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Fig. 1: Left: CLOTH3D3 is the first big scale dataset of animated clothed humans.
It contains thousands of different outfits and subjects, high variability of poses
and rich cloth dynamics. Right: generated 3D garments with proposed GCVAE.

Abstract. We present CLOTH3D, the first big scale synthetic dataset
of 3D clothed human sequences. CLOTH3D contains a large variabil-
ity on garment type, topology, shape, size, tightness and fabric. Clothes
are simulated on top of thousands of different pose sequences and body
shapes, generating realistic cloth dynamics. We provide the dataset with
a generative model for cloth generation. We propose a Conditional Vari-
ational Auto-Encoder (CVAE) based on graph convolutions (GCVAE)
to learn garment latent spaces. This allows for realistic generation of 3D
garments on top of SMPL model for any pose and shape.
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1 Introduction

The modelling, recovery and generation of 3D clothes will allow for enhanced
virtual try-ons experience, reducing designers and animators workload, or un-
derstanding of physics simulations through deep learning, just to mention a few.

3 http://chalearnlap.cvc.uab.es/dataset/38/description/
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Dataset 3DPW[18] BUFF[35] Untitled[29] 3DPeople[24] TailorNet[21] CLOTH3D

Resolution 2.5cm 0.4cm 1cm -1 1cm 1cm

Missing x X x x x x

Dynamics x X x x x X
Garments 182 10∼ 20 33 High4 20 11.3K

Fabrics x x x x x X
Poses5 Low Low Very low Low 1782 High

Subjects 182 6 2K 80 9 8.5K

Layered x x X -1 X X
#samples 51k 11K 24K 2.5M 55.8k 2.1M

Type Real Real Synth. Synth. Synth. Synth.

RGB X x X X x x

GT error 26mm 1.5-3mm None None None None

Table 1: CLOTH3D vs. available 3D cloth datasets. 1: 3D data includes depth,
normal and scene flow maps, but not 3D models. 2: 3DPW contains 18 clothed
models that can be shaped as SMPL. 3: garments of [29] are shaped to different
sizes. 4: Garment variability not specified, nonetheless, authors propose a gen-
eration pipeline that can modify template garments into many different sizes. 5:
poses are strongly related to number of frames, and in [29] most samples share
the same static pose.

However, current literature in the modelling, recovery and generation of clothes
is almost focused on 2D data [8, 13, 23, 27]. This is because of two factors. First,
deep learning approaches are data-hungry, and nowadays not enough 3D cloth
data is available (see Tab. 1). Second, garments present a huge variability in
terms of shape, sizes, topologies, fabrics, or textures, among others, increasing
the complexity of representative 3D garment generation.

One could define three main strategies in order to produce data of 3D dressed
humans: 3D scans, 3D-from-RGB, and synthetic generation. In the case of 3D
scans, they are costly, and at most they can produce a single mesh (human
+ garments). Alternatively, datasets that infer 3D geometry of clothes from
RGB images are inaccurate and cannot properly model cloth dynamics. Finally,
synthetic data is easy to generate and is ground truth error free. Synthetic
data has proved to be helpful to train deep learning models to be used in real
applications [20, 25, 28].

In this work, we present CLOTH3D, the first synthetic dataset composed
of thousands of sequences of humans dressed with high resolution 3D clothes,
see Fig.1. CLOTH3D is unique in terms of garment, shape, and pose variability,
including more than 2 million 3D samples. We developed a generation pipeline
that creates a unique outfit for each sequence in terms of garment type, topology,
shape, size, tightness and fabric. While other datasets contain just a few different
garments, ours has thousands of different ones. On Tab. 1 we summarize features
of existing datasets and CLOTH3D.
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Additionally, we provide a baseline model able to generate dressed human
models. Similar to [2, 17, 32] we encode garments as offsets connecting skin to
cloth, using SMPL[15] as human body model. This yields an homogeneous di-
mensionality on the data. As in [22], we use a segmentation mask to extract the
garment by removing body vertices. In our case, the mask is predicted by the
network. We propose a Conditional Variational Auto-Encoder (CVAE) based on
graph convolutions [6, 7, 17, 19, 31, 34] (GCVAE) to learn garment latent spaces.
This later allows for the generation of 3D garments on top of SMPL model for
any pose and shape (right on Fig.1).

2 Related Work

3D Garment Datasets. Current literature on 3D garment lacks on large pub-
lic available datasets. One strategy to capture 3D data is through 3D scans.
The BUFF dataset [35] provides high resolution 3D scans, but few number of
subjects, poses and garments. Furthermore, scanning techniques cannot provide
layered models (one mesh for the body and one for each garment) and often
one can find regions occluded at scanning time, meaning missing vertices or cor-
rupted shapes. The work of [22] proposed a methodology to segment scans to
obtain layered models. Authors of [33] combined 3D scans with cloth simula-
tion fitting at each frame to deal with missing vertices. Similarly, [5] provided a
dataset from 3D scans. However, the amount of samples is in the order of a few
hundreds. The 3DPW dataset [18] is not focused on garments, but rather on pose
and shape in-the-wild. The authors proposed a modified SMPL parameterized
model for each outfit (18 clothed models), which, as SMPL, can be shaped
and posed. Nevertheless, resolution is low and posing is through rigid rotations.
Therefore, cloth dynamics are not represented. The dataset of [29] is syntheti-
cally created through physics simulation, with three different garment types:
tshirt, skirt and kimono. They propose an automatic garment resizing based
on real patterns, but provide only static samples on few different poses. The
work of [21] also includes a synthetic dataset obtained through simulation of 20
combinations of different garment styles and body shapes into 1782 static poses.
Finally, 3DPeople dataset [24] is the most comparable to ours in terms of scale,
but has significant differences w.r.t. CLOTH3D. On one hand, this dataset has
been designed specifically for computer vision. Data are given as multi-view
images (RGB, depth, normal and scene flow), there are no 3D models. On the
other hand, the garments are rigged models, so there is no proper cloth dynam-
ics. And lastly, source pose data is sparse, 70 pose sequences with an average
length of 110 frames. Our CLOTH3D dataset aims to overcome previous datasets
issues. We automatically generate garments to obtain a huge variability on gar-
ment type, topology, shape, size, tightness and fabric. Afterwards, we simulate
clothes on top of thousands of different pose sequences and body shapes. Tab.1
shows a comparison of features for existing datasets and ours. In CLOTH3D we
focus on sample variability (garments, poses, shapes), containing realistic cloth
dynamics. 3DPW and 3DPeople sequences are based on rotations on rigged mod-
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els, datasets of [21, 29] contain static poses only, and BUFF has very few and
short sequences. Moreover, none other provides metadata about fabrics, which
has a strong influence on cloth behaviour. Similarly, the scarcity of these datasets
implies low variability on garments, poses and subjects. Finally, note how only
synthetic datasets provide with layered models and have no annotation error.

3D Garment Generation. Current works in 3D clothing focus on the gen-
eration of dressed humans. We split related work into non-deep and deep-learning
approaches. Regarding non-deep learning, the authors of [10] proposed a data-
driven model that learns deformations from template garment to garment fitted
to the human body, shaped and posed. They factorize deformations into shape-
dependant and pose-dependant by training on rest pose data first, and later on
posed bodies. Transformations are learnt per triangle, and thus it yields incon-
sistent meshes that need to be reconstructed. The data-driven model of [22] is
able to recover and retarget garments from 4D scan sequences relying on masks
to separate body and cloth. Authors propose an energy optimization process
to identify underlying body shape and garment geometry, later, cloth displace-
ments w.r.t. body are computed and applied to new body shapes. This means
information such as wrinkles is ”copied” to new bodies, which produces valid
samples but cannot properly generate its variability. Regarding deep learning
strategies, the work of [11] deals with body and garments as different point clouds
through different streams of a network, which are later fused. They also use skin-
cloth correspondences for computing local-features and losses through nearest
neighbour. The works of [2, 17, 21, 32] consider encoding clothes as offsets from
SMPL body model with different goals. In [17] authors propose a combination
of graph VAE and GAN to model SMPL offsets into clothing. Similarly, in [21],
authors propose encoding garments as SMPL offsets and topology as a subset of
SMPL vertices, later, they learn two models for low and high frequency details
which effectively generate realistic wrinkles on the garments. In [29, 32] a PCA
decomposition is used to reduce clothing space. In [3, 12], authors register gar-
ments to low resolution meshes (garment templates and SMPL respectively), to
later use UV normal maps to represent high-frequency cloth details (wrinkles).
Authors of [26] propose learning Pose Space Deformation models for template
garments by training deep models instead of SVD (as SMPL). The work of [30]
presents a template garment autoencoder where latent spaces are disentangled
into motion and static properties to realistically interpolate into 3D keyframes.
Similar to previous approaches, our proposed methodology also encodes clothes
as SMPL offsets. Nevertheless, the assumption that garments follow body topol-
ogy does not hold for skirts and dresses. In this sense, we propose a novel body
topology specific for those cases. Additionally, our model predicts garment mask
along offsets to generate layered models.

3 Dataset

CLOTH3D is the first big scale dataset of 3D clothed humans. The dataset is
composed of 3D sequences of animated human bodies wearing different garments.
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Fig. 2: Unique outfit generation pipeline. First, one upper-body and lower-body
garment template is selected. Then, garments are individually shaped, cut and
resized. Finally, garments might be combined into a single one.

Fig. 1 depicts a sequence (first row) and randomly sampled frames from different
sequences. Samples are layered, meaning each garment and body are represented
by different 3D meshes. Garments are automatically generated for each sequence
with randomized shape, tightness, topology and fabric, and resized to target
human shape. This process yields a unique outfit for each sequence. It contains
over 7000 non-overlapping sequences of 300 frames each at 30fps, yielding a
total of 2.1M samples. As seen in Tab. 1, garment and pose variability is scarce
in available datasets, and CLOTH3D aims to fill that gap. To ensure garment
type balance, given that females present higher garment variability, we balance
gender as 2:1 (female:male). Finally, for validation purposes, we split the data
in 80% sequences as training and 20% as test. Splitting by sequences ensures no
garment, shape or pose is repeated in training and test.

The data generation pipeline starts with sequences of human bodies in 3D.
Human pose data source is [1], later transformed to volumetric bodies through
SMPL [15]. These sequences might present body self-collisions which will hinder
cloth simulation, not only on affected regions, but also in global garment dynam-
ics. We automatically solve collisions or reject these samples. Human generation
process is described in subsec. 3.1. Later, we generate unique outfits for each
sequence. We start from a few template meshes which are randomly shaped,
cut and resized to generate a unique pair of garments for each sample, with
the possibility to be combined into a single full-body garment. Fig. 2 shows the
generation process, which is also detailed in subsec. 3.2. Finally, once human
sequence and outfit are done, we use a physics based simulation to obtain the
garment 3D sequences. Simulation details are described in subsec. 3.3.

3.1 Human 3D Sequences

SMPL. It is a parametric human body model which takes as input shape
β ∈ R10 and pose θ ∈ R24×3 to generate the corresponding mesh with 6890
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Fig. 3: Types of self-collision: a) collided vertices can be linearly separated with
the aid of a body part segmentation, b) no trivial solution, we reject this kind
of sample, c) correct simulation might be possible if forearm is removed.

vertices. We use this model to generate animated human 3D sequences. We re-
fer to [16] for SMPL details. To generate animated bodies, we need a source
of valid sequences of SMPL pose parameters θ ∈ Rf×24×3. We take such data
from the work of [28], where pose is inferred from CMU MoCap data [1] follow-
ing the methodology proposed at [14]. These pose data come from around 2600
sequences of 23 different actions (dancing, playing, running, walking, jumping,
climbing, etc.) performed by over 100 different subjects. SMPL shape defor-
mations are linearly modeled through PCA. To obtain a balanced dataset we
uniformly sample shape within range [−3, 3] for each sequence.

Self-collision. Body collides with itself for certain combinations of pose and
shape parameters. Intersection volumes create regions where simulated repel
forces are inconsistent, corrupting global cloth dynamics. We classify these col-
lisions in three generic cases. Solvable Fig.3(a): small intersection volumes near
joints, specially armpits and crotch. We use SMPL body parts segmentation to
linearly separate the collided vertices to permit a correct simulation. Separation
space is 4mm so that a folded cloth can fit. Unsolvable Fig.3(b): big intersection
volumes or incompatible intersections (e.g.: arm vs. leg). We reject or re-simulate
with thinner body. Special cases Fig.3(c): removing hands, forearms or arms for
short-sleeved upper-body and lower-body garments significantly increases the
amount of valid samples. This requires manual supervision. Self-collision solu-
tion is not stored, hence, if collided vertices change significantly, garments might
present interpenetration w.r.t. unsolved body. Only small intersected volumes
are corrected and the rest are rejected (or simulated with thinner body). The
goal of self-collision solving is to avoid invalid cloth dynamics. Accurate, realistic
solving of soft-body self-collision is out of the scope of this work.

3.2 Garment Generation

Garment Templates. Generation starts with a few template garments for each
gender. Garments can be classified in upper-body and lower-body. Lower-body
can be further split into trousers and skirts. These three categories, and com-
binations between them, encompass almost any day-to-day garment. Template
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garments have been manually created by designers from real patterns and are:
t-shirt, top, trousers and skirt.

Shaping. On sleeves, legs and skirt, we find a significant shape variability.
It is possible to define them as cylinders of variable width around certain axes:
along arms for sleeves, legs for trousers and vertical body axis for skirt. For
sleeves and legs, width will be constant or decreasing while moving towards
wrist/ankle, and beyond a randomly sampled point along its axis, it might start
increasing (widening). For skirts, width always increases, from waist to bottom.
Rate of width decrease/increase is uniformly sampled within ranges empirically
set per garment. More formally:

W (x) = α1x+ α2 max(0, x− xoffset) +W0, (1)

where x is position along axis (0 at shoulder/hips), W (x) is width at position x,
W0 is width at x = 0, xoffset is a uniformly sampled point along the axis and
α1 and α2 are constants empirically defined for each garment. For t-shirts and
trousers, α1 < 0 < α2. For skirts, α1 > α2 = 0.

Cut. Template garments cover most of the body (long sleeves, legs and skirt).
At this generation step, garments are cut to increase variability on length and
topology. Cuts are along arms, legs and torso. Plus, upper-body garments have
specific cuts to generate different types of garments (e.g., t-shirt, shirt, polo).

Resizing. Garments are resized to random body shapes. It is safe to assume
that size variability on garments is similar to body shape variability. Following
this reasoning, SMPL shape displacements are transferred to garments by near-
est neighbour. Nevertheless, this process is noisy and human body details are
transferred to garment. To address these issues, an iterative Laplacian smoothing
is applied to shape displacements, removing noise and filtering high frequency
body details, while preserving the geometry of the original garment. On SMPL,
first and second shape parameters correspond to global human size and over-
all fatness. Knowing this, garments are resized to a different target shape. This
new shape has two offsets at first and second parameters, the garment tightness
γ ∈ R2. These offsets on garment resizing will generate loose or tight variability.
As tighter garments present less dynamics and complexity, we bias the generator
towards loose clothes by sampling tightness on the range [−1.5, 0.5].

Jumpsuits and Dresses. Full-body garments can be generated by combin-
ing upper-body and lower-body garments. After generating the clothes individ-
ually, a final step automatically sews them together.

3.3 Simulation

Cloth simulation is performed on Blender, an open source 3D creation suite.
Blender’s cloth physics, as it is in version 2.8, has been implemented with state-
of-the-art algorithms based on mass-spring model. The simulation performs 420−
600 steps per second, depending on the complexity of the garment.

Fabrics. Changing the parameters of the mass-spring model allows simula-
tion of different fabrics. Blender provides different presets for cotton, leather, silk
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Walk Animal Fight Jump Run Sing Wait Swim Story Sports Dance Yoga Spin

27.49% 10.79% 4.38% 2.78% 2.49% 2.38% 2.31% 1.97% 1.70% 1.63% 1.37% 1.01% 0.90%

Exercise Climb Carry Stand Wash Balancing Trick Sit Interact Drink Pose Others

0.84% 0.71% 0.67% 0.66% 0.63% 0.54% 0.51% 0.28% 0.20% 0.14% 0.14% 33.48%

Table 2: CLOTH3D statistics per action label.

and denim, among others. These four fabrics have been used for the creation of
the dataset. Upper-body garments might be cotton or silk, while the rest of the
garment types can be any of those fabrics. Different fabrics produce different
dynamics and wrinkles on simulation time.

Elastics. At simulation time, sleeves and legs have a 50% chance each of
presenting an elastic behaviour at their ends, also at waist on full-body garments.

3.4 Additional dataset statistics

Tab.2 shows the CLOTH3D statistics in terms of action labels by grouping them
into generic categories. Note that original data action label is very heterogeneous,
specific and incomplete. These labels are gathered from CMU MoCap dataset.
We observe a high density on Walk, but it is important to note that this gathers
many different sub-actions (walk backwards, zombie walk, walk stealthily, ...) as
many other action labels do. Additionally, most of these actions were performed
by different subjects, which implies an increase in intra-class variability. The
label ’others’ contains all action labels that cannot be included in any of the
categories plus all the missing action labels.

4 Dressed Human Generation

This section presents the methodology for deep garment generation. As [2, 17,
21, 32], data dimensionality and topology is fixed by encoding it as body offsets.
In addition, by masking body vertices we represent different garment types and
separate them from the body, e.g. in a similar fashion to [21, 22]. To compute
ground truth offsets, a body-to-garment matching is needed. A dedicated algo-
rithm for this task should be able to correctly register skirt-like garments which
have a different topology than the body. In sec. 4.1 we explain details of our
data pre-processing. Our proposed model is a Graph Conditional Variational
Auto-Encoder (GCVAE). By conditioning on available metadata (pose, shape
and tightness), we learn a latent space encoding specific information about gar-
ment type and its dynamics (details are given in sec. 4.3). Fig. 5 illustrates the
proposed model.

4.1 Data Pre-processing

In order to match among garment and body, we apply non-rigid ICP [4]. Reg-
istration is performed once per sequence in rest pose. Due to SMPL low vertex
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Fig. 4: Dual topology and registration. a) New additional proposed topology,
where inner legs are connected. This topology is used for graph convolutions as
well. b) Result of Laplacian smoothing of inner leg vertices. It is used only for
skirt/dress registration. We show top view of meshes around an imaginary red
cutting plane. c) Garment in rest pose. d) Garment registered to body model.

resolution, garment details could be lost. For this reason we subdivide the mesh
(and corresponding SMPL model parameters). Head, hands and feet are not
used to find correspondences and removing them halves input dimensionality.
This yields a final mesh with N = 14475 vertices. Finally, note that skirt-like
garments do not follow the same topology as SMPL mesh. For this task we
introduce a novel topology explained on the subsection below. An example of
the registration is shown in Fig. 4. Finally, body to cloth correspondences and
garment mask are extracted by nearest neighbor matching.

4.2 SMPL-Skirt Topology

From SMPL body mesh, a ‘column’ of inner faces of each leg is removed and
a new set of faces is created by connecting vertices from both legs, see Fig.4a.
New faces are highly stretched, producing noisy garment registrations if used as
is, NR-ICP yields optimal results for homogeneous meshes (in garment domain).
Because of this, we apply an iterative Laplacian smoothing to vertices belonging
to the inner parts of each leg, see Fig.4b for the result. This process is repeated
before registration with the corresponding shape of the subject in the sequence
in T-pose. This gives a matching between garment and body vertices to compute
offsets. For encoding garments as offsets we use body mesh without smoothing,
as this process will misbehave for posed bodies. Finally, for graph convolutions,
we use the Laplacian matrix corresponding to this new topology for garments
of type Dress and Skirt. This ensures that vertex deep features are aggregated
with the correct neighbourhood. Afterwards, we transfer body topology to the
predicted garment, and it is therefore crucial to use the correct topology for each
garment type.

4.3 Network

As shown in Fig. 5, our network is based on a VAE generative model. The goal is
to learn a meaningful latent space associated to the garments of any type, shape
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Fig. 5: Model pipeline. a) Input garment b) body and offsets w.r.t. body (Sec.
4.1). Model input is the concatenation of body and offsets. c) Network archi-
tecture. Conditional variables (CVAR) are processed by an AutoEncoder. To
improve latent space factorization, CVAR are also regressed from the first en-
coder FC layer. Decoder outputs are offsets and mask. d) Reconstruction of the
garment by adding offsets to body and removing body vertices according to
mask. We set N as 128.

or with wrinkles which is used to generate realistic draped garments. Garment
type and shape are associated to the static state of the garment while wrinkles
belong to the dynamics of the garments. Here, we disentangle the latent space
between statics and dynamics of the garments, and refer to learnt latent codes
as garment code (zs ∈ R128) and wrinkle code (zd ∈ R128), respectively. To do
so, we build two separate networks, one trained on static garments (so called
SVAE) and one trained on dynamic garments (so called DVAE). To factorize
the latent space from irrelevant parameters to the garment type and shape, we
condition SVAE on body shape (β ∈ R11)4 and garment tightness (γ ∈ R2).
Likewise, DVAE is conditioned on β, γ, body pose (θ ∈ Rf×72) and zs, where
f is the number of frames in a temporal sequence. Let cvars and cvard be the
stacking of conditioning variables of SVAE and DVAE in a single vector. It is
worth noting that θ is constant in SVAE so that we do not include it in cvars.
We implement graph convolutions as in [6, 7, 17, 19, 31, 34]. We also include skip
connections throughout the whole network.

Architecture. Let Xs ∈ RVT×3 and Xd ∈ RVT×3 be offsets computed on
static and dynamic samples, respectively. From now on we use subscript s and d
for static and dynamic variables and discard them for general cases. SVAE and
DVAE have a similar structure with three main modules: encoder {cvarz, z} =
Ψ(X̄, T̄ ), conditioning {cvar, cvarz} = Γ (cvar) and decoder {X̄,M} = Φ(z, cvarz),
where M ∈ RVT×1 is the garment mask. Conditioning network Γ is an autoen-
coder with one skip connection and cvarz is its middle layer features. The goal
of this network is to provide a trade-off between cvar and z. The architecture
details are shown in Fig. 5. Note that all GCN layer features (except first and last

4 We include gender as an additional dimension to the shape parameters.
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Fig. 6: Mesh hierarchy for pooling. Upper: default [9]. Lower: proposed. a), b)
and c) depict the mesh hierarchy used for graph pooling through the model.
Observe the difference on spatial distribution at a) and b). c) shows how lowest
pooling is more meaningful regarding the segments (one vertex per segment).
d) is the visualization of correspondences (receptive field) between highest and
lowest hierarchy levels. The proposed pooling yields more meaningful pooling
receptive fields w.r.t. body parts.

layers) are doubled in DVAE vs. SVAE. We refer the reader to the supplementary
material for more details on the network architecture.

Pooling. We resort to a mesh simplification algorithm [9] to create a hierar-
chy of meshes with decreasing detail in order to implement the pooling operator.
We follow [34] to have vertices uniformly distributed in the graph coarsening.
However, this approach does not guarantee a uniform or meaningful receptive
field on a high resolution mesh. To achieve a homogeneous distribution of cor-
respondences throughout the body between pooling layers, we define a segmen-
tation (Fig. 6(d)) and forbid the algorithm from contracting edges connecting
vertices of different segments. Segmentation contains 21 segments and it is de-
signed such that regions of the body with highest offset variability have smaller
segments. Thus, more capacity of the network is available to model those parts.
See Fig. 6. Our mesh hierarchy is formed by 6 different levels. The dimension-
ality of those meshes is: 14475 → 3618 → 904 → 226 → 56 → 21, leaving a
single node for each segment on the last pooling layer. We use max-pooling in
the proposed hierarchy. For unpooling, features are copied to all corresponding
vertices of the immediate higher mesh.

Loss. We train conditioning network Γ independently using L1 loss and
freeze its weights while training VAE. S/DVAE loss is a combination of a garment
related term, a cvar term and KL-divergence:

L = Lg + Lcvar + λKLDKL(q(z|X, cvar)||p(z|cvar)), (2)

Garment related term handles offsets, mask (if available), smoothness and colli-
sions:

Lg = Lo + λnLn + λmLm + λcLc, (3)
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Surface Normals Mask KL loss

All 14.3 1.04 0.9518 0.9820
No normals 22.8 1.07 0.9472 0.5966
No mask 92.7 1.19 - 0.8799
No collision 14.7 1.02 0.9522 0.9414
No CVAR 14.8 1.02 0.9520 1.1009
Default pooling 14.9 1.03 0.9390 0.7623

(a)

Surface Normals Mask KL loss

Top 11.9 1.20 0.9035 0.9536
T-shirt 15.5 1.21 0.9565 1.1701
Trousers 10.9 0.84 0.9475 0.9008
Skirt 21.4 0.79 0.9520 1.0255
Jumpsuit 13.3 1.07 0.9637 0.8788
Dress 16.7 1.06 0.9662 0.9995

(b)

(c) Table 2: (a) Ablation results on the static dataset for all clothes. (b) Ablation
results (full model) on the static dataset for each cloth category. Surface and normal
errors are shown in mm and radians, respectively.

where Lo is an L1-norm applied to output offsets. Ln is the smoothness term
based on L1-norm on normals. We found that regular Laplacian loss ensures
smoothness at the cost of losing high frequency geometric details, while a normal
loss makes output geometry consistent w.r.t. the input. Lm consists on L1-norm
on mask. Finally, Lc is the collision loss. Given that garments are represented
as offsets, we design this loss as:

Lc = max(0,−o · VN ), (4)

where o are the output offsets and VN are the body normals at the corresponding
vertices, this penalizes offsets that go within the body. Lcvar is L1 loss on encoder
cvarz regressor.

5 Experiments

First, we detail the metrics chosen to analyze the results.
Surface. Given that input and prediction have the same dimensionality and

order, we use standard euclidean norm (in mm.).
Normals. Measure of surface quality. We compute normals error based on

mesh face normals by their angle difference (in radians) to ground truth normals.
Mask. Garment mask is evaluated by the intersection over union (IoU).
KL Loss. We use KL loss as a measure of quality of latent code factorization

and meaningfulness of the latent space.

5.1 Ablation Study

We trained SVAE on an additional dataset of static samples (in rest pose) with
30K samples. 20% of the data is kept for evaluation and the rest for training.
The results are shown in Tab. 3a and 3b.

Normals. Looking at the second row of Tab.3a we observe that enforcing
a reconstruction consistent with normals significantly reduces surface error and,
as expected normals error. However, including normals has a negative impact on
KL loss comparing to first row.
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# frames Top T-shirt Trousers Skirt Jumpsuit Dress Avg.

1 21.8/1.24 28.8/1.29 20.7/0.89 37.6/0.92 28.2/1.15 35.5/1.13 29.0/1.10

4 20.1/1.23 28.0/1.28 18.5/0.86 33.2/0.89 26.1/1.09 32.2/1.11 26.1/1.08

Table 4: Ablation results (full model) on the dynamic dataset conditioning on
different number of frames. Left: surface error (mm) / Right: normals error
(radians).

Mask. As seen in third row of Tab. 3a, both, surface and normals error are
significantly higher without mask prediction (comparing to first row).

Collision. Fourth row of Tab. 3a shows how collision loss helps to improve
vertex location by pushing collided vertices to their correct position. On the
other hand, it is observable a non-significant increase on other losses.

CVARs. As explained in Sec.4.3, conditional variables are regressed from
the first FC layer of the encoder to improve latent space factorization. On fifth
row of Tab. 3a we can see that, while surface or normals error have no significant
differences, KL loss improves.

Pooling. On Sec.4.3 we discussed different approaches for tackling the pool-
ing on a graph neural network. To do this, we built a mesh hierarchy. We com-
pared default mesh simplification algorithm versus our proposed modification.
Results are shown in the last row of Tab. 3a. While improvement on surface and
normals errors is marginal, this new pooling benefits mask prediction.

Per Garment Category Error. Results per garment are shown in Tab.
3b. Skirts present the highest surface error, as its vertices are further away
from the body compared to other garments. Following this reasoning, we find
trousers having the less surface error. If we look at normals error, we find an
opposite behaviour for skirts, as their geometry is the simplest one. On the other
hand we see that upper-body garments present more complex geometries, and
therefore, higher normals error. Looking at mask error, we see that garments
that cover most of the body have the lowest error. This is due to IoU metric
nature, the lower the number of points, the more impact shall have each wrong
prediction. Finally, looking at KL loss, we observe the model has difficulties to
obtain meaningful spaces for T-shirts. As explained on Sec.3.2, T-shirts category
includes open shirts as well, which highly increases class variability. We also see
that trousers and jumpsuits have the lowest KL loss.

Learned Latent Space. In Fig. 7a, we show distribution of 5K random
static samples computed by t-SNE algorithm. As one can see, the proposed GC-
VAE network can group garments in a meaningful space. Interestingly, dress and
jumpsuit that share more vertices also share the same latent space. Additionally,
we show garment transitions in this space in Fig. 7b. One can see how garments
transit between two different topologies (3rd row) or among different genders
and shapes (4th row).

We study DVAE model in Tab. 4. We condition DVAE on pose for a single
frame vs. four frames. Four frames are selected every 3 frames, resulting in a
12-frame clip. Training the model on a sequence of frames leads to better results
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Fig. 7: a) Visualization of the learned latent space for static samples using t-
SNE algorithm. b) Transitions of static samples. First three rows: conditioning
on shape, tightness or cloth while the rest are fixed. Last two rows: transition of
all variables. Variables are linearly graduated.

Fig. 8: Garment reconstruction for sequences. Note that the model has not been
trained to keep temporal consistency.

in all garment categories (3mm improvement in average). This is while we do
not include any temporal information in the encoder nor any specific sequence
prediction loss. DVAE qualitative results for single frames and sequences are
shown in Fig.1(right) and Fig.8, respectively.

6 Conclusions

We presented CLOTH3D, the first large scale synthetic dataset of 3D clothed
humans. It has a large data variability in terms of body shape and pose, garment
type, topology, shape, tightness and fabric. Generated garments also show com-
plex dynamics, providing with a challenging corpus for 3D garment generation.
We developed a baseline method using a graph convolutional network trained as
a variational autoencoder, and proposed a new pooling grid. Evaluation of the
proposed GCVAE on CLOTH3D showed realistic garment generation.
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