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Abstract. Interactive image restoration aims to generate restored im-
ages by adjusting a controlling coefficient which determines the restora-
tion level. Previous works are restricted in modulating image with a
single coefficient. However, real images always contain multiple types
of degradation, which cannot be well determined by one coefficient. To
make a step forward, this paper presents a new problem setup, called
multi-dimension (MD) modulation, which aims at modulating output
effects across multiple degradation types and levels. Compared with the
previous single-dimension (SD) modulation, the MD is setup to handle
multiple degradations adaptively and relief unbalanced learning problem
in different degradations. We also propose a deep architecture - CRes-
MD with newly introduced controllable residual connections for multi-
dimension modulation. Specifically, we add a controlling variable on the
conventional residual connection to allow a weighted summation of input
and residual. The values of these weights are generated by another condi-
tion network. We further propose a new data sampling strategy based on
beta distribution to balance different degradation types and levels. With
corrupted image and degradation information as inputs, the network
can output the corresponding restored image. By tweaking the condition
vector, users can control the output effects in MD space at test time.
Extensive experiments demonstrate that the proposed CResMD achieve
excellent performance on both SD and MD modulation tasks. Code is
available at https://github.com/hejingwenhejingwen/CResMD.

1 Introduction

Conventional deep learning methods for image restoration (e.g., image denois-
ing, deblurring and super resolution) learn a deterministic mapping from the
degraded image space to the natural image space. For a given input, most of
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Fig. 1: Two-dimension (2D) modulation for a corrupted image with blur r2+noise
σ25. When the blur level is fixed to r0, we can only modulate the denoising
effect (σ10 → σ50), which is a typical single dimension (SD) modulation. In
multi-dimension (MD) modulation, the users are allowed to modulate both the
deblurring and denoising levels.

these methods can only generate a fixed output with a pre-determined restora-
tion level. In other words, they lack the flexibility to alter the output effects
according to different users’ flavors. This flexibility is essential in many image
processing applications, such as photo editing, where users desire to adjust the
restoration level/strength continuously by a sliding bar. To adapt convention-
al deep models to real scenarios, several recent works investigate the use of
additional branches to tune imagery effects, such as AdaFM [7], CFSNet [20],
Dynamic-Net [17], DNI [21], and Decouple-Learning [5]. The outputs of their
networks can be interactively controlled by a single variable at test-time, with-
out retraining on new datasets. They can generate continuous restoration results
between the pre-defined start level and end level (e.g., JPEG quality q40→ q10).

These pioneer modulation works assume that the input image has only a
single degradation type, such as noise or blur, thus the modulation lies in one
dimension. However, the real-world scenarios are more complicated than the
above assumptions. Specifically, real images usually contain multiple types of
degradations, e.g., noise, blur, compression, etc [18,22]. Then the users will need
separate buttons to control each of them. The solution is far beyond adding more
controllable parameters. As these degradations are coupled together, altering a
single degradation will introduce new artifacts that do not belong to the pre-
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defined degradation types. We denote this problem as multi-dimension (MD)
modulation for image restoration. Compared with single-dimension (SD) modu-
lation, MD modulation has the following three major differences/difficulties.

Joint Modulation. MD modulation aims to remove the effects of individual
degradations as well as their combinations. Different types of degradations are
coherently related. Removing one type of degradation could unavoidably affect
the other degradations. It is highly challenging to decouple different degradations
and modulate each of them separately. This can be illustrated in Figure 1. When
we only adjust the noise level, the outputs should contain less noise but with
fixed deblurring effects. All restored images should also be natural-looking and
artifacts-free.

Zero Starting Point. In image restoration, the degradation level for modu-
lation can be zero, indicating that the input does not contain the corresponding
type of degradation. We call these zero starting points (e,g, [0, a], [a, 0], [0, 0]).
When the input image has no degradation, restoration algorithm is expected
to perform identity mapping. However, this poses challenges for existing SD
restoration networks, which usually have information loss in forward processing.
Thus it is hard to directly extend current SD methods to the MD task. Please
refer to Related Work for details.

Unbalanced Learning. As there are different degradation types with a
large range of degradation levels, the pixel-wise loss (e.g., MSE) will be severely
unbalanced for different inputs. For instance, given an input image, the MSE
for its blurry version and noisy version could have different orders of magnitude.
Furthermore, as the degradation level starts from 0, the MSE can be pretty small
around zero points. When we collect these different kinds of data as a training
batch, the updating mechanism will favor the patches with large losses and ignore
those with small ones. This phenomenon will result in inferior performance on
mild degradations.

To address the aforementioned problems, we propose the first MD modula-
tion framework with dynamic Controllable Residual learning, called CResMD.
This is based on a novel use of residual connection. In conventional ResNet [8],
the original input and its residual are combined by direct addition. In our set-
tings, we reformulate it as a weighted sum – “output = input + residual × α”,
where α is the summation weight. If we add a global residual connection and set
α = 0, the output will be exactly the input. Then we can realize a special case
of “zero starting point” - identity mapping. In addition, we can also add more
local residual connections on building blocks. The underlying assumption is that
the building blocks have their unique functions. When we enable some blocks
and disable the others, the network can deal with different degradations. There-
fore, the “joint modulation” can also be achieved by dynamically altering the
weights α. We further propose a condition network that accepts the degradation
type/level as inputs and generates the weight α for each controllable residual
connection. During training, the base network and the condition network are
jointly optimized. To further alleviate “unbalanced learning”, we adopt a new
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data sampling strategy based on beta distribution. The key idea is to sample
more mild degradations than severe ones.

To verify the effectiveness of the proposed methods, we conduct extensive
experiments on 2D and 3D modulation for deblurring, denoising and JPEG de-
bloking. We have also made comparisons with SD methods (e.g., AdaFM [7],
CFSNet [20], DNI [21]) on SD tasks. Experimental results show that the pro-
posed CResMD could realize MD modulation with high accuracy, and achieve
superior performance to existing approaches on SD tasks with much less (0.16%)
additional parameters

2 Related Work

Image Restoration. Deep learning methods have been widely used in image
restoration problems, and most of them focus on a specific restoration task,
such as denoising, deblurring, super-resolution and compression artifacts reduc-
tion [2–4, 11–13, 24]. Here we review some recent works that are designed to
handle a wide range of degradation types or levels. Zhang et al. [24] propose
DnCNN to deal with different levels of Gaussian noise. Then, Guo et al. [6]
attempt to estimate a noise map to improve the denoising performance in real-
world applications. Different from these task-specific methods, Yu et al. [22] aim
to restore images corrupted with combined distortions with unknown degrada-
tion levels by exploiting the effectiveness of reinforcement learning. Later on,
they propose a multi-path CNN [23] that can dynamically determine the ap-
propriate route for different image regions. In addition, the work in [18] utilizes
the attention mechanism to select the proper operations in different layers based
on the input itself. However, these fixed networks cannot be modulated to meet
various application requirements.

Modulation. we briefly review four representative SD methods AdaFM [7],
CFSNet [20], Dynamic-Net [17] and DNI [21]. As a common property, all these
methods train a couple of networks on two related objectives, and achieve the in-
termediate results at test time. The main differences lie on the network structure
and the modulation strategy. In the first three works, they decompose the model
into a main branch and a tuning branch. AdaFM adopts feature modulation fil-
ters after each convolution layer. CFSNet uses a side-by-side network upon the
main branch and couples their results after each residual block. Dynamic-Net
adds modulation blocks directly after some convolution layers. During training,
only the tuning branch is optimized to another objective. Due to this finetuning
strategy, the modulation could only happen between two objectives. DNI inter-
polates all network parameters, thus has the flexibility to do MD modulation.
However, the linear interpolation strategy of DNI cannot achieve high accura-
cy (PSNR/SSIM) for image restoration tasks. In contrast, CResMD adopts the
joint training strategy with much fewer additional parameters. It could achieve
MD as well as SD modulation.
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Fig. 2: Framework of CResMD, consisting of two branches: base network and
condition network. The base network deals with image restoration, while the
condition network generates the weights α for the cotrollable residual connec-
tions. The condition network contains several fully-connected layers and accepts
the normalized restoration information as input. The building block (green) can
be replaced by any existing block like residual attention block [19] or dense
block [10].
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Fig. 3: Different levels of restoration effects by setting different weights α on
global residual. When α = 1, the network outputs the restored image. To achieve
identity mapping, we set α = 0 to disable the residual branch.

3 Method

Problem Formulation. We first give the formulation of multi-dimension (MD)
modulation. Suppose there are N degradation types {Dj}Nj=1. For each degrada-
tion Dj , there is a degradation range [0, Rj ]. Our goal is to build a restoration
model that accepts the degraded image together with desired restoration infor-
mation as inputs and generates the restored image. The restoration information
(corresponding to the degradation type/level) will act like tool bars, which can
be interactively modulated during testing. We use a two-dimension (2D) exam-
ple to illustrate the modulation process. As shown in Figure 1, there are two
separate bars to control the blur level D1 and noise level D2. The modulation
space is a square 2D space, spreading from [0, 0] to [R1, R2]. We can fix D1

and change D2, then the modulation trajectory is a horizontal line. We can also
modulate D1 and D2 simultaneously, then the trajectory will become a diagonal
line. If D1 or D2 is fixed on level 0 (zero starting point), then 2D degenerates to
1D. On the contrary, if the starting point is non-zero, such as [0.2, 0.1], then the
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model cannot deal with [0, 0], [0, R2], [R1, 0]. That is why “zero starting point”
is essential in MD modulation.

Framework. To achieve MD modulation, we propose a general and effective
strategy based on controllable residual connections. The framework is depicted
in Figure 2. The framework comprises two branches - a base network and a con-
dition network. The base network is responsible for image restoration, while the
condition network controls the restoration type and level. The base network has
a general form with downsampling/upsampling layers at two ends and several
building blocks in the middle. The building block can be residual block [8], re-
current block [9], dense block [10], and etc. This structure is widely adopted in
advanced image restoration models [6, 11, 12, 24, 25]. The only difference comes
from the additional “controllable residual connections”, shown as blue and green
dash lines in Figure 2. These residual connections are controlled by the condi-
tion network. Take any degradation type/level as input, the condition network
will first convert them into a condition vector, then generate the weights α for
controllable residual connections. At inference time, we can modulate the degra-
dation level/type – {Di}Ni=1, then the model can generate continuous restoration
results.

Controllable Residual Connection. The proposed controllable residual
connection comes from the standard residual connection, thus it is essential to
review the general form of residual connection. Denote X and Y as the input
and output feature maps. Then the residual connection can be represented as

Y = f(X,Wi) + X, (1)

where f(X,Wi) refers to the residual feature maps and f(·) is the mapping
function. While in our controllable residual connection, we add a tunable variable
α to control the summation weight. The formulation becomes

Y = f(X,Wi)× α+ X, (2)

where α has the same dimension as the number of feature maps. This simple
change gives residual connection two different properties. First, through tuning
the variable α from 0 to 1, the output Y will change continuously from X to
f(X,Wi) +X. Second, the residual part can be fairly skipped by setting α = 0.
We can add the following two types of controllable residual connections.

(1) Global connection – X,Y are input/output images. The initial motivation
of adding global connection is to handle the extreme case of zero starting point,
where all degradation levels are zero. Generally, it is hard for a conventional
neural network to perform identity mapping and image restoration simultane-
ously. However, with the help of global connection, the identity mapping can be
easily realized by setting α = 0. Furthermore, when we change the values of α,
the output will exhibit different levels of restoration effects. This phenomenon
is illustrated in Figure 3, where the input image is degraded by noise+blur and
the intermediate results are obtained by using different α.

(2) Local connection – X,Y are input/output feature maps. If the imagery
effects can be affected by a simple variable, we can also control the feature maps
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to achieve more complicated transformation. A reasonable idea is to add local
residual connection on each function unit, which is responsible for specific degra-
dation. By disabling/suppressing some function units, we can deal with different
degradations. However, it is almost impossible to decouple these degradations
and define a clear function for each block. Thus we roughly group some basic
building blocks and add controllable residual connections. The minimum func-
tion unit consists of a single building block. Experiments in Figure 7 show that
more local residual connections achieve better performance at the cost of more
controlling variables. More analyses can be found in Section 4.4.

Condition Network. We further propose a condition network that accepts
the degradation type/level as input and generates the weight α for each con-
trollable residual connection. As each degradation has its own range, we should
first encode the degradation information into a condition vector. Specifically, we
linearly map each degradation level to a value within the range [0, 1], and con-
catenate those values to a vector z. Then the condition vector is passed through
the condition network, which can be a stack of fully-connected layers (see Fig-
ure 2).

Data Sampling Strategy. Data sampling is an important issue for MD
modulation. As the training images contain various degradation types/levels,
the training loss will be severely biased. If we uniformly sample these data,
then the optimization will easily ignore the patches with small MSE values,
and the performance of mild degradations cannot be guaranteed. To alleviate
the unbalanced learning problem, we sample the degradation levels for each
degradation type based on the beta distribution:

g(z, α, β) =
1

B(α, β)
zα−1(1− z)β−1. (3)

As shown in Figure 4, a larger value of α is associated with a steeper curve,
indicating that the sampled degradation levels are inclined to the mild degra-
dations. In our experiments, α and β are set to 0.5 and 1, respectively. We also
compare the results of different sampling curves in Section 4.4.
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Fig. 4: Beta distribution.
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Training and Testing. The training strategy is straightforward. We gen-
erate the training data with different degradations and their combinations by
random sampling, and encode the degradation information into the condition
vector (range [0, 1]). Note that the training data is artificially generated, thus
the degradation information is known during training. The model takes both the
corrupted image and the condition vector as inputs. The original clean image is
used as ground truth. The joint training based on L1 loss will enable different
restoration effects under different condition vectors.

In the testing stage, the degradation information is unknown, thus the users
can modify the elements of the condition vector to obtain various restoration
results. In other words, the condition vector refers to the restoration strength
and performs like sliding bars. For example, given a corrupted image with blur
level r = 2 (range [0, 4]) and noise level σ = 30 (range [0, 50]), the users are free
to modulate the denoising/debluring bars (condition vector) with any sequence
or simultaneously, and finally find the best choice at around [2/4, 30/50].

Discussion. The proposed CResMD is a simple yet effective method that
is specially designed for MD modulation. In comparison, existing SD methods
cannot be directly extended to the MD task, mainly for two reasons. (1) The
training strategy determines that their modulation trajectory cannot span across
the 2D space. Specifically, their models generally have a main branch and a
tuning branch. The main brunch is trained for the first objective, and the tuning
brunch is fine-tuned on another objective. Thus the modulation trajectory is a
line connecting two objectives. Even we use multiple parameters, the modulation
trajectory will become a diagonal line instead of a 2D space. For example, if
the start level is [0.1, 0.1] and the end level is [1, 1], the model can deal with
[0.5, 0.5] but not [0.4, 0.6]. In order to achieve joint modulation, we cannot just
use degradations on the start and end levels, but should consider all combinations
of degradations between two ends. (2) The network structure prevents them from
realizing zero starting point. For example, if the start level is [0, 0], the main
branch will perform identity mapping (output=input). Then it is hard to adapt
this network to another objective only by modulating intermediate features. That
is why we propose to use skip/residual connection with controllable parameters.

4 Experiments

4.1 Implementation Details

We first describe the network architectures. For the base network, we adopt the
standard residual block as the building block, which consists of two convolution
layers and a ReLU activation layer. There are 32 building blocks, of which each
convolution layers have 64 filters with kernel size 3× 3. In order to save compu-
tation, we use strided convolution to downsample the features to half size. The
last upsampling module uses a pixel-shuffle [16] layer followed by two convolu-
tion layers. Note that the first and last convolution layers are not followed by
ReLU activation. We add a local controllable residual connection on each build-
ing block. For the condition network, we use a single fully-connected layer to
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output a 64-dimension vector α for each local controllable residual connection.
In total, there are 32 layers for 32 local connections and 1 layer for the global
connection.

To ease the burden of evaluation, we conduct most experiments and ablation
studies on 2D modulation. To demonstrate the generalization ability, we conduct
an additional experiment on 3D modulation at last. In 2D experiments, we adopt
two widely-used degradation types Gaussian blur and Gaussian noise. JPEG
compression is further added in the 3D experiment.

The training dataset is DIV2K [1], and the test datasets are CBSD68 [14]
and LIVE1 [15]. The training images are cropped into 64 × 64 sub-images. To
generate corrupted input images, we employ mixed distortions on the training
data. In particular, blur, noise and JPEG are sequentially added to the training
images with random levels. For Gaussian blur, the range of kernel width is set
to r ∈ [0, 4], and the kernel size is fixed to 21 × 21. The covariance range of
Gaussian noise is σ ∈ [0, 50], and the quality range of JPEG compression is
q ∈ [100, 10]. We sample the degradations with stride of 0.1, 1, and 2 for blur,
noise, and JPEG compression, respectively.

These training images are further divided into two groups, one with individ-
ual degradations and the other with degradation combinations. To augment the
training data, we perform horizontal flipping and 90-degree rotation. To obtain
more images with mild degradations, we force the sampling to obey beta distri-
bution, where α and β are set to 0.5 and 1, respectively. The mini-batch size
is set to 16. The L1 loss is adopted as the loss function. During the training
process, the learning rate is initialized as 5× 10−4, and is decayed by a factor of
2 after 2×105 iterations. All experiments run 1×106 iterations. We use PyTorch
framework and train all models on NVIDIA 1080Ti GPUs.

4.2 Complexity Analysis

The proposed CResMD is extremely light-weight, contributing to less than 4.2k
parameters. As the additional parameters come from the condition network, the
number of introduced parameters in 2D modulation is calculated as 32 × 2 ×
64 + 2× 3 = 4102. Note that the base network contains 32 building blocks with
parameters around 2.5M, CResMD only comprises 0.16% of entire model. In
contrast, the tuning blocks in AdaFM and CFSNet account for 4% and 110%
of the total parameters of the base network, respectively. Another appealing
property is that the computation cost of condition network is a constant, as
there are no spatial or convolution operations. In other words, the computation
burden is nearly negligible for a large input image.

4.3 Performance Evaluation

To evaluate the modulation performance, we follow AdaFM [7] and use PSNR
distance. Specifically, if we want to evaluate the performance on D1, D2, then
we train a baseline model using the architecture of the base network on D1, D2.
This baseline model can be regarded as an upper bound. With the ground truth
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Table 1: 2D experiments evaluated on CBSD68 [14]. The PSNR distances within
0.2 dB are shown in bold. Lower is better.

one degradation two degradations

blur r 1 2 4 0 0 0 1 1 2 2 4 4
noise σ 0 0 0 15 30 50 15 50 15 50 15 50

upper bound 39.07 30.24 26.91 34.12 30.56 28.21 29.11 26.07 26.30 24.55 24.08 23.03
CResMD 38.38 30.09 26.53 33.97 30.43 28.06 29.00 25.96 26.24 24.48 24.03 22.95

PSNR distance 0.69 0.15 0.38 0.15 0.13 0.15 0.11 0.11 0.06 0.07 0.05 0.08

images, we can calculate PSNR of CResMD and the baseline model respectively.
Their PSNR distance is used as the evaluation metric (lower is better).

2D modulation. First, we evaluate the 2D modulation performance of the
proposed method. The quantitative results3 of different degradations on CBSD68
dataset are provided in Table 1. We can observe different trends for different
degradation types. For two degradations, the PSNR distances are all below 0.2
dB, indicating a high modulation accuracy. For one degradation, where there
are zero starting points, the performance will slightly decrease. Furthermore,
blur generally leads to higher PSNR distances than noise. The largest PSNR
distance appears in r1, which is a starting point as well as a mild degradation.
Nevertheless, its absolute PSNR value is more than 38 dB, thus the restoration
quality is still acceptable. We further show qualitative results in Figure 8, where
all images exhibit smooth transition effects.

Comparison with SD methods. As the state-of-the-art methods are all
proposed for SD modulation, we can only compare with them on single degra-
dation types. We want to show that even trained for MD modulation, CResMD
can still achieve excellent performance on all SD tasks. Specifically, we compare
with DNI, AdaFM, and CFSNet on deblurring, starting from r2 to r4. Deblur-
ring is harder than denoising, thus could show more apparent differences. To
re-implement their models, we first train a base network on the start level r2.
Then we finetune (1) the whole network in DNI, (2) the AdaFM layers with k-
ernel size 5× 5 in AdaFM, (3) the parallel tuning blocks and coefficient network
in CFSNet, to the end level r4. To obtain the deblurring results between r2 and
r4, we interpolate the networks of two ends with stride 0.01. For CResMD, we
directly use the deblurring results in the 2D experiments (Table 1).

From Figure 5, we observe that our method significantly outperforms the
others in almost all intermediate points. In particular, the SD methods tend to
yield high PSNR distances (> 1.0 dB) on tasks r2.2 ∼ r3.0. It is not surprising
that they perform perfect at two ends as they are trained and finetuned on these
points. This trend also holds for denoising, but with much smaller distances.
All these results demonstrate the effectiveness of our proposed method in SD

3 Results on more datasets can be found in supplementary file.
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Fig. 5: Quantitative comparison with SD methods on CBSD68 data set in PSNR.

modulation. Results of deblurring r1→ r4, denoising σ5→ σ50 and σ15→ σ50
can be found in the supplementary file.

4.4 Ablation Study

Effectiveness of Global Connection. The global connection is initially de-
signed to handle the problem of zero starting point. In general, it is hard for a
conventional network to deal with both identity mapping and image restoration
at the same time. With the proposed controllable global connection, we can ide-
ally turn off the residual branch by setting α = 0. To evaluate its effectiveness,
we conduct a straightforward comparison experiment by just removing the glob-
al connection. This new model is trained under the same setting as CResMD.
As for testing, we only select those mild degradations, such as blur r < 1 and
noise σ < 15. It is clear that the model with controllable global connection could
achieve better performance on all mild degradations as we can see from Table 2.

Table 2: The effectiveness of global connection. Results are evaluated by PSNR.

blur r 0 0 0.5 1 0.5 0.5 1
noise σ 0 5 0 0 5 15 5

CBSD68 w/o 71.39 40.21 52.70 38.04 37.80 32.31 31.48
w +∞ 40.33 53.17 38.38 37.92 32.44 31.63

gain +∞ 0.12 0.47 0.34 0.12 0.13 0.15

LIVE1 w/o 64.17 39.79 51.22 38.38 37.71 32.51 31.65
w +∞ 39.99 52.21 38.85 37.89 32.69 31.86

gain +∞ 0.20 0.99 0.47 0.18 0.18 0.21

Effectiveness of Local Connection. Here we test the influence of the
number of local connections. In particular, we group some basic building blocks
as a function unit and add controllable residual connection. All the building
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blocks are divided into 1, 2, 4, 8, 16 and 32 groups (the details are illustrated
in Figure 6). They are evaluated in 2D modulation on CBSD68 dataset. The
results are depicted in Figure 7. Obviously, more groups or local connections
could lead to better performance. Particularly, we also observe a sharp leap
(0.22dB) in deblurring r1 (from 4 to 8 local connections), indicating that at
least 8 local connections are required. In contrast, results on denoising tasks are
less significant, where the PSNR distance between 1 and 32 local connections is
less than 0.1dB in denoising σ15 and σ50.

Effectiveness of Data Sampling. After analysis of the proposed network
structures, we then investigate different data sampling strategies. As mentioned
in Section 3.4, appropriate data sampling strategies could help alleviate the
unbalanced learning problem. To validate this comment, we conduct a set of
controlled experiments with different sampling curves, which can be generated
using different parameters of beta distribution in Function 3. To be specific,
the most commonly used strategy is uniform sampling, corresponding to the
green horizontal line in Figure 4. We can generate this curve by setting β and
α to 1. Similarly, we can further set α, β to be (0.5, 1.0), (0.2, 1.0) and (1.0,
2.0) to generate linear and non-linear curves, shown in Figure 4. Then we train
four CResMDs on different training datasets with the above sampling strategies.
Results are shown in Table 3, where we use uniform sampling (α = 1, β =
1 ) as our baseline and calculate the PSNR distances with other strategies.
Obviously, when we sample more data on mild degradations, the performance
will significantly improve. Furthermore, the PSNR increases on some degradation
levels generally comes at the cost of the decrease on the others. For instance,
in deblurring r = 1, α = 1.0, β = 2.0 and α = 0.2, β = 1.0 reach the highest
performance, but also get severe degradation in r4. As a better trade-off, we
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Table 3: Performance under different sampling curves evaluated on LIVE1 [15].
results are given in PSNR.

blur r 1 2 4 0 0 0 1 2 4
noise σ 0 0 0 5 30 50 5 30 50 total

α = 1.0, β = 1.0 38.66 30.01 26.26 39.90 30.63 28.24 31.78 24.97 22.58

α = 0.5, β = 1.0 38.85 30.03 26.14 39.99 30.65 28.25 31.86 24.98 22.56
(CResMD) +0.19 +0.02 −0.12 +0.09 +0.02 +0.01 +0.08 +0.01 −0.02+0.28

α = 0.2, β = 1.0 38.94 29.98 26.07 39.97 30.55 28.10 31.68 24.85 22.39
+0.28 −0.03 −0.19 +0.07 −0.08 −0.14 −0.10 −0.12 −0.19 −0.50

α = 1.0, β = 2.0 38.93 30.08 25.80 40.00 30.66 28.24 31.90 24.99 22.50
+0.27 +0.07−0.46 +0.10+0.03 +0.00 +0.12+0.02−0.08 +0.07

select the setting α = 0.5, β = 1.0 for our CResMD, which stably improves most
degradation levels.

Generalization to 3D modulation. In the above experiments, we mainly
use 2D modulation for illustration. Our method can be easily extended to higher
dimension cases. Here we show a 3D modulation example with three degrada-
tion types: blur, noise and JPEG compression. Note that in JPEG compression,
the zero starting point is not quality 100 but quality ∞, thus we extend the
JPEG range as {∞, [100, 10]}. In 2D modulation, there is only one degradation
combination noise+blur. However, in 3D, the number increases to 4, including
noise+blur, noise+JPEG, blur+JPEG and noise+blur+JPEG. Then the dif-
ficulty also improves dramatically. Nevertheless, our method can handle this
situation by simply setting the dimension of the condition vector to 3. All the
other network structures and training strategy remain the same. The results can
be found in the supplementary file. We can observe that most PSNR distances
are below 0.3 dB, indicating a good modulation accuracy. Compared with 2D
modulation, the performance on single degradations decreases a little bit, which
is mainly due to the insufficient training data. We also show some qualitative
results in Figure 8, where we modulate one factor and fix the others.

Experimentally, more degradation types (>3) require larger datasets/networks,
and the performance on individual tasks will also degrade. Considering that there
are not so many degradation types in real-world scenarios, our method can deal
with most cases of image restoration tasks. We leave the higher dimension prob-
lem to future research.

5 Conclusion

In this work, we first present the multi-dimension modulation problem for image
restoration, and propose an efficient framework based on dynamic controllable
residual learning. With a light-weight structure, the proposed CResMD partial-
ly addresses the three difficult problems in MD modulation. Although CResMD
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blur: r2;

noise: σ30

[ 0, 0. ] [ 0, 0.2 ] [ 0, 0.4 ] [ 0, 0.6 ] [ 0, 1.0 ]

[ 0, 0.6 ] [ 0.3, 0.6 ] [ 0.5, 0.6 ] [ 0.7, 0.6 ] [ 1.0, 0.6 ]

denoising

deblurring

(a) 2D modulation.

blur: r1.2;

noise: σ20

JPEG: q10

[ 0, 0, 0. ] [ 0, 0, 0.2 ] [ 0, 0, 0.5 ] [ 0, 0, 0.8 ] [ 0, 0, 1.0 ]

[ 0, 0, 1.0 ] [ 0, 0.2,1.0 ] [ 0, 0.4,1.0 ] [ 0, 0.6,1.0 ] [ 0, 0.8,1.0 ] [ 0, 1.0,1.0 ]

[ 0, 0.4,1.0 ] [ 0.3,0.4,1.0 ] [ 0.5, 0.4,1.0 ] [ 0.6, 0.4,1.0 ] [ 0.8, 0.4,1.0 ] [ 1.0, 0.4,1.0 ]

[ 0, 0, 0.9 ]

JPEG debloking

denoising

deblurring

(b) 3D modulation.

Fig. 8: Qualitative results of MD modulation. In each row, we only change one
factor with other factors fixed. We arrive at the best choice in the yellow box.
Better view in zoom and color.

could realize modulation across multiple domains, the performance can be fur-
ther improved. The controlling method can be more accurate and diverse. We
encourage future research on better solutions.
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