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Abstract. In this supplementary file, we mainly present quantitative
results on more test datasets. Note that the model is the same as the main
paper without any retraining. First, we show the quantitative results of
2D modulation and 3D modulation on CBSD68 and LIVE1 datasets.
Then we add some qualitative results of 2D and 3D modulation. Besides,
we compare with SD methods on more degradation types and levels. For
ablation studies, we provide more results about the effectiveness of global
connection and local connections. Moreover, the results under different
sampling strategies on CBSD68 dataset is provided.

1 More quantitative results of 2D and 3D modulation

In the main paper, we only present the results on the CBSD68 dataset due to
the space limitation. Here, we show more testing results on the LIVE1 dataset.
As shown in Table 1 and 2 the overall trend of PSNR distances on these two
datasets are similar. Specifically, the largest distances appear in blur r1, which
is the zero starting point and mild degradation. Results on two degradations are
generally below 0.2 dB, indicating a high modulation accuracy.

2 More qualitative results of 2D and 3D modulation

In this section, we show more qualitative results of our 2D (Figure 3(a)) and 3D
modulation (Figure 3(b)) in image restoration. Note that there are more degra-
dation combinations in 3D modulation, including (noise+blur), (noise+JPEG),
(blur+JPEG) and (noise+blur+JPEG). Here, we show some 2D modulation
achieved by model of 3D modulation.

? The first two authors are co-first authors. † Corresponding author
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Table 1. 2D experiments. The PSNR distances within 0.2 dB are shown in bold. Lower
is better.

one degradation two degradations

blur r 1 2 4 0 0 0 1 1 1 2 2 2 4 4 4

noise σ 0 0 0 15 30 50 15 30 50 15 30 50 15 30 50

upper bound 39.07 30.24 26.91 34.12 30.56 28.21 29.11 27.38 26.07 26.30 25.35 24.55 24.08 23.53 23.03

CBSD68 CResMD 38.38 30.09 26.53 33.97 30.43 28.06 29.00 27.27 25.96 26.24 25.29 24.48 24.03 23.46 22.95

PSNR distance 0.69 0.15 0.38 0.15 0.13 0.15 0.11 0.11 0.11 0.06 0.06 0.07 0.05 0.07 0.08

upper bound 39.76 30.27 26.74 34.29 30.83 28.46 29.26 27.44 26.06 26.05 25.07 24.26 23.70 23.16 22.68

LIVE1 CResMD 38.85 30.03 26.14 34.10 30.65 28.25 29.10 27.29 25.90 25.96 24.98 24.17 23.62 23.06 22.56

PSNR distance 0.91 0.24 0.60 0.19 0.18 0.21 0.16 0.15 0.16 0.09 0.09 0.09 0.08 0.10 0.12

Table 2. 3D experiments. The PSNR distances within 0.2 dB are shown in bold. Lower
is better.

one two three

blur r 1 4 0 0 0 0 1 4 1 4 0 0 1 4

noise σ 0 0 15 50 0 0 15 50 0 0 15 50 15 50

JPEG q ∞ ∞ ∞ ∞ 80 10 ∞ ∞ 80 10 80 10 80 10

upper bound 39.07 26.91 34.12 28.21 36.22 27.63 29.11 23.03 31.30 23.25 32.71 26.21 28.65 22.61

CBSD68 CResMD 38.20 26.43 33.92 28.01 35.93 27.37 28.97 22.93 30.96 22.99 32.58 26.00 28.55 22.49

PSNR distance 0.87 0.48 0.20 0.20 0.29 0.26 0.14 0.10 0.34 0.26 0.13 0.21 0.10 0.12

upper bound 39.76 26.74 34.29 28.46 36.19 27.64 29.26 22.68 31.48 22.80 32.90 26.29 28.75 22.25

LIVE1 CResMD 38.62 26.01 34.05 28.18 35.78 27.36 29.06 22.53 31.02 22.50 32.68 26.00 28.59 22.07

PSNR distance 1.14 0.73 0.24 0.28 0.41 0.28 0.20 0.15 0.46 0.30 0.22 0.29 0.16 0.18

3 Comparison with SD methods

In this section, we compare the proposed CResMD with state-of-the-art SD
methods. Specifically, we conduct testing on deblurring r1 → r4, r2 → r4 and
denoising σ5 → σ50, σ15 → σ50. Our model directly uses the results in the 2D
experiments for comparison. For deblurring, the SD methods performs poorly in
almost all intermediate points especially when the adaptation range is relatively
large. For instance, in deblurring r1 → r4, the PSNR distances achieved by
SD methods are close to 5 dB in r1.2 and r1.4. For denoising within a smaller
adaptation range (σ15 → σ50), all SD methods perform well in both two ends
and intermediate points (< 0.15 dB), even outperform our CResMD. However, in
denoising σ5 → σ50, the interpolation results obtained by AdaFM and CFSNet
have very large PSNR distances (1 dB), while DNI performs comparably with
CResMD. To conclude, the SD methods are generally sensitive to the adaptation
range, while our CResMD is more robust to degradation types and ranges.
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(b) deblurring r1→ r4.
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(c) denoising σ15→ σ50.
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(d) denoising σ5→ σ50.

Fig. 1. Comparison with SD methods on CBSD68 data set.

4 Ablation Study

4.1 Effectiveness of Global Connection.

To evaluate the effectiveness of global connection, we conduct a straightforward
comparison experiment by just removing the global connection. As shown in
Table 3, the model with global controllable global connection could not only
achieve better performance on all mild degradations but also in other degra-
dations. This indicates that global connection is effective to deal with a whole
restoration range with a zero starting point.

mild degradations other degradations

blur r 0 0 0 0.5 1 0.5 0.5 1 2 4 0 0 1 2 4

noise σ 0 5 15 0 0 5 15 5 0 0 30 50 15 30 50

CBSD68 w/o 71.39 40.21 33.85 52.70 38.04 37.80 32.31 31.48 29.91 26.33 30.31 27.93 28.90 25.23 22.86

w +∞ 40.33 33.97 53.17 38.38 37.92 32.44 31.63 30.09 26.53 30.43 28.06 29.00 25.29 22.95

gain +∞ 0.12 0.12 0.47 0.34 0.12 0.13 0.15 0.18 0.20 0.12 0.13 0.10 0.06 0.09

LIVE1 w/o 64.17 39.79 33.93 51.22 38.38 37.71 32.51 31.65 29.79 25.86 30.49 28.08 27.17 24.88 22.43

w +∞ 39.99 34.10 52.21 38.85 37.89 32.69 31.86 30.03 26.14 30.65 28.25 27.29 24.98 22.56

gain +∞ 0.20 0.17 0.99 0.47 0.18 0.18 0.21 0.24 0.28 0.16 0.17 0.12 0.10 0.13

Table 3. The effetiveness of global connection.
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4.2 Effectiveness of Local Connection.

In this part, we explore the effectiveness of local connection by dividing all the
building blocks into 1, 2, 4, 8, 16 and 32 groups, and then add one controllable
residual connection to each group.
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Fig. 2. Performance under different local connections.

As shown in Figure 2, the results evaluated on CBSD68 and LIVE1 datasets
share similar trend. In general, more local connections could lead to better per-
formance. In particular, we observe sharp leaps (0.22dB and 0.27dB) from 4 to
8 local connections in deblurring r = 1. For deblurring r = 4, the performance
starts to stop increasing when there is 16 local connections. On the other hand,
1 and 32 local connections make no big difference in the denoising tasks (< 0.1
dB on CBSD68 while < 0.15 on LIVE1).

4.3 Effectiveness of Data Sampling.

Here we investigate different data sampling strategies. Specifically, we set α, β
of the beta distribution to be (1.0, 1.0) (0.5, 1.0), (0.2, 1.0) and (1.0, 2.0) for
sampling degradations. In particular, we use uniform sampling (α = 0.5, β =
1.0) as our baseline and the PSNR distances calculated with other sampling
strategies are presented as shown in Table 4, 5. In general, the performance
on mild degradations improves significantly when more mild degradations are
sampled. On the other hand, the performance on severe degradations where less
data are provided decreases. It is obviously observed that the performance of task
deblurring r1 improves at the cost of severe degradation in task r4 on testing
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of both datasets. Besides, denoising is more robust to the distribution of the
degradation levels unless the sampling is extremely biased (e.g. α = 0.2, β = 1.0).

blur r 1 2 4 0 0 0 1 2 4

noise σ 0 0 0 5 30 50 5 30 50 total

α = 1.0, β = 1.0 38.26 30.07 26.58 40.25 30.41 28.06 31.58 25.3022.99

α = 0.5, β = 1.0 38.38 30.09 26.53 40.33 30.43 28.06 31.63 25.29 22.95

(CResMD) +0.12 +0.02 −0.05 +0.08 +0.02+0.00 +0.05 −0.01−0.04+0.19

α = 0.2, β = 1.0 38.43 30.05 26.45 40.32 33.35 27.94 31.50 25.21 22.83

+0.17 −0.02 −0.13 +0.07 −0.06 −0.12 −0.08 −0.09−0.16 −0.42

α = 1.0, β = 2.0 38.47 30.11 26.25 40.38 30.43 28.06 31.66 25.29 22.95

+0.21+0.04−0.33 +0.13 +0.02 +0.00 +0.08−0.01−0.04 +0.10

Table 4. Performance under different sampling curves evaluated on CBSD68.

blur r 1 2 4 0 0 0 1 2 4

noise σ 0 0 0 5 30 50 5 30 50 total

α = 1.0, β = 1.0 38.66 30.01 26.26 39.90 30.63 28.24 31.78 24.97 22.58

α = 0.5, β = 1.0 38.85 30.03 26.14 39.99 30.65 28.25 31.86 24.98 22.56

(CResMD) +0.19 +0.02 −0.12 +0.09 +0.02 +0.01 +0.08 +0.01 −0.02+0.28

α = 0.2, β = 1.0 38.94 29.98 26.07 39.97 30.55 28.10 31.68 24.85 22.39

+0.28 −0.03 −0.19 +0.07 −0.08 −0.14 −0.10 −0.12 −0.19 −0.50

α = 1.0, β = 2.0 38.93 30.08 25.80 40.00 30.66 28.24 31.90 24.99 22.50

+0.27 +0.07−0.46 +0.10+0.03 +0.00 +0.12+0.02−0.08 +0.07

Table 5. Performance under different sampling curves evaluated on LIVE1.
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Fig. 3. Qualitative results of MD modulation. In each row, we only change one factor
with other factors fixed. We arrive at the best choice in the yellow box. Better view
in zoom and color.


