
topology than SMPL+D methods [7, 38, 3], if providing corresponding garment
training data. To capture variations caused by different pose and interaction be-
tween clothing and body, we add a high-frequency displacement D ∈ R3|Vg| for
vertices of the clothing. In this paper, for the conciseness of writing symbol, we
denote the displacement directly as D instead of a function of latent dependent
variables, such as α,θ.

3.2 Image to Dressed Body

Given a near-front view RGB image depicting a posed subject dressed on spe-
cific garments, our model estimates its body shape, pose parameters and global
translation with β̂ ∈ R10, θ̂ ∈ R72, t̂ ∈ R3 and the garment parameters α̂ ∈ R64

and D̂. Our model mainly consists of four modules: image encoder, classification
module, skinning weight network, and displacement network. Fig. 1 shows our
algorithm pipeline, and we will discuss the details of the last two modules.

Our image encoder uses the feature extraction of ResNet-18 [19] and average
pooling the final feature map to 8×8 size. From the map, a fully connected layer
is used to get the latent feature. Then, four fully connected layers are used to
predict shape parameters β̂, pose parameters θ̂, translation t̂ and shared garment
latent feature l ∈ R256. For pose parameters, instead of directly predicting the
axis-angle representation parameters θ̂, we predict vectorized rotation matrices

R ˆ(θ) ∈ R24×9 of all joints, where R is the Rodrigues rotation transformation.
This strategy makes training more stable and continuous [27, 37, 38].

From shared garment latent l, two fully connected layers are used to predict
upper and lower garment classify scores û ∈ R2 and d̂ ∈ R4 separately. Then, we
concatenate β̂ and l as input of a two-layer Multi-layer perceptron(MLP) [41]
to predict neutral garment shape parameters α̂. After that, utilizing skinning
weight and displacement networks, we get garment skinning weights Ŵg and

high-frequency displacements D̂, respectively. Finally, with predicted pose pa-
rameters, we can reconstruct the body shapes and dressed garments together.



6 B. Jiang et al.

3.3 Skinning Weight Network

It is an open problem to estimate skinning weights for an arbitrary character
given a binding skeleton hierarchy. Recently, Liu et al. [30] proposed the first
generic network to infer the skinning weights of various characters binding to
the mutative skeleton hierarchy. Inspired by [30], we design our skinning weight
network to infer weights for neutral garments, and the network makes weights
computation fast, differentiable and garment type independent.

Our network predicts the skinning weights of a specific neutral garment
Tg(α̂,0) binding to the skeleton J of corresponding neutral SMPL body Tb(β̂,0).
We compute all distances of each vertex of Tg(α̂,0) to each joint point of J.
Then, the coordinate, normal, and distances of each vertex of Tg(α̂,0) are con-
catenated as the input feature for the network, and it computes the weights for
all vertices. Our network uses MLP to change the vertex feature dimension and
utilizes standard Residual Block [19] to extract features. Besides, we use graph
convolution to aggregate the neighborhood information. In order to make our
network applicable to different garment categories, we use GAT [48] graph con-
volution, whose filter weight learning is independent of mesh connectivity, and
the weight is determined by the input feature on vertices only. This characteris-
tic makes our network based on GAT suitable for different garment types. The
architecture details can be found in the supplementary.

3.4 Displacement Network

The shape structure of the garment can be well reconstructed based on the
PCA coefficients α. However, high-frequency details, such as folds caused by
different pose, are beyond the representation ability of the linear model. We
train a displacement network to regress the displacement of each garment vertex
on top of the base mesh. For the displacement, we use a similar network structure
with the skinning weight network. To improve the regression ability, we train an
independent network for each garment category rather than a general network
for all types. Moreover, we use spiral graph convolution [10] for each garment
category, which has state-of-the-art regression ability for meshes with the same
connectivity. To capture high frequency information, we project each vertex of
deformed base garment Mg(α̂, β̂, θ̂,0) on the image, and crop the 32×32 patch
centered on the projected vertex. Then, for each vertex, we use a shared MLP to
encode its patch into a latent feature, and concatenate the feature with shared
garment latent l, predicted SMPL shape parameter β̂, garment shape parameter
α̂ as well as its coordinate, normal and skinning transformation together as its
input feature for the displacement network. The details of the neural network
are given in the supplementary.

3.5 Loss Function

With our constructed dataset, ground truth shape and pose parameters are
available for all training data, thus it is natural to adopt supervised training.
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In this part, we denote predicted Mg(α̂, β̂, θ̂, D̂) and Mb(β̂, θ̂)) as M̂g and M̂b

separately. In the following, we will give the details on how to design the loss
terms.

Losses on shape parameters. We directly adopt the MSE between pre-
dicted and ground truth shape parameters. The loss for SMPL body parameters
and garment parameters are separately defined as:

LBp = ‖β̂ − β‖22 + ‖ ˆR(θ)− R(θ)‖22 + ‖t̂− t‖22, LGp = ‖α̂−α‖22. (3)

Losses on geometry. We supervise reconstructed geometries and joints
with ground truth data. JB is the mapping to output posed 3D joints of SMPL
body Mb.

– Losses on reconstructed garment geometry and reconstructed body joints
are separately defined as:

LG = ‖M̂g −Mg‖22, LJ3D = ‖JB(M̂b)− JB(Mb)‖22. (4)

– Losses on displacements D. To improve detail reconstruction ability, we use
`1 loss for each vertex of D and `2 loss on laplacian coordinates of D. L
represents the laplacian coordinates mapping from a 3D mesh.

LD1 = |D̂−D|, LD2 = ‖L(D̂)− L(D)‖22. (5)

Losses of projection. We use Π to represent the camera projection of 3D
geometries. All our training data share a common camera intrinsic matrix. The
loss of body projections and garment projections are separately defined as:

LB2D = ‖Π(M̂b)−Π(Mb)‖22, LG2D = ‖Π(M̂g)−Π(Mg)‖22. (6)

Losses of classification. We use standard softmax loss to penalize the
classification error of û and d̂ relative to ground truth garment types.

Losses of interpenetration. During training, inferred garments and body
are easy to occur interpenetration. We use a simple yet effective interpenetration
term inspired by [18] to alleviate this problem:

Lint(P,Q) =
∑

{i,j}∈C(P,Q)

ReLU(−nT
qj

(pi − qj))/N, (7)

where P,Q are two interpenetrated meshes. C(P,Q) represents the valid corre-
sponding pairs between P and Q, and these pairs are filtered based on distances
and normal angles. This loss penalizes vertex pi that is inside the local plane
defined by its corresponding point qj and its normal nqj

. We use this loss on
reconstructed neutral garments and body as well as posed garments and body
separately:

Linters = Lint(Tg(α̂,0),Tb(β̂,0)) + Lint(M̂g, M̂b) (8)
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Loss of Skinning Weight Network. As discussed in [30], the weight vec-
tor {ωij |j ∈ |J (β)|} of Wg is a selection of different bones with different prob-
abilities. We use the Kullback-Leibler divergence loss to measure the distance
between predicted weights distribution ω̂ij and ground truth distribution ωij :

Lws =

|Vg|∑
i=1

24∑
j=1

ω̂ij(log
ω̂ij

ωij
). (9)

To train the whole network, we first train the skinning weight network with
loss in Eq. (9), and then train other parts together by fixing the skinning weight
network.

4 Dataset Construction

4.1 Skinning Weight Dataset

To train our skinning weight network, we need some neutral garments with
ground truth skinning weights. Our network training adapts to any weight cal-
culation method. For simpleness, we compute garment weights from the dressed
SMPL body.

For vertex pi of the garment, we select K vertices from dressed body mesh,
based on distance, normal angle, and segmentation prior. Segmentation prior is
some information we can utilize, such as corresponding vertices of right trouser
leg must belong to the right leg of body mesh. From selected K vertices of body,
we average their skinning weights with IDW(inverse distance weighting) as the
skinning weight of pi. After all vertices’ weights have been computed, we apply
Laplacian smoothing [45] to remove noises and artifacts.

With this method, for all garment types, we construct a skinning weights
dataset, which includes 48000 neutral garments for training, and 6467 for test.

4.2 Synthetic Dataset Construction

As there does not exist publicly available dataset containing pairs of the color
image and corresponding body and cloth shapes, we construct the dataset with
a physics-based simulation method. The dataset construction process can be
divided into four steps: sewing pattern design, neutral garment synthesis, posed
garment simulation and rendering. [49] proposed a novel method to synthesize
neutral garments. We extend their method to support more garment types and
posed garments generation.

As shown in Fig. 2, we first design the pant sewing pattern based on body
type. Then, around the neutral skeleton, we connect the sewing lines of the front
and back pattern and shorten the length gradually. The sewing lines are stitched
together after all lengths of the sewing line are less than a threshold. To simulate
the realistic result of the garment draped on the neutral body, we inflate the
skeleton and add gravity. For posed garment simulation, we deform the neutral
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Fig. 2. Our synthesis process of a pant. First, we generate a random sewing pattern
based on neutral body type. Then, we stitch the pattern on the skeleton and inflate the
skeleton to its original shape to generate the neutral pant. Finally, we skinning deform
the skeleton and neutral pant to a posture, and simulate the final pant with gravity by
inflating the posed skeleton.

garment to target pose with generated skinning weights and inflate the body and
add gravity to simulate the posed garment. In this work, we assume that both
the human body and the garment are in a statically stable state. Therefore, we
sample discrete pose instead of simulating the whole motion sequence.

After generating the garment shapes, the synthetic images are rendered by
following the methods in [29, 28, 47]. By randomly selecting body textures from
SURREAL [47], garment textures from Fabrics [22] and DTD [11], background
images from Places365-Standard dataset [58] and global illumination from hun-
dreds HDR images, we can render near-front view dressed body images with
abundant variations.

Fig. 3. Some examples from our synthetic dataset(left three) and HD texture
dataset(right three).

We implement the abovementioned pipeline using the simulator NvFlex[15]
and Blender[8]. We utilize 3048 body shape of SPRING dataset [53], and ran-
domly generate neutral clothes dressed on them. For posed garment, we select
55 motion sequences from CMU Mocap [34], whose poses have been converted
to SMPL pose parameters with MoSh [31]. For each motion sequence, we ran-
domly select 10 different persons with 4 sets of different clothing separately and
sample pose parameters every 30 frames. Finally, we get 168602 dressed bodies
as training data and 8874 as test data. The left part of Fig. 3 shows several
examples of our synthetic images.
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Fig. 4. Two examples of rigged avatar registration. We show the scanned meshes with
and without texture, reconstructed geometries and garment with texture in each group.

4.3 HD Texture Dataset

Although synthetic samples are visually realistic, they still have a noticeable
domain difference with real images. Therefore, we process another dataset with
high-definition (HD) textures. We purchase 104 and 181 rigged avatar from Ren-
derPeople [42] and Axyz [6], respectively. These avatars have high-quality geom-
etry and realistic texture. We use Mixamo [33] to drive avatars and get about
89425 posed meshes as training data and 4386 as test data. The abovementioned
rendering pipeline is used to produce high-quality images, and the right part of
Fig. 3 shows some examples. Because the body and clothes part of the scanned
mesh are not separated, and the connectivities of scanned meshes are not con-
sistent, we need to process these meshes to our representation via the following
two steps.

Rigged registration. For a rigged mesh with A- or T-pose, we segment it
to garment and skin parts. We optimize garment shape parameters α, displace-
ments D, body parameters β, θ and translation t to register our representation
to the avatar. We penalize the point-to-plane distance for both reconstructed
garment and body. And we use Eq. (7) to reduce the interpenetration among
them. To get a size matching garment, we adopt the rendered silhouette loss uti-
lizing [25]. And we add `2 regular term for garment and body parameters. With
this pipeline, we reconstruct all garments and body shapes of rigged avatars,
and we extract texture for each garment. Fig. 4 shows two examples.

Posed registration. After we finish the rigged avatar reconstruction, we
initialize our posed model optimization with rigged reconstruction parameters
and optimize pose parameters θ and translation t first. And then, we fine-tune
all parameters to get final posed reconstruct results.

5 Experiments

In this part, we first evaluate our BCNet. Then we quantitatively compare with
state-of-the-art methods. Finally, we present some qualitative results. More re-
sults are supplied in the supplementary.
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Fig. 5. The left shows the ablation study for interpenetration loss. The examples
demonstrate that the interpenetration term in Eq. (7) alleviates the collision problem.
The right shows our predicted displacement results. For each example, We present the
base mesh, mesh with displacement and reposed mesh, respectively. The first example
captures detail geometry on top of the base mesh, and the second one recovers large
scale deformation for the skirt caused by leg movement. For better visualization, we
show two viewpoints for the second result.

5.1 Analysis of BCNet

Our Test Set. We test our predicted errors on Synthetic and HD Texture test
set, respectively. Table 1 shows the mean Euclidean distance(MED) of recon-
structed shapes after Procrustes transformation and ground truth shapes.

Skinning Weight Network. We test the reconstruction ability of the skin-
ning weight network on our test dataset. For each garment, we reconstruct its
skinning weights with our network. The average `1 reconstruction error on the
whole test set is 6.5× 10−4. Then, we sample 20 poses from the Mocap dataset
and deform the neutral clothes to the posture with our predicted weights and
ground truth weights separately. The average MED of reposed mesh for all gar-
ment types is 0.43mm. These results demonstrate that our skinning weight net-
work can reach very high accuracy. More details are given in supplementary.

Interpenetration. Our network infers human body and layered garments
mesh separately, which brings better flexibility but at the cost of introducing
more complex interactions between body and garments. Interpenetration is a
common unreal phenomenon which is very easy to perceive by a human. There-
fore, it is quite necessary to process interpenetration between these meshes. We
propose an interpenetration term in Eq. (7) to alleviate this problem, and an
ablation study on this term is shown in the left of Fig. 5. We can see that the
interpenetration loss is beneficial to alleviate the interpenetration problem.

Displacement Network. Garment PCA shape parameter α can repre-
sent the garment structure, while it can not represent the detailed shape of a
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Table 1. The MED(cm) between
predicted and ground truth shapes
on our test dataset. For garments,
we report errors with(gray) and
without(white) displacement mod-
ule, respectively.

dataset shirt pant skirt body

Synthetic
0.91 0.75 0.87

1.57
1.72 1.59 2.46

HD
Texture

1.71 1.42 1.65
2.93

1.97 1.72 1.87

Table 2. The errors(cm) on BUFF rough A-pose
dataset(gray) and Digital Wardrobe dataset(white).

Methods Upper Lower Total Chamfer

MGN-opt-8 1.63 1.91 1.82 1.91
MGN-8 1.78 2.13 1.99 2.08

Octopus-opt-8 1.40 1.35 1.31 1.41
Octopus-8 1.54 1.74 1.70 1.76

Ours 1.07 1.35 1.35 1.34

PIFu 1.59 1.37 1.85 1.61
DeepHuman 2.38 2.46 3.15 2.98

Ours 1.44 1.78 1.80 1.77

specific garment and large scale deformations caused by pose and gravity for
loose garments. We train our non-linear displacement network to expand the
representation ability. The result of ablation study on displacement network is
given in Table 1, we can observe that the displacement network greatly improves
the reconstruction accuracy. In the right part of Fig. 5, we show two examples
of our displacement results. We present input image, base garment Tg(α,0),
the garment with predicted displacement Tg(α,D) and final reposed garment
Mg(α,β,θ,D) for each result. In the first row, we show an example of predicted
displacement capturing detailed geometry, such as tie and suit boundary line. In
the second row, we show large scale deformations on a skirt caused by bending
leg motion, and we use two viewpoints to show the deformation results.

5.2 Quantitative Comparison.

We test our reconstruction accuracy on two public data sets, BUFF [56] and Digit
Wardrobe(DW) [7]. We segment the ground truth scan mesh into upper, lower
garment and body parts, and compute error for garments and whole clothed bod-
ies separately. Because our model predicts separate body and garment meshes,
we extract the outer surface of all meshes as the proxy to do registration and
error computing for a fair comparison. We measure the average point-to-surface
Euclidean distance(P2S) in cm from the ground truth to predicted surface for
upper, lower garments, and the whole surface. We also compute the Chamfer
distance [43] between the reconstructed and the ground truth surfaces.

BUFF Dataset. We compare the reconstruction accuracy of our method
with SMPL+D based methods octopus [38] and MGN [7]. By default, their
methods require multi-view semantic segmentation images and 2D joints of a
clothed body under rough A-pose as inputs, and post-optimization is applied to
refine the results. Therefore, we select 21 rough A-pose data from BUFF [56]
as our test set. Table 2 shows our results, and their results of 8 perspective
inputs with and without optimization, respectively. Although the input of our
method only needs one image, our method can get better numerical results
than theirs without post-optimization, and an equivalent result with Octopus
with optimization. The post-optimization is time-consuming and takes several
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Fig. 6. Error maps on BUFF(left part) and MGN(right part). From left to right, we
show the GT mesh, results of ours, Octopus-opt-8, MGN-opt-8 for the BUFF example,
and results of ours, PIFu, DeepHuman for the MGN example(red means ≥ 4cm).

seconds and several minutes for Octopus and MGN, respectively. For MGN, we
manually modified some segmentation error of PGN [16] to refine their results.
In the left part of Fig. 6, we show an example of our result and their results with
post-optimization. Some unnatural folds are introduced in the post-optimization
step of MGN while our method does not have this problem.

DW dataset. Digital Wardrobe [7] includes registered clothed body meshes
with real texture under more general posture. We use 94 meshes to compare
with non-parametric methods PIFu [43] and DeepHuman [57]3. Table 2 shows
the results. For PIFu with single image input, our method can get similar recon-
struction accuracy. However, the reconstructed results by PIFu combine both
shapes in one mesh without semantic information, while our method can fully
control the predicted separate body and cloth meshes. The results of DeepHu-
man tend to bend the leg, which introduces large errors for this dataset. The
right part of Fig. 6 shows an example of the results.

5.3 Qualitative Results.

In this following, we show some visual results of our method and the comparison
with MGN. As our method can reconstruct the body and garments separately,
garment transfer between two input images can be achieved. Some garment
transfer results are given in the supplementary.

Reconstruction Quality. In the left part of Fig. 7, we present our recon-
structed body and garments shapes on several test images. Our method can
recover accurate body posture and capture the garment geometry to some ex-
tent from a single input image. Thanks to our separated garment representation
with adaptive skinning weights, we can reconstruct plausible shape for loose
garments with large edges.

Comparison with MGN. As a template-based method, MGN [7] is the
most relevant prior method with ours. MGN represents garment by binding the

3 We did not test [38, 7] on this dataset as most of the samples are not A-pose.
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Fig. 7. The left part: reconstructed body and garment shapes by our method on four
images of our test set. The right part: qualitative comparison between the results of
MGN [7] without post-optimization and ours. In each group, the input image, result
of MGN, and ours are displayed respectively.

garment to SMPL vertices and uses a mask to select valid vertices for a specific
garment type. MGN needs multi semantic segmentation images as input and
constrains the posture to rough A-pose. Besides, MGN needs a time-consuming
post-optimization step to refine the predicted result. Differently, Our method
only requires one frontal view image with arbitrary posture and directly produces
the final results from the network. In the right part of Fig. 7, we show two qual-
itative comparisons with MGN. Our method can generate more accurate body
shape and size of garments, while the results of MGN without post-optimization
have similar shapes for different inputs and lack garment details.

6 Conclusion

We introduced BCNet, a novel method to automatically reconstruct both body
and garment shapes from a single RGB image. Rather than binding garment
with SMPL like prior SMPL+D based representation, our proposed model can
produce layered garments with different topology and skinning weights, which
makes BCNet a model capable of jointly reconstructing body and loose gar-
ment, like skirts. To train BCNet, we designed a complete algorithm pipeline
to generate clothed body data. Experiments demonstrated that our method can
generate comparable or better reconstruction results compared with state-of-
the-art methods, while allowing more flexible controls such as garment transfer.
Our constructed dataset and our proposed BCNet would push a step for the
research on digitizing human.



BCNet 15

References

1. Alldieck, T., Magnor, M., Bhatnagar, B.L., Theobalt, C., Pons-Moll, G.: Learning
to reconstruct people in clothing from a single rgb camera. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 1175–1186 (2019)

2. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Detailed human
avatars from monocular video. In: International Conference on 3D Vision (3DV).
pp. 98–109. IEEE (2018)

3. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Video based re-
construction of 3d people models. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 8387–8397 (2018)

4. Alldieck, T., Pons-Moll, G., Theobalt, C., Magnor, M.: Tex2shape: Detailed full
human body geometry from a single image. In: IEEE International Conference on
Computer Vision (ICCV) (2019)

5. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape:
shape completion and animation of people. In: ACM Transactions on Graphics
(TOG). vol. 24, pp. 408–416. ACM (2005)

6. axyz: 2019. https://secure.axyz-design.com/
7. Bhatnagar, B.L., Tiwari, G., Theobalt, C., Pons-Moll, G.: Multi-garment net:

Learning to dress 3d people from images. In: IEEE International Conference on
Computer Vision (ICCV) (2019)

8. Blender: 2019. https://www.blender.org/
9. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it

smpl: Automatic estimation of 3d human pose and shape from a single image. In:
European Conference on Computer Vision (ECCV). pp. 561–578. Springer (2016)

10. Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., Zafeiriou, S.: Neural
3d morphable models: Spiral convolutional networks for 3d shape representation
learning and generation. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 7213–7222 (2019)

11. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures
in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 3606–3613 (2014)
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