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1 Generating Pseudo Labels for Unlabelled Videos

When training on unlabelled videos, such as SonudNet-Flickr [2] and AVE dataset
[15], we need to generate pseudo labels as classification supervision.

First, we use CRNN [13] pretrained on AudioSet [5] and ResNet-18 [6] pre-
trained on ImageNet [9] to predict classification probabilities on audio and visual
message. Next, to reduce noise and assist coarse-grained audiovisual correspon-
dence, we need to organize several general categories as target. Considering Au-
dioSet is annotated with hierarchical ontology, containing four levels of labels
from coarse to fine, we choose the first-level labels of 7 classes (human sounds,
music, animal, sounds of things, natural sounds, source-ambiguous sounds, and
environment) as final classification target. Then we aggregate the predictions
from pretrained models into these 7 categories. For audio modality, we directly
use the ontology in AudioSet to generate supervision. While for visual modality,
inspired by [4, 14], we take similarity of word embeddings [10] and conditional
probabilities between labels in ImageNet and AudioSet into consideration to
aggregate 1000 classification predictions into 7 as pseudo labels.

2 Experiments on AVE Dataset

2.1 AVE Dataset

AVE dataset [15] contains 4143 10-second video clips covering 28 event cate-
gories. This dataset is proper for cross-modality localization since the videos
are temporally labelled with audiovisual event boundaries. But annotations are
only used for evaluation. In training phase, we feed audiovisual pairs into our
model to learn cross-modal alignment in an unsupervised manner. The videos
are divided into 3339 for training, 402 for validation and 402 for test. Note that
events in testing videos all span less than 10 seconds.

2.2 Cross-Modality Localization

In this task, given a temporal segment of one modality, we aim to accurately
localize the temporal position of the synchronized content in the other modality.
There are two subtasks, visual localization from audio segments and vice versa,
namely A2V and V2A. Following [15], we adopt AVE dataset without labels for
training, and only use short-event videos for evaluation.

Concretely, we employ sliding windows to predict the temporal position. Take
visual localization from audio (A2V) as an example:

t∗ = arg min
t

l∑
s=1

f(Vs+t−1, Âs), (1)

where f measures the correspondence score between audio and visual context,
Â represents query l-second audio segment, t∗ is the predicted start time when
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audio and vision synchronize. Strict evaluation metric as [15] is adopted on
two subtasks. In Tabel 1, we show our model’s results in two different settings,
one is only using classification and video-level audiovisual correspondence, the
other is to further perform fine-grained alignment. Since it is more challenging
to disentangle different events in mixed audio than in video frames, previous
methods are poor on V2A. While our method performs much better at capturing
temporal information in audio, and outperforms others over a large margin on
V2A. Comparing results of our method with different settings, our fine-grained
alignment in the second stage further improves performance, but still not the
best on A2V. That is because the major target of this task is to distinguish
temporal boundaries of audiovisual events, there are few events overlapping at
the same time, which restricts the efficacy of our fine-grained alignment.

Table 1. Cross-madality localization accuracy with A2V and V2A subtasks.

Models DCCA[1] AVDLN[15] Ours Ours w/align
A2V 34.8 44.8 41.5 43.8
V2A 34.1 35.6 43.8 44.3

(a) From background noise to musical instruments.

(b) Duet of accordion and guitar.

(c) Dogs barking interspersed with sound of toy car.

Fig. 1. We visualize the changes of localization maps in videos over time. The frames
shown are extracted at 1 fps, the heatmaps show localization responses to correspond-
ing 1-second audio clip. When only with noise, our model mainly focuses on background
regions as the first two frames in Fig. 1(a). When there are sounds produced by spe-
cific objects, our model can accurately capture the sound makers, e.g., our model can
distinguish sounds of guitar and accordion in Fig. 1(b), dog barking and toy-car sound
in Fig. 1(c).
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We also visualize sound localizetion results on several videos. Fig. 1 vividly
shows the changes of sounds on time dimension, which further demonstrates
model’s capacity of spatio-temporally determining which specific object is mak-
ing sound.

3 Comparison with CAM

In this section, we compare the localization results between our model and CAM
method [16, 11, 3] based on classification. Specifically, our two-stage framework
achieves coarse-grained audiovisual correspondence in the category-level at the
first stage, and fine-grained sound-object alignment at the second stage. To val-
idate the efficacy of our fine-grained audiovisual alignment in the second stage,
we compare our method with category-level CAM output.

Concretely, we adopt the model trained on AVE dataset for comparison,
where the classification targets are 7 general categories mentioned above (i.e., hu-
man sounds, music, animal, sounds of things, natural sounds, source-ambiguous
sounds, and environment). Our model generates localization results following the
procedure mentioned in the paper, while for CAM method, we adopt predicted
probabilities on audio as prior, and employ CAM to generate class-specific local-
ization maps on visual modality. We visualize some comparison results in Fig. 2.
Generally, CAM method cannot distinguish the objects belonging the same cat-
egory, e.g., aeroplane and car in Fig. 2(d), while our model can precisely localize
the specific object making sound in input audio. It is because CAM method
performs localization in the category-level, while our model further establishes
video- and category-based sound-object association. Additionally, as shown in
Fig. 2(a) and Fig. 2(b), in the scene with multiple guitars, with background
music sound, our model focuses on the silent guitars hanging on the wall, while
with the sound of the man playing guitar, our method precisely localize the gui-
tar held by the man. It is probably because the sound of playing guitar usually
coexists with the visual pattern of the interaction between human hands with
guitar, while the background music is usually with individually placed music
instruments.

Further, we also quantitatively compare the localization results of these two
methods on human annotated subset of SoundNet-Flickr dataset [12]. For CAM
method, we perform weighted summation on class activation maps over valid cat-
egories, where the weights are the normalized predicted probabilities on audio
modality. Table 2 shows the results, our two-stage learning framework outper-
forms CAM method over a large margin, which demonstrates the efficacy of
fine-grained sound-object alignment in the second stage.

4 Additional Results

In this section, we present more examples of our localization results in multi-
source scenarios. Fig. 3 shows the result in two-source scenes, and the results
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(a) background music (b) playing guitar

(c) rubbish truck (d) aeroplane engine

(e) playing violin (f) wood sawing

Fig. 2. We show some comparison between our model and CAM method. The images
in each subfigure are listed as: original image, localization result of our model, result of
CAM method. It is clear that CAM method cannot distinguish the objects belonging
to the same category, e.g., violin and piano in Fig. 2(e), but our model can precisely
localize the object that makes sound in input audio.

Table 2. Quantitative localization results on SoundNet-Flickr subset, cIoU and AUC
are reported.

Methods cIoU@0.5 AUC
Random 7.2 30.7

Attention[12] 43.6 44.9
DMC AudioSet[7] 41.6 45.2
CAVL AudioSet[8] 50.0 49.2

Ours Stage-one 44.2 48.1
Ours Stage-two 52.2 49.6
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(a) speech with gunfire (b) cheering with engine (c) music with inside noise

(d) shouting with water (e) human with wind (f) sports with stadium

(g) sports with cheering (h) speech with motorcycle (i) engine with wind

(j) yelling with impact (k) human with dog (l) talking with water

(m) screaming with stadium (n) yelling with wind (o) speech with classroom

Fig. 3. We visualize the localization maps corresponding to different elements con-
tained in the mixed sounds of two sources. The results qualitatively demonstrate our
model’s performance in multi-source sound localization.

generally demonstrate our model’s capacity of distinguishing different sound
sources.

We also show some localization results under three-source scenes in Fig. 4. In
Fig. 4(a), it is interesting that the boat is being towed by something off-screen,
and the engine sound actually comes from the unseen object, while our model
associates them as a sound-object pair. This is probably because the visual
pattern of boats usually coexist with engine sound, and these two are of the
same category, eventually they become highly correlated.

We present cross-modal retrieval results based on the aligned audiovisual
features in Fig. 5. Concretely, we use an image or a clip of audio as query, and
treat other audio or images in the dataset as gallery. We calculate the distance
between query and gallery features, and take the top-5 nearest examples shown
in Fig. 5.
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(a) shouting, engine and water (b) speaking, gunfire and wind

Fig. 4. We show the localization results of three-source scenes, and each localization
map corresponds to one potential sound source.

(a) sound of baby as query and top-5 retrieved images

(b) sound of helicopter engine as query and top-5 retrieved images

(c) image of crowd people as query and top-5 retrieved audio

Fig. 5. Cross-modal retrieval results, with an image/sound as query and retrieve top-5
most similar audio/images.
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