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Abstract. In this paper, we propose an algorithm for optimal solutions
to submodular higher order multi-label MRF-MAP energy functions which
can handle practical computer vision problems with up to 16 labels and
cliques of size 100. The algorithm uses a transformation which transforms
a multi-label problem to a 2-label problem on a much larger clique. Earlier
algorithms based on this transformation could not handle problems larger
than 16 labels on cliques of size 4. The proposed algorithm optimizes the
resultant 2-label problem using the submodular polyhedron based Min
Norm Point algorithm. The task is challenging because the state space of
the transformed problem has a very large number of invalid states. For
polyhedral based algorithms the presence of invalid states poses a challenge
as apart from numerical instability, the transformation also increases
the dimension of the polyhedral space making the straightforward use
of known algorithms impractical. The approach reported in this paper
allows us to bypass the large costs associated with invalid configurations,
resulting in a stable, practical, optimal and efficient inference algorithm
that, in our experiments, gives high quality outputs on problems like
pixel-wise object segmentation and stereo matching.

Keywords: Submodular Minimization, Discrete Optimization, Hybrid
Methods, MRF-MAP, Image Segmentation.

1 Introduction

Many problems in computer vision can be formulated as pixel labeling problems, in
which each pixel p ∈ P needs to be assigned a label lp ∈ L. Finding the joint label-
ing configuration, lP , over all pixels, with maximum posterior probability can then
be formulated as a MRF-MAP inference problem [25,48]. The formulation involves
solving the following optimization problem: l∗P = arg minlP∈L|P|

∑
c∈C fc(lc).

Here, c, also called a clique, is defined as a set of pixels whose labels are contex-
tually dependent on each other. A labeling configuration on a clique c is denoted
as lc, P denotes the set of all pixels and C denotes the set of all cliques. The
order of the MRF-MAP problem is considered as one less than the size of the
maximal clique, k = maxc∈C |c|. Each term, fc(lc), also called the clique potential,
measures the cost of the labeling configuration lc of a clique c, depending on how
consistent the labeling is with respect to the observation and prior knowledge.
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Optimal inference problem, in general, is NP hard even for first order MRFs.
Therefore, researchers have explored approximate solutions to the inference
problem for first order [9,28,32,52] as well as higher order MRFs [7,33,50]. Another
line of research has been to identify sub-classes of clique potentials which model
vision problems well and for which optimal inference algorithms can be devised
with polynomial time complexity. The MRF-MAP problems with submodular
clique potentials is one such popular sub-class [2,11,32], which is also the focus
of this paper.

Use of higher-order cliques in an MRF-MAP problem is important because
it has been established that they can capture more complex dependencies be-
tween pixels thereby significantly improving the quality of a labeling solution
[21,26,33,40,41,46,51,53]. Our experiments also show improvement over state of
the art techniques based on the deep neural networks. Note that MRF-MAP
formulation allows one to use the output of deep neural networks as the likeli-
hood term in the objective function. Therefore, performing posterior inference,
even using the manually defined priors, helps exploit the problem structure, and
improves performance further.

Inference algorithms for higher-order MRF-MAP with general clique poten-
tials output approximate solutions, and are generally based on either message
passing/dual decomposition [18,31,33,37,38,47,49] or reduction to first-order po-
tentials frameworks [10,12,15,21,19,24,32,39,41]. The focus of this paper is on
developing optimal inference algorithm for multi-label, submodular, higher-order
MRF-MAP problems.

One approach to handle multi-label potentials is to use encodings [2,20,53] to
convert a multi-label problem to an equivalent 2-label problem while preserving
submodularity. However there are some practical challenges. For a multi-label
problem of order k with m labels, the encoding blows the problem to cliques
of size mk and exploding the size of the solution space to 2mk [2]. Note that
only mk of the 2mk binary configurations resulting from the encoding correspond
to the original mk labeling configurations. The rest are invalid in the problem
context. Note that if potentials for invalid states are kept very large and those
for valid states the same as in the original multi-label version, the minimum is
always among the valid states.

The use of Block Co-ordinate Descent (BCD) based techniques to handle
the Min Norm Point polyhedral algorithm[45,46] is also possible in principle
for such transformed problems. But the encoding based transformations pose
new challenges. As explained in the next section, these techniques maintain the
current feasible base vector as a convex combination of a set of extreme bases.
For the 2-label problems arising out of encoding multi-label versions, some of the
values in the extreme bases can correspond to energy of the invalid states. Giving
a large or effectively an infinite value to the invalid states creates numerical
challenges in maintaining/updating these convex combinations. Also, encoding
increases the size of the cliques by m times, which increases the dimensions of
the polyhedral space to an extent that cannot be handled by the algorithm in
[46].
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The main contribution of this paper is to show that there is enough structure
in the submodular polyhedron to handle invalid extreme bases arising out of
converted 2-label problems efficiently. The proposed algorithm raises the bar
significantly in that using it we can handle multi-label MRF-MAP problems with
16 labels, and clique size upto 100. In comparison the current state of the art [2]
can only work with cliques of size up to 4.

At this stage we would like to contrast out mapping technique with that of
[29], which has exploited the linear relationship between a tree and order in labels,
to map multi-label submodular functions to the more general class of tree based
L\-convex functions. However, these algorithms have high degree polynomial
time complexity (based on [35,22,36]), limiting them to be of theoretical interest
only. Our focus on the other hand is to extend the frontiers of practical optimal
algorithms.

Finally, we would like to point out that when the case for higher-order
potential was first made, the then existing algorithms could only work with small
cliques. Solutions were approximate and potentials many times were decomposable
[26,33,41]. It is only with [45] and [46] that experiments could be done with cliques
of size 100 or larger. Experiments reported in [46] established that quality of
object segmentation improves with larger clique sizes [46]. We extend that exercise
further here by focusing on quality of multi object segmentation as a function of
clique size.

2 Background

We briefly describe the basic terminology and results from submodular function
minimization (SFM) literature required to follow the discussion in this paper.
We direct the reader to [44] for more details. The objective of a SFM problem is
to find a minimizer set, S∗ = minS⊆V f(S) of a submodular function f , where
V is the set of all the elements. W.l.o.g. we assume f(φ) = 0. We associate
two polyhedra in R

|V| with f , the submodular polyhedron, P (f), and the base
polyhedron, B(f), such that

P (f) ={x | x ∈ R|V|, ∀ U ⊆ V : x(U) ≤ f(U)}, and

B(f) ={x | x ∈ P (f), x(V) = f(V)},

where x(v) denotes the element at index v in the vector x, and x(U) =
∑
v∈U x(v).

A vector in the base polyhedron B(f) is called a base, and an extreme point of B(f)
is called an extreme base. Edmond’s greedy algorithm gives a procedure to create an
extreme base, b≺, given a total order ≺ of elements of V such that ≺ : v1≺ . . .≺vn,
where n = |V|. Denoting the first k elements in the ordered set {v1, . . . , vk, . . . , vn}
by k≺, the algorithm initializes the first element as b≺(1) = f({v1}) and rest of
the elements as b≺(k) = f(k≺) − f((k − 1)≺). There is a one to one mapping
between an ordering of the elements, and an extreme base. The Min Max Theorem,
states that max{x−(V) | x ∈ B(f)} = min{f(U) | U ⊆ V}. Here, x−(V) gives
the sum of negative elements of x.
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The min-norm equivalence result shows that arg maxx∈B(f) x
−(V) = arg minx∈B(f)

‖x‖2. Fujishige and Isotani’s [14] Min Norm Point (MNP) algorithm uses the
equivalence and solves the problem using Wolfe’s algorithm [13]. The algorithm
has been shown empirically to be the fastest among all base polyhedron based
algorithms [23,46]. The algorithm maintains a set of extreme bases, {b≺i}, and a
minimum norm base vector, x, in their convex hull, s.t.:

x =
∑
i

λib
≺i λi ≥ 0, and

∑
i

λi = 1. (1)

At a high level, an iteration in the MNP/Wolfe’s algorithm comprises of two
stages. In the first stage, given the current base vector, x, an extreme base, q,
that minimizes xᵀq is added to the current set. The algorithm terminates in case
‖x‖ = xᵀq. Otherwise it finds a new x, with smaller norm, in the convex hull of
the updated set of extreme bases.

The MRF-MAP inference problem can be seen as minimizing a sum of
submodular functions [30,46]. Shanu et al. [46] have suggested a block coordinate
descent framework to implement the Min Norm Point algorithm in the sum of
submodular functions environment when cliques are large. A very broad overview
of that scheme is as follows.

With each fc, the submodular clique potential of clique c, one can associate
a base polyhedron such that:

B(fc) :=
{
yc ∈ R|c| | yc(U) ≤ fc(U), ∀U ⊆ c ; yc(c) = fc(c)

}
. (2)

The following results [46] relate a base vector x of function f , and a set of base
vectors yc of a fc:

Lemma 1. Let x(S) =
∑

c
yc(c ∩ S) where each yc belongs to base polyhedra

B(fc). Then the vector x belongs to base polyhedron B(f).

Lemma 2. Let x be a vector belonging to the base polyhedron B(f). Then, x
can be expressed as the sum: x(S) =

∑
c
yc(S ∩ c), where each yc belongs to the

submodular polyhedron B(fc) i.e., yc ∈ B(fc) ∀ c.

The block coordinate descent approach based on the results requires each
block to represent a base vector yc as defined above (c.f. [46]). Note that a base
vector yc is of dimension |c| (clique size), whereas a base x is of dimension |V|
(number of pixels in an image). Since |c| � |V|, minimizing the norm of yc over
its submodular polyhedron B(fc) is much more efficient than minimizing the
norm of x by just applying the MNP algorithm. However, for reasons already
given and discussed in the Introduction, the algorithm based on the above fails
to converge on multi-label submodular MRF-MAP problems when transformed
to a 2-label MRF-MAP problems using an extension of the encoding given in [2]
that preserves submodularity.

We now show how these problems can be overcome by performing block coor-
dinate descent over two blocks: one block has convex combination of only extreme



Inference Algo for Multi-Label MRF-MAP Problems with Clique Size 100 5

bases corresponding to valid states and the other has the convex combination of
extreme bases corresponding to the invalid states. The block corresponding to
valid states is small enough for the traditional MNP algorithm to output optimal
solutions. For the larger block corresponding to the invalid states we develop a
flow based algorithm to find a vector with minimum `2 norm. This results in an
algorithm which is numerically stable and practically efficient.

3 Properties of the Multi-label to 2-Label Transformation

Let F be a multi-label submodular function defined over the set of n pixels P.
Let X and Y stand for the n-tuples of parameters. Let ∨ and ∧ be max and min
operators and let (X ∨ Y ), (X ∧ Y ) denote the n-tuples resulting from element
wise application of the max and min operators over n-tuples X and Y . F is called
submodular if:

F (X) + F (Y ) ≥ F (X ∨ Y ) + F (X ∧ Y ). (3)

We now summarize the transformation to convert a multi-label to a 2-
label problem as suggested in [2,20]. Consider an unordered set of pixels P =
{p1, . . . , pi, . . . , pn}, and an ordered set of labels L = {1, . . . ,m}. To save the
notation clutter, whenever obvious, we denote a pixel simply using variables p, q
without the subscript index.

Definition 1 (Binary Encoding). The encoding E : L → B
m maps a label

i ∈ L to a m dimensional binary vector such that its first m− i elements are 0
and the remaining elements are 1.

For example, E(1) = (0, . . . , 0, 0, 1), and E(2) = (0, . . . , 0, 1, 1). Let us denote the
encoded label vector corresponding to a pixel pi as γi = (p1i , . . . , p

m
i ), pji ∈ {0, 1}.

We denote by Γ ∈ B
mn, the vector obtained by concatenating all encoded

vectors γ : Γ = (γ1, . . . , γi, . . . , γn). The vector Γ represents encoding of labeling
configuration over all the pixels. We also define a universal set containing all
elements of Γ : V = {p11, . . . , pm1 , . . . , p1n, . . . , pmn }.

Definition 2 (Universal Ordering). Assuming an arbitrary ordering among
the pixels, the universal ordering, defines a total ordering of the elements pji ,
i ∈ Z1:n, j ∈ Z1:m:

≺0 : p11 ≺ · · ·≺ pm1 ≺ · · ·≺ p1n · · · ≺ pmn .

We denote by S ⊆ V, called state, set of all the elements, pji of Γ labeled as 1.
Note that there are 2mn possible states, however only mn of them correspond
to valid Γ vector obtained by encoding labeling configurations over the pixels.
We call such states as valid states. If label of a pixel pi is denoted as li ∈ L,
a valid state may be represented as: S = {E(l1), . . . , E(li), . . . , E(ln)}. Similarly
Sp = {E(lp)} includes elements corresponding to pixel p.
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Definition 3 (Valid Ordering/Extreme Base). An ordering ≺ is called a
valid ordering, if for any pji , p

k
i ∈ V, j > k ⇒ pji ≺ pki . An extreme base b≺ is

called a valid extreme base, if it corresponds to a valid ordering.

The states, orderings or extreme-bases which are not valid are called invalid. We
denote the set of all valid states by S.

Definition 4 (Covering State, Minimal Covering State). For an arbitrary
state, S, a valid state, Ŝ ∈ S, is called covering if S ⊆ Ŝ. There may be multiple
covering states corresponding to a S. The one with the smallest cardinality among
them is referred to as the minimal covering state, and is denoted by S. There is a
unique minimal covering state corresponding to any S. For a valid state S = S.

We are now ready to show that the above transformation can be used to
define a binary set function which is not only submodular but is also identical to
the multi-label submodular function on valid states. We encode the multi-label
function to a submodular pseudo-Boolen function f defined over set V of size
mn as follows:

Definition 5 (The Extended Binary Set Function).

f(S) =

{
F (. . . , li, . . .), if S = {. . . , E(li), . . .}
f(S) + (|S| − |S|)L otherwise

Here li ∈ L is label of pixel pi, and L�M = [maxS∈S f(S)−minS∈S f(S)].

It is easy to see that f(S) can also be defined as follows:

Definition 6 (The Extended Binary Set Function: Alternate Defini-
tion).

f(S) = f(S) +
∑
p∈P

(|Sp| − |Sp|)L, (4)

where Sp ⊂ S, and Sp ⊂ S are the subsets containing elements corresponding to
pixel p in S and S respectively.

Theorem 1. The extended binary set function f , as given by Definition 5, is
submodular, and min f(·) = minF (·).

To prevent the breaking of thought flow, and due to restrictions on length,
the detailed proof of this theorem as well as those following are given in the
supplementary material.

The reader may, at this stage, wonder whether it is at all possible to limit
to working only with the valid states in the submodular mode, perhaps using
one-hot encoding as in [53]. The answer is no, since in a one-hot encoding the set
of all valid states is not a ring family [34], and hence the encoded function is not
submodular.
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Note that in the proposed encoding, any value of L�M , keeps the function,
f , submodular. However, as we show later, choosing such a large value of L, makes
the contribution of some extreme bases very small causing precision issues in the
computation. We also show that including those extreme bases with very small
contribution is extremely important for achieving the optimal inference. The
major contribution of this paper is in showing that one can perform an efficient
inference bypassing L altogether. Therefore, the use of L is merely conceptual
in our framework. There is no impact of actual value of L on the algorithm’s
performance.

4 Representing Invalid Extreme Bases

In the discussion that follows, we refer to any scalar as small or finite if its
absolute value is� L, and large or infinite if the absolute value is ∝ L. We write
Eq. (1) as:

x = xv + xi =
∑
b≺j∈R

λjb
≺j +

∑
b≺i∈Q

λib
≺i . (5)

Here, R and Q are the sets of valid and invalid extreme bases, and xv, and xi,
their contribution in x respectively. It is easy to see that, all the elements of xi
must be much smaller than L 3. We first focus on the relationship between λ and
L in the block of invalid extreme bases.

Lemma 3. For any element, e, of an invalid extreme base, b≺ : b≺(e) = aeL+be,
where |ae|, |be| � L and ae ∈ I.

Lemma 4. Consider two base vectors x1 and x2 such that ‖x1‖2, ‖x2‖2 < |V|M2.
If x2 = (1− λ)x1 + λb≺ and b≺ is an invalid extreme base, then λ ≤ |V|ML .

Conceptually, Lemma 3 shows that all elements of an invalid extreme base are
either small or are proportional to L (and not proportional to, say L2, or other
higher powers of L). Whereas, Lemma 4 shows that since V and M are effectively
constants, λ the multiplicative factor associated with in the contribution of invalid
extreme bases, λ is proportional to 1/L. Therefore, for L ≈ ∞, the value of
λ ≈ 0. However, it is important to note that the value of λb≺(e), is always finite.
It is easy to see that, whenever ae = 0, λb≺(e) ≈ 0, and when ae 6= 0, the L
present in the b≺(e) and 1/L present in λ cancel each other, leading to a finite
contribution. The argument as given above motivates our overall approach in
this paper that, for a numerically stable norm minimization algorithm, focus
should be on manipulating the finite valued product λb≺, and not the individual
λ and b≺(e). We show in the following sections that this is indeed possible.

We start by showing that it is possible to find a small set of what we call
elementary invalid extreme bases whose linear combination contains as a subset
the space of vectors xi as given in Eq. (5). Crucial to doing this is the notion of
canonical orderings.

3 We start the algorithm with a valid extreme base, where the condition is satisfied.
In all further iterations the norm of x decreases monotonically, and the condition
continues to remain satisfied.
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4.1 Canonical Ordering and Its Properties

𝑝 2 𝑞 2 𝑝 1 𝑟 3 𝑝 3 𝑞 3 𝑞 1 𝑟 1 𝑟 2

𝑝 2 𝑝 1 𝑝 3 𝑞 2 𝑞 3 𝑞 1 𝑟 3 𝑟 1 𝑟 2

Ordering ≺

Canonical Ordering  ≺

Fig. 1: Top: An ordering of elements in P = {p, q, r},
for a label of size 3. Bottom: Corresponding canonical
ordering.

In an arbitrary, valid or in-
valid, ordering ≺ consider two
adjacent elements u and v
such that u ≺ v. We term
swapping of order locally be-
tween u and v in ≺ as an ex-
change operation. The opera-
tion will result in a new order-
ing ≺new such that u and v are still adjacent but v ≺new u.

Consider a strategy in which starting with ≺ we carry out exchange operations
till all the elements corresponding to a pixel come together, and repeat this for
all pixels. Note that we do not change the relative ordering between elements
corresponding to the same pixel. We call the resultant ordering the canonical
form of the original ordering ≺ and denote it by ≺. The corresponding extreme
base is called canonical extreme base. Note that there can be multiple canonical
forms of an ordering. Figure 1 contains an example of an arbitrary ordering and
one of its canonical orderings. We emphasize here that there may be more than
one canonical orderings corresponding to ≺.

Note that a valid (invalid) ordering leads to a valid (invalid) canonical ordering.
For any pj and pk, in a valid canonical ordering, if j = k + 1, then pj , pk are
adjacent in the ordering and pk ≺ pj . Further, a canonical ordering is agnostic
to any relative order among pixels. For example, for pixels p and q, a canonical
ordering only requires that all elements of p (or q) are contiguous. An ordering in
which elements corresponding to p come before those of q will define a different
canonical ordering from the one in which the relative ordering of elements of p
and q is vice-versa. In general a canonical ordering ≺ corresponding to a ≺ can
be any one of the possible canonical orderings.

Lemma 5. Let ≺ be an invalid ordering and ≺ be its canonical ordering. Then,
b≺(e)− b≺(e)� L,∀e ∈ V.

The above result serves to indicate that by changing an invalid extreme base
to canonical one, the change in value of any element of the extreme base is much
less than L. Therefore, due to Lemma 4, one can conclude that the contribution
of an invalid extreme base or its canonical extreme base in a base vector is going
to be the same.

Lemma 6. For a canonical invalid ordering ≺, let pi and pj be two adjacent
elements corresponding to a pixel p, s.t. pi ≺ pj . Let ≺i,jp be the ordering obtained

by swapping pi and pj. Then: b≺
i,j
p − b≺ = (χjp − χip)(aL + b), where χip is an

indicator vector for the element pi, and a, b� L.

Lemma 6 relates the two extreme bases when one pair of their elements is
swapped. It is useful to note that in a valid extreme base all elements have
small values. With each swap in an invalid canonical ordering we either move
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the canonical ordering towards validity or away from it. In each swap the change
in the value of an element is proportional to L (positive or negative). Since
conversion of an invalid canonical ordering to a valid one may involve swaps
between a number of elements, the extreme base corresponding to the invalid
ordering will contain multiple elements with values proportional to L. The special
cases are the ones in which only one swap has been done. In these cases there will
be only two elements with values proportional to L (positive and negative). We
show that using such extreme bases as the basis to represent canonical invalid
extreme bases. In the next section we show that it is indeed possible.

4.2 Elementary Invalid Extreme Base

Definition 7 (Elementary Invalid Extreme Base). The ordering obtained
by swapping two elements pj and pj+1, corresponding to a pixel p, in a canonical
valid ordering, is called an elementary invalid ordering. Its corresponding extreme

base is called elementary invalid extreme base, and is denoted as b≺̃
j
p .

Lemma 7. Consider an elementary invalid extreme base b≺̃
i
p , obtained by swap-

ping two adjacent elements (pi+1, pi) in the universal ordering, ≺0 (Def. 2). Then:

b≺̃
i
p−b≺0 = (χip−χi+1

p )(L+b), where b≺0 is the valid extreme base corresponding
to ≺0.

Lemma 8. An invalid canonical extreme base, b≺, can be represented as a
linear combination of elementary invalid extreme base vectors such that: b≺ =∑

p∈P
∑m−1
i=1 αipb

≺̃i
p + Λ, where 0 < αip � L, and Λ is a vector with all its

elements much smaller than L.

Due to Lemma 5, the above result is also true for representing the invalid extreme
bases (and not only the canonical ones), with a different Λ. Lemma 7 allows us
to further simplify the result of Lemma 8 to the following:

Lemma 9 (Invalid Extreme Base Representation). An invalid extreme

base can be represented as b≺ =
∑
p∈P

∑m−1
i=1 αipL(χip − χi+1

p ) + Λ, where χip is

an indicator vector corresponding to element pi, 0 < αip � L, and Λ is some
vector whose all elements are � L.

Recall from Eq. (5): x = xv + xi, where xv =
∑
b≺j∈R λjb

≺j , and xi =∑
b≺i∈Q λib

≺i . Using Lemma 9 to replace the second term, and noting that
L ≈ ∞⇒ λi ≈ 0, and

∑
λj ≈ 1, one observes that the term

∑
b≺i∈Q λiΛi in the

expansion can be made smaller than the precision constant by increasing the
value of L ( λ < |V|M/L by Lemma 4) and can be dropped. As one of the final
theoretical results of this paper, we can show the following:

Theorem 2 (Main Result).∑
∀b≺i∈Q

λib
≺i =

∑
p∈P

m−1∑
k=1

βkpL(χkp − χk+1
p ), (6)

where λi ≥ 0, βkp =
∑
bi∈Q α

k
pλi.
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Note that the above result incorporates all the invalid extreme bases, not merely
the ones involved in the representation of base vector x in any iteration of MNP. Us-

ing the result in Eq. (5), we get: ‖x‖2 =
∥∥∥∑b≺j∈R λjb

≺j +
∑
p∈P

∑m−1
k=1 β

k
pL(χkp − χk+1

p )
∥∥∥2.

5 The Multi-label Hybrid Algorithm

In this section we give the algorithm for minimizing the norm of the base vector
corresponding to a single clique in the original MRF-MAP problem, where the
pseudo-Boolean function is generated from encoding the multi-label function.
For solving the overall MRF-MAP problem with multiple cliques, the proposed
algorithm can be used in the inner loop of the BCD strategy as suggested in [46].

𝒓𝟏𝒓𝟐𝒓𝟑𝒑𝟑 𝒑𝟐 𝒑𝟏 𝒒𝟑 𝒒𝟐 𝒒𝟏

𝑺

𝑇

Source

Sink

Fig. 2: Flow graph corresponding
to the exchange operations for opti-
mizing the block containing invalid
extreme bases.

Theorem (2) opens up the possibility of

minimizing ‖x‖2 for a single clique using the
BCD strategy. We will have two blocks. The
first block, called the valid block, is a convex
combination of valid extreme bases b≺j , where
standard MNP algorithm can be used to op-
timize the block. The other block, called the
invalid block, corresponds to the sum of the mn
terms of type: βkpL(χkp − χk+1

p ), representing
the invalid extreme bases. For minimizing the
norm of the overall base vector using the in-
valid block, we hold the contribution from the valid block, xv, constant 4. Each vec-
tor βkpL(χkp−χk+1

p ) may be looked upon as capturing the βkp increase/decrease due
to the exchange operation between the two adjacent elements which define an ele-
mentary extreme base. This exchange operation can be viewed as flow of βkpL from

the element pk+1 to pk. We model the optimization problem for the invalid block
using a flow graph whose nodes consists of {pk | p ∈ P, 1 ≤ k ≤ m− 1} ∪ {s, t}.
We add two type of edges:

– Type 1: If xv(pk), corresponding to the valid block contribution, is > 0, then
we add a directed edge from s→pk, else we add the edge from pk→t with
capacity xv(p

k).
– Type 2: The directed edges pk+1 to pk, 1 ≤ k ≤ (m− 1) with capacity |V|M

to ensure that the capacity is at least as large as βkpL: much larger than any

permissible value of xv(p
k). Thus, any feasible flow augmentation in a path

from from s to t can saturate only the first or the last edge in the augmenting
path (i.e. the edge emanating from s or the edge incident at t in the path).

Figure 2 is an example of a flow graph for 3 pixel and 3 label problem.
Since the starting state is xv the “initial flow” prior to pushing flow for flow
maximization requires setting flow in a type 1 edge incident at pk equal to the
value of xv(p

k) and that in type 2 edges as 0. This is because sum of flow on all

4 Recall that we start from a valid extreme base. Therefore, at initialization x = xv
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Algorithm 1 Computing Min `2 Norm from the Flow Output

Input: Vector e the output of the max flow algorithm.
Output: The transformed vector e with minimum `2 norm.
1: for ∀p ∈ P do
2: for i = 2 : m do
3: repeat
4: Find smallest k, i ≥ k ≥ 1, such that

e(pi) > e(pi−1) = e(pi−2) · · · = e(pk) or
e(pi) = e(pi−1) = e(pi−2) · · · = e(pk+1) > e(pk);

5: Set e(pi), e(pi−1), . . . , e(pk) equal to avk,
where avk is the average of e(pi), e(pi−1), . . . , e(pk);

6: until e(pk+1) ≤ e(pk)
7: end for
8: end for

edges incident at a node may be looked upon as the value of the corresponding
element in the base vector 5. In effect initially there are non zero excesses on the
non s, t nodes in the flow graph defined as the sum of net in-flow on all edges
incident at a node. The excess at node pk is denoted by e(pk). Max flow state can
be looked upon as that resulting from repeatedly sending flow from a positive
excess vertex to a negative excess vertex till that is no more possible. Values
in the optimal base vector (optimal subject to the given xv) at the end of this
iteration will be the excesses at nodes when max flow state has been reached.

5.1 Computing Min `2 Norm By Flow

Since there is no edge between any two nodes corresponding to different pixels
max flow can be calculated independently for each pixel. When max flow state
is reached in the flow graph associated with a pixel, a vertex which still has a
negative excess will be to the left of vertices with positive excess (planar flow
graph laid out as in Figure 2) otherwise flow could be pushed from a positive
excess vertex to a negative excess vertex.

Note that the optimal base vector is not unique. Consider two adjacent vertices,
pk+1 and pk, in the flow graph when the max flow state has been reached. If
e(pk+1) is larger than e(pk) then increasing the flow in the edge from pk+1 to pk

by δ decreases e(pk+1) by δ and increases e(pk) by δ. The result of this “exchange
operation” is to create another optimal base vector but with a smaller `2 norm.

An optimal base vector with minimum `2 norm will correspond to the max
flow state in the flow graph in which e(pk+1) ≤ e(pk) for all adjacent pairs of
type 2 vertices. If this is not so then there would exist at least a pair e(pk+1) and
e(pk) such that e(pk+1) > e(pk). Doing an exchange operation between pk+1 and
pk involving setting e(pk+1) and e(pk) to the average of the old values will create
a new optimal base vector with lower value of the `2 norm. Algorithm 1 gives an
efficient procedure to transform the optimal base vector outputted by the max

5 we refer the reader to [45] for details about the flow to base vector correspondence
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flow algorithm to one with minimum `2 norm. Note that the proposed algorithm
simply updates the base vector in one pass without any explicit flow pushing.
In contrast, the corresponding algorithm for general flow graphs given in [45]
requires O(n log n) additional max flow iterations over an n vertex flow graph.

5.2 Overall Algorithm

The proposed Multi-label Hybrid (MLHybrid) algorithm is quite similar to the
algorithm in [46] in its over all structure. Just like [46], we also create blocks
corresponding to each clique, and optimize each block independently (taking the
contribution of other blocks as suggested in [46]) in an overall block coordinate
descent strategy. The only difference between SoSMNP and MLHybrid is the way
we optimize one block. While SoSMNP uses standard MNP, we optimize using
a special technique, as outlined in previous section, with (sub)blocks of valid
and invalid extreme bases, within each block/clique. Hence, the convergence and
correctness of overall algorithm follows from block coordinate descent similar
to [46]. What we need to show is that for a single clique/block, the algorithmic
strategy of alternating between valid and invalid blocks converges to the optimal
for that clique/block.

Recall that in a standard MNP algorithm iteration, given the current base
vector x, an extreme base q, that minimizes xᵀq is added to the current set.
Hence, steps to convergence of MNP is bounded by the number of extreme bases
that may be added. In our case we have shown in the Supplementary Section
that when we start with a valid extreme base, the extreme base generated in
the valid block after using the latest contribution from the invalid block, will
come out to be a valid extreme base. This implies that the number of iterations
involving invalid blocks can not exceed the number of valid extreme bases added
as in the standard MNP algorithm. This ensures convergence of the optimization
step for each block. The formal convergence proof for the MLHybrid algorithm is
given in the Supplementary Section.

The correctness of our optimization for each block follows from the fact
that the optimization for valid blocks proceeds in the standard way, and results
in a new extreme base given the current base vector. The correctness of the
optimization step of the invalid block, which finds a minimum norm base vector
given a valid block, has already been explained in the previous section.

6 Experiments

We have experimented with pixel-wise object segmentation and stereo correspon-
dence problems. All experiments have been conducted on a computer with Intel
Core i7 CPU, 8 GB of RAM running Windows 10. Implementation of our al-
gorithm is in C++ (https://github.com/ishantshanu/ML-Minnorm). For the
segmentation experiments, the input images are from Pascal VOC dataset [8]
with a small amount of Gaussian noise added. We have experimented with two
types of submodular clique potentials:

https://github.com/ishantshanu/ML-Minnorm
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Input                     GT                 Deeplabv3+          Pairwise        Standard-Hyp.      Small(ABS)      Small(Concave)       Big(ABS)         Big(Concave)
iou=0.776                   iou=0.775                  iou=0.784        58      iou=0.867        57      iou=0.881        43      iou=0.890      323      iou=0.897        71

iou=0.684                   iou=0.689                  iou=0.754         56     iou=0.780        36      iou=871           28      iou=0.858      228      iou=0.867        62           

iou=0.837                   iou=0.839                  iou=0.873         33     iou=0.879        24      iou=0.892        18      iou=0.880      156      iou=0.913        39   

iou=0.861                   iou=0.863                  iou=0.916        62      iou=0.878        42      iou=0.873        38      iou=0.886      183      iou=0.916        62                         

Fig. 3: Pixel-wise object segmentation comparison. Input images from the Pascal VOC
dataset.

s
Input                      GT                         MPI                    TRWS            α-expansion             MPLP                     DD                    MLHyb MLHyb(Concave)

-2.43, NA        -2.46, -4.93          -2.45, NA         -2.46, -2.46 -2.46, -2.46        -2.48, -2.48       -2.49, -2.49

0.12                   94.07                    3.25         619.02             5477.68                157.77                  63.35

-2.43, NA        -2.46, -4.93          -2.45, NA          -2.46, -2.46        -2.46, -2.46       -2.48, -2.48      -2.49, -2.49

0.10                  67.80                    2.80         341.93             6730.29                176.24                  67.20

time

(primal, dual) /10#

time

(primal, dual) /10#

Fig. 4: Stereo matching problem. Input images from the Middlebury dataset.

– Decomposable: Sum of absolute difference of labels for all pixel pairs in a
clique. Denoted by ABS.

– Non-decomposable: Concave-of-Cardinality potential defined in [53] as:∑
l∈L(number of pixels − number of pixels which have their label as l)α. We

have used α = 0.5 in our experiments.

For both the potentials, two types of clique sizes namely “Small” (cliques ranging
from 60 to 80 elements) and “Big” (cliques ranging from 300 to 400 elements)
have been used for the experiments. Overlapping of cliques has been ensured by
running SLIC algorithm [1] with different seeds.

Figure 5 shows the IOU values as bars for Deeplabv3+ [6] fine-tuned on noisy
images (red), running MLHybrid with small cliques (green) and with big cliques
(blue) on all the classes of the VOC dataset for the segmentation problem. The
likelihood of a label on each pixel, required for our algorithm, is estimated using
the scaled score from the Deeplabv3+. The scaling factors are specific to labels
and are the hyper-parameters in our algorithm. We use the pre-trained version
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Fig. 5: Shows IOU values across all the classes of PASCAL VOC dataset.

of Deeplabv3+ from [6]. Deeplabv3+ gives overall pixel accuracy of 82.79 and
with MLHybrid we get pixel accuracy of 84.07 and 85.11 respectively for small
and big cliques. Mean IOU values (three bars at the right end) are 0.544, 0.566,
and 0.579 respectively. MLHybrid has been run with non-decomposable clique
potentials and the same standard fixed hyper parameters on the VOC dataset.

The performance of MLHybrid improves with fine tuning of hyper parameters.
Figure 3 shows the visual results on four pictures from the data set when the hyper
parameters have been tuned. To show the extent of improvement we have also
included in Figure 3 the MlHybrid output with the standard hyper parameters
(standard-hyp). We have also included the IOU values in the images (upper left
hand corner) corresponding to Deeplabv3+, MlHybrid (Big(concave)) run with
standard and fine tuned hyper parameters respectively. For all the four images
IOU values hover around 0.9 when MLHybrid is run with big cliques and concave
potentials. Run time for MLhybrid in seconds are shown at the upper right
corner of the respective images. Deeplabv3+ takes approximately 0.5 seconds per
image excluding the training time. Hyper parameters for α-expansion running
on pairwise cliques (4th column in Figure 3) are the optimized parameters used
for MLHybrid as are the likelihood labels for the pixels.

Note that the quality of output is distinctly better for the non-decomposable
concave potential in comparison to the decomposable ABS potential for both
Small and Big clique configurations. The output for Big(Concave) matches the
ground truth significantly. The time taken for concave potentials is distinctly less
than ABS potentials for the same size and number of cliques. This difference is
because the number of iterations taken for convergence is proportionately less
for non-decomposable potentials. It is reasonable to infer that the segmentation
quality improves with clique size. Since for large cliques, potentials will need
to be predefined and not learnt, designing clique potentials calls for further
investigation. Also, since fine tuning of hyper parameters improves quality of
segmentation results significantly an area of research with high pay off is how to
automate the process of fine tuning the hyper parameters for the segmentation
problem.

For stereo correspondence, the images are from Middelbury dataset [42] and
are of size 200× 200. The cliques are generated, as earlier, using SLIC algorithm.
Label likelihood is calculated using Birchfield/Tomasi cost given in [3]. There
are 16 disparity labels considered and clique potential used is the same as for
the segmentation problem. Figure 4 shows the output. We have compared with
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implementations of Max Product Inference (MPI) [27], TRWS [28], MPLP [16],
α-expansion [4] available in Darwin framework [17]. We use the pair wise absolute
difference of labels potential with a pixel covered by maximum of four cliques.
Other than α-expansion, other methods could not handle pairwise potentials
emanating out of all pairs of variables in a clique of size 50 or larger. Primal/Dual
values are shown below the images and their corresponding running times on the
top.

L = 109 1011 1013 1015

Primal 1.26(1015) 1.26(1017) −1.75(108) −1.77(108)
Dual −5.37(108) −5.37(108) −5.58(108) −5.60(108)

Table 1: Primal dual for SoS-MNP [46] for dif-
ferent values of L.

Our final experiments are to
show efficacy of convergence of
the MLHybrid algorithm. Ta-
ble 1 shows the performance of
SOS-MNP [46] on the extended
pseudo-boolean submodular func-
tion. Since [46] do not bypass L
therefore we run it for different val-
ues of L. Note that primal and dual
do not converge even when the value of L is as large as 1015 after running the
algorithm for approximately 50 minutes. SOS-MNP not only takes huge amount
of time but do not even converge to the right point.

Fig. 6: Convergence of MLHybrid.

In contrast Figure 6 shows the convergence
performance of the MLHybrid algorithm for
solving a stereo problem on the sawtooth sam-
ple with sum of absolute difference potential.
The figure shows that on the same potential
function and same problem size, time taken
for effective convergence by the MLHybrid al-
gorithm is only around 28 seconds. It must be
pointed out that one of the factors contribut-
ing to speed gain is the way invalid extreme
bases are being handled. The flow graph created at each iteration handles a fixed
number of (only n(m− 1)) elementary extreme bases which span the space of all
invalid extreme bases. The run-time at each iteration is essentially independent
of the number of invalid extreme bases added by Wolfe’s algorithm.

7 Conclusions

In this paper, we have proposed a new efficient inference algorithm for higher-
order multi-label MRF-MAP problems, which enables obtaining optimal solution
to such problems when potentials are submodular, and even when the cliques
are of size upto 100 (for a 16 label problem). This has been made possible by
exploiting the structure of the potentials used to make the extension function
submodular. The min `2 norm solution to the block of invalid extreme bases can
be found by max flow techniques on a particularly simple flow graph. What takes
a series of max flow iterations in [45] requires only two linear time passes on the
resultant flow graph.



16 I. Shanu, S. Bharti, C. Arora, and S. N. Maheshwari

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels
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