
18 I. Shanu, S. Bharti, C. Arora, and S. N. Maheshwari

Supplementary Material

A Proofs of Lemmas and Theorems

A.1 Proof of Theorem 1

Theorem. The extended binary set function f as given by Definition 5 is submodular.

Recall that we define the extended binary submodular function for the valid states as

equal to the original multi-label function and for the invalid states as the following:

f(S) = f(S) + (|S| − |S|)L.

Here S is the minimum covering state for an invalid state, S, which is defined as the

smallest cardinality valid state, S ∈ Z, such that S ⊂ S. For a valid state S = S.

Let us factorize f(S) = g(S) + h(S), where h(S) = f(S) + |S|L, and g(S) =

−|S|L. Since, g is modular, it is sufficient to show that h is submodular. We will need

the following result to prove the Theorem.

Lemma 10. For sets X,Y , and (X ∩ Y) ⊆ V and their minimum covering states X,Y ,

and X ∩ Y respectively:

f(X ∩ Y) ≤ f(X ∩ Y))

Proof. Recall that for any valid state S, S = S. Consider, two valid states A,B ⊆ V

with A ⊆ B. It is easy to see that:

h(B)− h(A) = L(|B| − |A|) + f(B)− f(A) ≥ 0. (7)

Since, A ⊆ B, therefore, |B| − |A| ≥ 0. Also L � f(B) − f(A) by definition.

Therefore, h(A) ≤ h(B). Further, it has been shown in section 6 of [43] that for two

X,Y ∈ V , X ∪ Y = (X ∪ Y) and X ∩ Y ⊆ (X ∩ Y) holds. Therefore, using Eq. (7),

f(X ∩ Y) ≤ f(X ∩ Y)).

We can now give the proof of the theorem as follows. For the valid states, the

extended function f , has been shown to be submodular in [2]. Therefore, here, we show

Inference Algo for Multi-Label MRF-MAP Problems with Clique Size 100 19

only for the cases when S is an invalid state. Now, for two arbitrary (valid or invalid)

sets, X,Y ⊆ V

h(X) + h(Y) = f(X) + f(Y) + |X|L+ |Y |L

≥ f(X ∪ Y) + f(X ∩ Y) + |X|L+ |Y |L

(Using submodularity over X , and Y)

= f(X ∪ Y) + f(X ∩ Y) + |X ∪ Y |L+ |X ∩ Y |L

(Since |X|+ |Y | = |X ∪ Y |+ |X ∩ Y |)

= f(X ∪ Y) + |X ∪ Y |L+ f(X ∩ Y) + |X ∩ Y |L

(Since X ∪ Y = (X ∪ Y))

≥ f(X ∪ Y) + |X ∪ Y |L+ f(X ∩ Y) + |X ∩ Y |L

(Using Lemma 10)

= h(X ∪ Y) + h(X ∩ Y).

The above shows that h is submodular. It is easy to see that, g, as defined above is

modular. Since addition of a modular function and a submodular function is submodular,

therefore, f = g + h is submodular.

A.2 Proof of Lemma 3

Lemma. For any element, e, of an invalid extreme base, b≺ : b≺(e) = aeL+ be, where

|ae|, |be| � L and ae ∈ I .

Proof. Let S2 be the set of all elements smaller than e as per ≺. Let S1 = S2 ∪ {e}.

b≺(e) = f(S1)− f(S2) (Definition of extreme base)

=
(
f(S1) + (|S1| − |S1|)L

)
−
(
f(S2) + (|S2| − |S2|)L

)
(Definition 5)

=
(
f(S1)− f(S2)

)
+
(
|S1| − |S1| − |S2|+ |S2|

)
L

= aeL+ b (where |ae|, |be| � L)

20 I. Shanu, S. Bharti, C. Arora, and S. N. Maheshwari

A.3 Proof of Lemma 4

Lemma. Consider two base vectors x1 and x2 such that ‖x1‖2, ‖x2‖2 < |V|M2. If

x2 = (1− λ)x1 + λb≺ and b≺ is an invalid extreme base, then λ ≤ |V|ML .

Proof. Recall that in our algorithm, base vector is represented as the sum of contributions

from valid and invalid extreme bases separately: x = xv + xi, where xv and xi are the

base vectors collecting contributions of valid and invalid extreme bases respectively.

Further, we start from a valid extreme and in each iteration of the algorithm, keep on

decreasing the norm of the overall base vector. Note that, all the elements of a valid

extreme base are smaller than M . Therefore the squared `2 norm of the overall base

vector is less than |V|M2 at any point in the algorithm.

We will prove the lemma by contradiction, and show that unless the λ for the invalid

extreme base is less than |V|M/L, the squared norm of the overall base vector is more

than |V|M2, which is a contradiction.

We will first need to prove the following result:

Lemma 11. Consider an invalid ordering ≺, and its corresponding invalid extreme

base b≺. Let e be the smallest element (as per≺), for which validity condition is violated.

Then, ∃ ae ∈ R, and ae ≥ (1−M/L), s.t. b≺(e) = aeL.

Proof. Let S2 be the set of all elements smaller than e as per ≺. Let S1 = S2 ∪ {e}.

Notice that S2 is a valid and S1 is an invalid state.

b≺(e) = f(S1)− f(S2) (Definition of extreme base)

=
(
f(S1) + (|S1| − |S1|)L

)
− f(S2) (Definition 5)

≥ min
S∈Z

f(S)− f(S2) + (|S1| − |S1|)L

(S1 is a valid state, therefore f(S1) ≥ minS∈Z f(S))

≥ min
S∈Z

f(S)−max
S∈Z

f(S) + (|S1| − |S1|)L

(S2 is a valid state, therefore f(S2) ≤ maxS∈Z f(S))

= (|S1| − |S1| −M/L)L (Defintion of M)

Inference Algo for Multi-Label MRF-MAP Problems with Clique Size 100 21

Note that for any invalid state S1, (|S1| − |S1|) ≥ 1. Therefore there exists ae ≥

(1−M/L) such that b≺(e) = aeL.

To prove our main result by contradiction, assume λ > |V|M/L. Let e be the

smallest element (as per ≺ of invalid extreme base b≺), for which validity condition is

violated. Consider:

(x2(e))
2 = ((1− λ)x1(e) + λb≺(e))2

> ((1− λ)x1(e) + b≺(e)|V|M/L)2 (λ > |V|M/L)

= ((1− λ)x1(e) + ae|V|M))2. (Using lemma 11)

Two cases are possible:

1. x1(e) ≥ 0:

(x2(e))
2 ≥ ((1− λ)x1(e) + ae|V|M))2

≥ (ae|V|M)2 (Since (1− λ) ≥ 0)

= (ae|V|)(|V|M2)

Since M � L, and ae ≥ (1 −M/L), therefore ae ≈ 1. The smallest problem size

that we consider is of 3 pixels and 2 labels for which |V| = 6. Hence, for our case,

ae|V| > ae
√
|V| > 2. This implies:

(x2(e))
2 > |V|M2.

22 I. Shanu, S. Bharti, C. Arora, and S. N. Maheshwari

2. x1(e) < 0:

Note that for x1 and any element e ∈ V we have x1(e)2 ≤ ‖x1‖2 ≤ |V|M2. This

implies that x1(e) ≥ −
√
|V|M .

(x2(e))
2 ≥ ((1− λ)x1(e) + ae|V|M)2

≥ (−(1− λ)
√
|V|M + ae|V|M)2

≥ (−
√
|V|M + ae|V|M)2 (Since 1 ≥ (1− λ) ≥ 0)

=M2|V|(ae
√
|V| − 1) (As described in the first case ae

√
|V| > 2)

> |V|M2.

Both the cases imply that if λ > |V|M/L then norm ||x2||2 > |V|M2 which is a

contradiction. Hence for any invalid extreme base its contribution λ in the overall base

vector must be less than |V|M/L.

A.4 Proof of Lemma 5

Lemma. Let ≺ be an invalid ordering and ≺ be its canonical ordering. Then, b≺(e)−

b≺(e)� L,∀e ∈ V .

Proof. Let S and S′ be the set of elements preceding pi, p ∈ P, in ordering ≺ and ≺

respectively. Consider the term b≺(pi):

b≺(pi) = f(S ∪ {pi})− f(S)

= L
∑
q∈P

(
|(S ∪ {pi})q| − |(S ∪ {pi})q|

)
+ f

(
S ∪ {pi}

)
− L

∑
q∈P

(
|Sq| − |Sq|

)
− f

(
S
)

(Def. 6)

= L
(
|Sp ∪ {pi}| − |Sp ∪ {pi}|

)
− L

(
|Sp| − |Sp|

)
+ f(S ∪ {pi})− f(S)

Inference Algo for Multi-Label MRF-MAP Problems with Clique Size 100 23

Similarly we obtain:

b≺(pi) = L
(
|S′p ∪ {pi}| − |S′p ∪ {pi}|

)
− L

(
|S′p| − |S′p|

)
+ f

(
S′ ∪ {pi}

)
− f

(
S′
)

Note that a canonical ordering does not change intersay ordering between elements

corresponding to a particular pixel. Therefore, Sp = S′p, and:

b≺(pi)− b≺(pi) = (f(S ∪ {pi})− f(S)− f(S′ ∪ {pi}) + f(S′)

Since, all terms in the r.h.s. of the equation above, correspond to valid sets, therefore

b≺(pi)− b≺(pi)� L.

A.5 Proof of Lemma 6

Lemma. For a canonical invalid ordering ≺, let pi and pj be two adjacent elements

corresponding to a pixel p, s.t. pi ≺ pj . Let ≺i,jp be the ordering obtained by swapping

pi and pj . Then b≺
i,j
p − b≺ = (χjp − χip)(aL+ b), where χip is an indicator vector for

the element pi, and a, b� L.

Proof. Recall that for an extreme base b≺ : b≺(k) = f(k≺)−f((k−1)≺), where k≺ is

the first k elements in the ordered set {v1, . . . , vk, . . . , vn}. Since the swap between pi,

and pj leaves the set of preceding elements unchanged for all other elements, therefore,

b≺
i,j
p − b≺ is non-zero corresponding to only pi, and pj .

Let S be the set of elements preceding pi in ≺. Now:

b≺(pj) = f(S ∪ {pj} ∪ {pi})− f(S ∪ {pi})

= L(|S ∪ {pj} ∪ {pi}| − |S ∪ {pj} ∪ {pi}|) + f(S ∪ {pj} ∪ {pi})

− L(|S ∪ {pi}| − |S ∪ {pi}|)− f(S ∪ {pi}) (8a)

24 I. Shanu, S. Bharti, C. Arora, and S. N. Maheshwari

Similarly we have,

b≺
i,j
p (pj) = L(|S ∪ {pj}| − |S ∪ {pj}|)− L(|S| − |S|) + f(S ∪ {pj})− f(S),

(8b)

Subtracting Eq. (8a) from Eq. (8b) and using (|S ∪ {pi}|+ |S ∪ {pj}| − |S ∪ {pi} ∪

{pj}| − |S|) = 0 we have

b≺
i,j
p (pj)− b≺(pj) = L(|S ∪ {pi}|+ |S ∪ {pj}| − |S ∪ {pi} ∪ {pj}| − |S|)

+ (f(S ∪ {pj})− f(S)− f(S ∪ {pj} ∪ {pi}) + f(S ∪ {pi}),

= aL+ b,

where:

a = |S ∪ {pi}|+ |S ∪ {pj}| − |S ∪ {pi} ∪ {pj}| − |S|, and

b = (f(S ∪ {pj})− f(S)− f(S ∪ {pj} ∪ {pi}) + f(S ∪ {pi}).

Note that b is sum of function values at valid states and is� L. Two cases arise for the

value of a:

1. i < j:

In this case |Sp ∪ {pi} ∪ {pj}| = |Sp ∪ {pj}|, and a = |S ∪ {pi}|−|S|. Therefore,

a� L.

2. j < i:

In this case |Sp ∪ {pi} ∪ {pj}| = |Sp ∪ {pi}|, and a = |S ∪ {pj}|−|S|. Therefore,

a� L

Hence b≺
i,j
p (pj) − b≺(pj) = aL + b, such that a, b � L. Further, since b≺

i,j
p and b≺

are extreme bases, and the sum of all the elements in them is constant, therefore, the

reverse must hold for b≺
i,j
p (pi)− b≺(pi). Hence b≺

i,j
p − b≺ = (χjp − χip)(aL+ b)

Inference Algo for Multi-Label MRF-MAP Problems with Clique Size 100 25

A.6 Proof of Lemma 7

Lemma. Consider an elementary invalid extreme base b≺̃
i
p , obtained by swapping two

adjacent elements (pi+1, pi) in the universal ordering, ≺0 (Def. 2). Then:

b≺̃
i
p − b≺0 = (χip − χi+1

p)(L+ b),

where b≺0 is the valid extreme base corresponding to ≺0.

Proof. Recall:

– The universal ordered sequence, ≺0, which is a valid ordering, and also defines a

particular ordering among the pixels.

– The elementary invalid ordering, ≺̃, which is defined as the ordering obtained by

making one swap between adjacent elements of a valid ordering. The corresponding

extreme base is denoted as b≺̃.

Further, recall from Section A.5 where while proving Lemma 6, we showed that: b≺
i,j
p −

b≺ = (χjp−χip)(aL+b), such that a = |S ∪ {pi}|−|S| (if i < j), or a = |S ∪ {pj}|−

|S| (if j < i). Now consider an elementary invalid extreme base b≺̃
i
p , obtained by

swapping two adjacent elements (pi+1, pi) in the universal ordering. The term (χip −

χi+1
p) may be looked upon as corresponding to the creation of the elementary extreme

base b≺̃
i
p from b≺0 . It is easy to see that for such special elementary invalid extreme

bases created from universal ordering, a = 1, and we have:

b≺̃
i
p − b≺0 = (χip − χi+1

p)(L+ b) (9)

Hence, proved.

A.7 Proof of Lemma 8

Lemma. An invalid canonical extreme base, b≺, can be represented as a linear combi-

nation of elementary invalid extreme base vectors such that:

b≺ =
∑
p∈P

m−1∑
i=1

αipb
≺̃i

p + Λ,

26 I. Shanu, S. Bharti, C. Arora, and S. N. Maheshwari

where 0 < αip � L, and Λ is a vector with all its elements much smaller than L.

Proof. Consider the canonical invalid ordering ≺ and let ≺s be the starting canonical

valid ordering from which it can be obtained by a series of swaps between adjacent

elements. Note that since in the canonical ordering all the elements of a pixel are already

together, therefore all the swaps required are between elements corresponding to same

pixels. Let us assume that total number of such swaps required are T . Starting from ≺s,

let≺j represents the ordering obtained after j such swaps. Hence,≺T = ≺ by definition.

Let jth swap happens between elements pkj and plj , where p ∈ P .

b≺ − b≺s = b≺T − b≺s

=

T∑
j=1

(
b≺j − b≺j−1

)

=

T∑
j=1

(
χljp − χkjp

)
(ajL+ bj) (Using Lemma 6)

=

T∑
j=1

(χljp − χkjp)ajL+

T∑
j=1

(χljp − χkjp)bj .

Since (χ
lj
p − χkjp) =

∑kj
i=lj

(χip − χi+1
p) we can write:

b≺ − b≺s =

T∑
j=1

aj

kj∑
i=lj

(χip − χi+1
p)L+

T∑
j=1

bj

kj∑
i=lj

(χip − χi+1
p) (10)

Recall from Lemma 7:

b≺̃
i
p − b≺0 = (χjp − χi+1

p)(L+ b)

⇒ (χip − χi+1
p)L = b≺

i
p − b≺0 − (χip − χi+1

p)bip. (where bip � L)

Substituting the value of (χip − χi+1
p)L in Eq. (10), we get:

b≺ − b≺s =

T∑
j=1

aj

kj∑
i=lj

(b≺̃
i
p − b≺0 − (χip − χi+1

p)bip) +

T∑
j=1

bj

kj∑
i=lj

(χip − χi+1
p)

Inference Algo for Multi-Label MRF-MAP Problems with Clique Size 100 27

Since both ≺s, and ≺0 are valid orderings, we can write b≺s = b≺0 + ~d, where elements

of ~d are much smaller than L. Therefore we get

b≺ =

T∑
j=1

kj∑
i=lj

ajb
≺̃i

p +
(
1−

T∑
j=1

kj∑
i=lj

aj

)
b≺0 −

T∑
j=1

kj∑
i=lj

aj(χ
i
p − χi+1

p)bip

(11)

+

T∑
j=1

kj∑
i=lj

(χip − χi+1
p)bj + ~d

b≺ =

T∑
j=1

kj∑
i=lj

ajb
≺̃i

p + Λ, (12)

where Equation (12) has been derived summing the last 4 terms into a vector Λ. Note

that all the elements of Λ are� L. It is easy to see that the first term in the equation

essentially is a linear combination of some elementary invalid extreme bases, allowing

us to simplify:

b≺ =
∑
p∈P

m−1∑
i=1

αipb
≺̃i

p + Λ, (13)

where coefficients αip corresponding to elementary extreme bases not present in Equation

(12) can be simply set to zero.

A.8 Proof of Lemma 9

Theorem. An invalid extreme base can be represented as b≺ =
∑
p∈P

∑m−1
i=1 αipL(χ

i
p−

χi+1
p) + Λ, where χip is an indicator vector corresponding to element pi, 0 < αip � L,

and Λ is some vector whose all elements are� L.

Proof. Using Equation (13), we have:

b≺ =
∑
p∈P

m−1∑
i=1

αipb
≺̃i

p + Λ.

28 I. Shanu, S. Bharti, C. Arora, and S. N. Maheshwari

Substituting representation of elementary extreme base from Equation (where bip � L),

we have:

b≺ =
∑
p∈P

m−1∑
i=1

αip

(
b≺0 + (χip − χi+1

p)(L+ bip)
)
+ Λ.

=
∑
p∈P

m−1∑
i=1

αipb
≺0 +

∑
p∈P

m−1∑
i=1

αipL(χ
i
p − χi+1

p) +
∑
p∈P

m−1∑
i=1

(χip − χi+1
p)αipb

i
p + Λ.

=
∑
p∈P

m−1∑
i=1

αipL(χ
i
p − χi+1

p) + Λ.

Note that we have replacedΛwith
∑
p∈P

∑m−1
i=1 αipb

≺0+
∑
p∈P

∑m−1
i=1 (χip−χi+1

p)αipb
i
p+

Λ.

A.9 Proof of Theorem 2

Theorem (Main Result).

∑
∀b≺i∈Q

λib
≺i =

∑
p∈P

m−1∑
k=1

βkpL(χ
k
p − χk+1

p),

where λi ≥ 0, βkp =
∑
bi∈Q α

k
pλi.

Consider the expansion of the term xi =
∑
b≺i∈Q λib

≺i in Eq.(5). Using Theorem

(9) we get:

xi =
∑
b≺i∈Q

∑
p∈P

m−1∑
k=1

λiα
k
pL(χ

k
p − χk+1

p) +
∑
b≺i∈Q

λiΛi.

Recall from Lemma (4) that, for all b≺i ∈ Q, the coefficient λi can be made arbitrarily

small. Therefore, we can drop the term
∑
b≺i∈Q λiΛi and rewrite the above equation as:

xi =
∑
p∈P

m−1∑
k=1

∑
b≺i∈Q

λiα
k
pL(χ

k
p − χk+1

p).

Inference Algo for Multi-Label MRF-MAP Problems with Clique Size 100 29

Replacing by βkp =
∑
b≺i∈Q λiα

k
p , we get:

xi =
∑
p∈P

m−1∑
k=1

βkpL(χ
k
p − χk+1

p).

B Example for validating importance of invalid extreme bases

In this section we show that invalid extreme bases contribute to the representation of

optimal vector x∗. We consider here small problem with only 2 pixels (p and q) with

3 labels. We consider the unary cost for labeling pixel p as [0, 1, -100]. Similarly

assume unary cost for q as [0, -100, 200]. The clique potential is absolute difference

between labels and L = 1000. It may be noted that in the proposed encoding we showed

conceptually that label for a pixel could be encoded using m binary elements. However,

notice that the state of the last element corresponding to each encoding is always 1.

Therefore, implementation-wise, one can encode label at each pixel using m− 1 binary

elements only, with the assumption that elements pm,∀p ∈ P have their labeling set to

1 : pm = 1,∀p ∈ P . Hence, in this section we work with the extreme bases of dimension

4, which is corresponding to 2 pixels and 2 binary elements (p1, and p2, and no p3) per

pixel only. In the following subsection we first compute the optimal minimizer x∗ using

all valid and invalid extreme bases.

B.1 Using All Valid and Invalid Extreme Bases

There are 4! = 24, extreme bases for the example problem. We list below, all valid and

invalid extreme base vectors:

The values of corresponding lambda obtained for the optimal minimum norm point (x∗)

in the convex hull of all the extreme points are as given below:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0250, 0.0250, 0.949, 0, 0, 0).

Observe that, as described in the main paper, the contribution of invalid extreme bases in

the base vector is still finite and not dependent upon the L. Corresponding to the above

convex combination, we get the optimal base vector as x∗ = (−50,−50, 299,−99).

30 I. Shanu, S. Bharti, C. Arora, and S. N. Maheshwari

(902,−1000, 1198,−1000)(902,−1000, 299, −
101)

(902,−1000, 1198,−1000)

(902,−1000, 1198,−1000)(902,−1000, 299, −
101)

(902,−1000, 299, −
101)

(−100, 2, 1198,−1000) (−100, 2, 299, −
101)

(−102, 2, 1200,−1000)

(−102, 2, 1200,−1000) (−100, 2, 299, −
101)

(−102, 2, 301, −101)

(898, −
1000, 1202,−1000)

(898, −
1000, 1202,−1000)

(−102, 0, 1202, −
1000)

(−102, 0, 1202,−1000) (898, −
1000, 1202,−1000)

(−102, 0, 1202, −
1000)

(900, − 1000, 299, −
99)

(900, − 1000, 299, −
99)

(−100, 0, 299, −99)

(−102, 0, 301, −99) (898, − 1000, 301, −
99)

(−102, 0, 301, −99)

Below, we show that x∗ can not be represented as the convex combination of valid

extreme bases only.

B.2 Considering Only Valid Extreme Points

The 6 valid extreme base vectors corresponding to the example problem are given below:

(−100, 2, 299, − 101) (−100, 2, 299, − 101) (−102, 2, 301, − 101)

(−100, 0, 299, − 99) (−102, 0, 301, − 99) (−102, 0, 301, − 99)

Note that the first two elements of x∗ are -50 and -50 which can never be represented

as the convex combination of first two elements of only valid extreme points.

C Convergence of SoSMNP [46]

Our focus initially is to show the convergence to the optimal solution by the MNP

algorithm running in the block co-ordinate descent mode as in [46]. The problem formally

is to minimize the function f(S) =
∑

c∈C fc(S ∩ c) S ⊆ V , where fc : 2|c| → R is a

Inference Algo for Multi-Label MRF-MAP Problems with Clique Size 100 31

submodular function. It has been shown in [46] that f can be minimized by finding a

point x ∈ B(f) with the minimum `2-norm ‖x‖2. We write x as the sum x =
∑

c∈C yc

where yc ∈ B(fc).

We assume that a block corresponds to a clique in C. Let xc be the restriction of x to

the elements in c ∈ C, and let x 6c be the restriction of x on the remaining elements. We can

write ‖x‖2 = ‖xc‖2+‖x 6c‖2. The block co-ordinate descent algorithm in [46] minimizes

‖xc‖2 using MNP over all the cliques c ∈ C cyclically. This norm minimization step can

be viewed as MNP minimizing f ′c(S) = fc(S) + ac(S),∀S ⊆ c where ac = xc − yc,

is a denoting the contribution of the other cliques which remains constant while running

MNP over this clique/block. Note that ac(S) =
∑
e∈S ac(e), and we can equivalently

treat ac as a modular function as well. Let f ′c(S) = fc(S) + ac(S),∀S ⊆ c. Note

that the f ′ as shown above is a sum of submodular (f), and a modular function (ac).

Therefore, f ′ is submodular. It is easy to show the following result:

Lemma 12. Let qc be a extreme base vector in B(fc) corresponding to an ordering ≺c.

Then the vector qc + ac is an extreme base of B(f ′c) corresponding to the same ordering

≺c.

Proof. We can calculate the elements in extreme base vector (q′c ∈ B(f ′)) corresponding

to ordering ≺c by Edmond’s Greedy Algorithm,

q′(e) = f ′(Se ∪ e)− f ′(Se), (Se is the set of elements before e ∈ c in ≺c.)

= f(Se ∪ e) + ac(Se ∪ e)− (f(Se) + ac(Se)),

= f(Se ∪ e) + ac(Se) + ac(e)− (f(Se) + ac(Se)),

(ac can be seen as a modular function.)

= f(Se ∪ e)− f(Se) + ac(e),

= qc(e) + ac(e). (By Edmond’s Greedy Algorithm.)

Hence, q′c = qc + ac.

32 I. Shanu, S. Bharti, C. Arora, and S. N. Maheshwari

It is easy to see that:

xc = yc + ac =
∑
i

λiqc + ac (where
∑
i λi = 1, and λi ¿ 0)

=
∑
i

λiqc +
∑
i

λiac (Since
∑
i λi = 1)

=
∑
i

λi(qc + ac) =
∑
i

λiq
′
c

Hence, xc is a base vector of f ′. Therefore, minimizing the minimum norm over a block,

the way SoSMNP does it, can be seen as minimizing the norm of xc: the restriction of x

over the elements of clique c (and not yc). Let us suppose, we have reached a situation

where the SoSMNP performs minimization over all blocks (cliques), and no change was

observed in any of the blocks. The following lemma establishes the relationship between

the extreme base of fc, and the one corresponding to f .

Lemma 13. Let qc = argminq∈B(fc) x
T
c q, ∀c ∈ C. Then b =

∑
c∈C qc also satisfies

b = argminb∈B(f) x
T b.

Proof. In the SoSMNP algorithm, the extreme base qc is generated using Edmond’s

Greedy Algorithm [43] on the order ≺c of the indices obtained by sorting the elements

of xc in the increasing order. We represent the extreme base so obtained by q≺c
c . The

SoSMNP algorithm for a block terminates when xTc xc = xTc (q
≺c
c + ac)

Consider the termination situation of SoSMNP for the overall problem (comprising of

all the cliques). In such a case the algorithms tries to minimize for all the blocks/cliques

and no change is found on any of the cliques. Therefore, termination condition of each

block is met, and q≺c
c = argminq∈B(fc) x

T
c q.

Let ≺f be the ordering of elements of x in the increasing order. It is easy to see

that the ordering over x and xc will be consistent with each other, in the sense that

x(e1) ≺f x(e2)⇒ xc(e1) ≺c xc(e2).

Let us create an extreme base of f , corresponding to the ordering ≺f , and denote

as b≺f . Since ≺f denotes the ordering over elements of x, therefore, from Edmond’s

Inference Algo for Multi-Label MRF-MAP Problems with Clique Size 100 33

algorithm, we have: b≺f = argminb∈B(f) x
T b. Further, we also have:

b≺f (e) = f(Se ∪ e)− f(Se),

(As per Edmond’s algorithm. Se is the set of elements before e in ≺f)

=
∑
c∈C

fc(Se ∪ e ∩ c)− f(Se ∩ c), (Since f(S) =
∑

c∈C fc(S ∩ c))

=
∑
c∈C

q≺c
c (e ∩ c). (Since ≺c is the restriction of ≺)

Since above holds for all the elements e ∈ V , therefore:

b≺f =
∑
c∈C

q≺c
c .

Hence, we have proved both the properties of b≺f

We can now give the convergence proof of the SoSMNP with the following lemma:

Lemma 14. If in a complete cycle of SoSMNP over all the cliques, we can not improve

the norm xc for any c, then we have x ∈ B(f) such that ‖x‖2 = xTx = xT b, where

b = argminb∈B(f) x
T b.

Proof. Recall that for a clique c, SoSMNP can be seen as minimizing the norm of xc

which is a base vector of f ′c = fc + ac. Further q′c = qc + ac is an extreme base of f ′.

Therefore, from the termination of basic MNP algorithm, the following must hold:

xTc xc = xTc (qc + ac). (qc = argminq∈B(fc) x
T
c q)

Summing over all the cliques we get

∑
c∈C

xTc xc =
∑
c∈C

xTc (qc + ac),

∑
c∈C

xTc (yc + ac) =
∑
c∈C

xTc (qc + ac),

∑
c∈C

xTc yc =
∑
c∈C

xTc qc. (
∑

c∈C x
T
c ac cancels out)

34 I. Shanu, S. Bharti, C. Arora, and S. N. Maheshwari

Since vector yc and qc have non-zero values only for elements in c. Therefore we can

write xTc yc = xT yc and xTc qc = xT qc. Substituting the values, we get:

∑
c∈C

xT yc =
∑
c∈C

xT qc,

xT
∑
c∈C

yc = xT
∑
c∈C

qc

xTx = xT b (where b = argminb∈B(f) x
T b, by Lemma 13)

The equation above is the termination condition of basic MNP when run over the overall

function f [5]. Therefore, the lemma essentially proves that the basic MNP terminating

with optimal solutions for all cliques/blocks implies that the the base vector obtained

by summing up the base vectors of all the cliques/blocks is the optimal solution for the

overall objective function.

When MNP algorithm is run in the block co-ordinate descent mode it is easy to show

that any decrease in the ‖xc‖2 of a clique decreases the over all ‖x‖2 by the same amount

because ‖x 6c‖ is untouched when optimizing for c. Since at each cycle there is at least

one clique for which ‖xc‖2 decreases, we can say that ‖x‖2 decreases monotonically

at each cycle. Note that Theorem 4 of [5] gives us a lower bound on the improvement

in every MNP iteration. It follows that MNP algorithm running in block co-ordinate

descent mode will have a provable rate of convergence.

For the sake of completeness we will also like to point out that the optimal solution

obtained when MNP is run globally also corresponds to the individual blocks having

reached their local optima.

D Convergence of ML-hybrid Algorithm

Note that in SoSMNP each block is optimized using the MNP algorithm. In MLhybrid,

on the other hand, each block is further subdivided. One corresponds to the set of valid

extreme bases (the valid block) and the other to the set of invalid extreme bases (the

invalid block) whose convex combination defines the base vector xc. MNP is run on the

valid block. If at any iteration MNP [13] inserts an invalid extreme base, the flow based

Inference Algo for Multi-Label MRF-MAP Problems with Clique Size 100 35

Algorithm 2 is run on the invalid block. We show below that when MNP is run on the

valid block now (that is just after a run of the flow based algorithm on the invalid block)

the extreme base generated will be valid.

Lemma 15. Algorithm 2 returns a vector xc for clique c such that extreme base qc given

as qc = argminq∈B(fc) x
T
c q is valid.

Proof. It is easy to show that when Algorithm 2 terminates, for any pair of indices i, j

corresponding to any p ∈ P if i > j then e(pi) ≤ e(pj). Note that by construction

the excess vector e is the base vector xc. This implies that the order ≺c of the indices

obtained by sorting the elements of xc will satisfy pi ≺c p
j ,∀i > j, and ∀p ∈ P . This

is the condition that has to be satisfied for an ordering to be valid (Cf. Def. 3). Recall

that in the MNP algorithm the extreme base is found by computing the ordering of

sorted elements of x. Hence, the extreme base qc = argminq∈B(fc) x
T
c q will be a valid

one.

Lemma 15 implies that an iteration on the invalid block will be followed by the

MNP algorithm making progress in the form of generation of a valid extreme base. Also

note that the `2 norm decreases when the flow based algorithm is run on the invalid

block. Therefore, termination and convergence of the MLhybrid algorithm running on a

clique/block follows along the same lines as that for the standard MNP algorithm [5].

Now we show that termination over a clique/block results in xc using which mini-

mizer obtained comes on a valid state.

Note that generation of an invalid extreme base can always be followed by generation

of a valid extreme base (by running the flow based algorithm on the invalid block).

Therefore, at termination it is guaranteed that the order ≺c of the indices obtained by

sorting the elements of xc is valid. That is the optimal solution corresponds to a valid

primal state. Hence, it follows, using Lemma 14, that the MLHybrid algorithm run in

the block coordinate descent manner converges to the optimal.

36 I. Shanu, S. Bharti, C. Arora, and S. N. Maheshwari

Algorithm 2 ComputeInvalidContribution

Input: Vector xc the output of the max flow algorithm.
Output: The transformed vector xc with minimum `2 norm .

1: for ∀p ∈ c do
2: for i = 2 : m do
3: repeat
4: find smallest k, i ≥ k ≥ 1, such that

xc(p
i) > xc(p

i−1) = xc(p
i−2) · · · = xc(p

k) or xc(p
i) = xc(p

i−1) =
xc(p

i−2) · · · = xc(p
k+1) > xc(p

k);
5: let avk be the average of xc(p

i), xc(p
i−1), . . . , xc(p

k);
6: set xc(p

i), xc(p
i−1), . . . , xc(p

k) equal to avk;
7: until xc(p

k+1) ≤ xc(p
k)

8: end for
9: end for

E Proposed Complete Algorithm

In this section we give the complete proposed method in Algorithm 3. The algorithm

takes tranformed 2-label submodular clique potentials fc’s and computes minimum `2

norm of x ∈ B(f) s.t. f =
∑

c∈C fc. The overall algorithm solves valid block with the

SoS-MNP algorithm given in [46] and uses Algorithm 1 to solve invalid block. Let xc

be the restriction of x over clique c, the norm ‖x‖2 is optimized by computing minimum

norm ‖xc‖2 over each clique cyclically. Algorithm 4 minimizes ‖xc‖2 in a very similar

way as MNP Algorithm [46] described in Background section. The only difference lies

in handling the invalid extreme base at step 4 of Algorithm 4.

Inference Algo for Multi-Label MRF-MAP Problems with Clique Size 100 37

Algorithm 3 HybridML: Algorithm for minimizing a sum of multilabel submodular
functions
Input: {fc} such that f =

∑
fc.

Output: x = argmin ‖x‖2 subject to x ∈ B(f).
Initialize
1: for all (c ∈ C) do
2: qc ← Take any extreme base of fc;
3: Sc := {qc};
4: yc := qc;
5: end for
6: x :=

∑
c yc;

Perform Block Coordinate Descent with blocks specified by Cliques
7: while (‖x‖ decreases by more than δ) do
8: for all (c ∈ C) do
9: MLHybridOverAClique(fc,Sc,xc,yc);

10: end for
11: end while

Algorithm 4 MLHybridOverAClique

Input: Clique function: fc

Input: Set of valid extreme bases selected in last iteration: Sc

Input: Restriction of current solution vector x on c: xc

Input: Current clique vector: yc

Output: Clique vector y∗c ∈ B(fc) minimizing ‖xc‖2
Output: Updated set S∗c of valid extreme bases

1: while (TRUE) do
2: Find new translation ac := xc − yc;
3: Find extreme base q̂c := argmin

qc∈Bfc

〈xc, qc〉 using Edmond’s algorithm.

4: if Extreme base q̂c is invalid according to Definition 3 then
5: ComputeInvalidContribution(xc);
6: continue;
7: end if
8: Find translated extreme base p̂c = q̂c + ac;
9: if (‖xc‖2 ≤ 〈xc, p̂〉+ ε) then

10: break;
11: end if
12: Sc := Sc ∪ q̂c;
13: Pc = {q̂c + ac|qc ∈ Sc};
14: Find xc in affine hull of Pc;
15: If xc is not in convex hull Pc, translate to nearest point in convex hull and update

Sc;
16: end while

