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Abstract. Pose estimation usually suffers from varying degrees of per-
formance degeneration owing to occlusion. To conquer this dilemma, we
propose an occlusion-aware siamese network to improve the performance.
Specifically, we introduce scheme of feature erasing and reconstruction.
Firstly, we utilize attention mechanism to predict the occlusion-aware
attention map which is explicitly supervised and clean the feature map
which is contaminated by different types of occlusions. Nevertheless, the
cleaning procedure not only removes the useless information but also
erases some valuable details. To overcome the defects caused by the
erasing operation, we perform feature reconstruction to recover the in-
formation destroyed by occlusion and details lost in cleaning procedure.
To make reconstructed features more precise and informative, we adop-
t siamese network equipped with OT divergence to guide the features
of occluded images towards those of the un-occluded images. Algorith-
m is validated on MPII, LSP and COCO benchmarks and we achieve
promising results.
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1 Introduction

2D human pose estimation has enjoyed great success in recent years owing to
the development of deep neural networks. It aims at predicting the positions
of human joints given a single RGB image and serves as a significant basis for
several vision tasks such as action recognition [38, 26], person re-identification
[27] and human-computer interaction [20]. Nevertheless, it is still confronted with
a lot of challenges such as view changes, complex human gestures, human joints
scale changes and occlusion. Among these troublesome factors, occlusion shown
in Fig. 1 poses great degradation to the performance of human pose estimation.
In general, presentation of occlusions leads to contamination of deep features
and confuses the network to make incorrect decisions.
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Fig. 1. Illustration of the results on some occluded images of MPII datasets.

Previous methods based on deep neural networks [28, 21, 36, 3] mainly fo-
cused on searching more efficient and powerful architectures of the deep neural
networks. [8] utilized CRF-based attention to settle the occlusion problem. [4]
proposed an adversarial posenet to tackle this issue. However, attention used in
[8] leads to large increases of the parameters and computation cost while adver-
sarial network in [4] is usually hard to converge. In this paper, an occlusion-aware
siamese network is proposed to conquer the dilemma caused by occlusion and
surpasses these mentioned methods based on the same backbone.

We leverage the attention mechanism to exclude the interference of occlusion-
s. Among those popular human pose estimation benchmarks, COCO keypoint
detection dataset [16], MPII dataset [1], usually, occlusion flag is offered as an-
other labeling information. Here, we employ the occlusion flag which is seldom
excavated before to predict corresponding occlusion circumstances and obtain
occlusion-aware attention map. Compared with previous attention mechanisms
[8, 42] used in human pose estimation, attention map employed here is learned
explicitly via intermediate supervision, which is more purposeful and can predict
occlusion more precisely. The obtained attention map serves as a solid foundation
for feature erasing and reconstruction.

Feature erasing means erasing the contaminated feature map and provides
cleaner representation. Guided by explicitly learned occlusion-aware attention
map, we can remove the ambiguities caused by occlusion and obtain relatively
cleaner feature map.

However, cleaned feature map cannot provide precise and holistic descrip-
tion of the whole human skeleton due to the missing semantic information. The
erasing procedure not only deletes tremendous incorrect expressions but also
mistakenly gets rid of some informative cues especially under the circumstances
of self-occlusion. Hence, feature reconstruction is necessary for obtaining more
powerful and informative feature representations. On one hand, feature recon-
struction attains refreshed information to replace those occluded features in the
case that semantics are destroyed by occlusion. On the other hand, feature re-
construction is able to recover the wrongly removed semantics when useful infor-
mation is mistakenly erased. Here, we design a feature reconstruction submodule
which can capture information from surrounding areas without occlusion to fa-
cilitate the recovering.
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To provide ample prior guidance for reconstruction, here, we advance a
siamese framework to facilitate this process. The siamese network possesses t-
wo branches overall where model weights are shared between them. The second
branch takes images without artificial occlusion as input to extract the clean
feature representation. In contrast, the first branch takes occluded images which
contain the same content as the second branch except for the appearance of the
occlusion as input. The occlusion appearing in the first branch is manually creat-
ed. Purpose of the siamese structure is to make the occluded branch imitate the
behavior of the branch without occlusion. How to pull these two branches more
closely in high-dimension feature space is challenging. In this paper, we employ
optimal transport (OT) divergence [18, 25] with additional mask as deluxe reg-
ularization instead of correspondence-based approaches to achieve this purpose.
Branch without occlusion encodes more confident information whilst the other
branch is less confident somehow. The introduction of OT divergence enables
the less confident feature to be aligned with the more confident one.

Integrating submodules aforementioned together forms our occlusion-aware
siamese network and whole framework is named as OASNet which aims at set-
tling the occlusion problem. The main contributions are three folds:

– We propose a feature erasing and reconstruction submodule to obtain cleaner
feature representation and reconstruct the erased feature. Different from
previous methods, attention map which is occlusion-aware is put forward to
remove the ambiguities caused by different types of occlusion.

– To make the occluded feature mimic the behavior of feature without occlu-
sion, siamese network equipped with erasing and reconstruction submodule
is put forward.

– Instead of utilizing correspondence-based methods to narrow the discrepancy
of these two sets features, we adopt the optimal transport to fulfill this task.
Our model makes the first attempt to perform human pose estimation under
the primal form of optimal transport algorithm and proves effective.

2 Related Work

Human Pose Estimation. Recent years human pose estimation has achieved
promising progress due to the application of deep neural networks. DeepPose
[34] made the first attempt to integrate human pose estimation and deep neural
network together. Pose estimation was regarded as a regression task and coor-
dinates of human joints were predicted directly as model output. Nevertheless,
directly regressing human joints was somewhat difficult and heatmap regression
methods [6, 21, 36, 8, 39, 30, 13, 3, 37] emerged as a new fashion. Among these
methods, [33, 32, 11, 19] were devoted to reducing the false positive predictions
via different types of Markov Random Field (MRF). [7] concentrated on building
the spatial relationships of different human joints features with the Conditional
Random Field (CRF). In addition to these deep graphical models, searching more
efficient network structures yielded state-of-the-art performance. [36] proposed
the concept of deep convolutional pose machines to enlarge the respective field
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Fig. 2. Illustration of proposed occlusion-aware siamese network. There exist two
branches where the first branch takes the artificially occluded image as input and
the second branch takes the primal image as input.

and refined initial predictions via cascaded design. Hourglass [21], also called
conv-deconv structure, adopted the cascaded design as well to refine previously
generated results step by step. Subsequent works such as [8, 39, 30, 13, 22, 40, 29]
all took hourglass as their backbone to extract efficient feature representations
and implemented their ideas. [28] proposed HRNet which aimed at maintaining
high resolution features across all stages of the network and achieved state-of-
the-art performance across several human pose benchmarks.

3 Method

Overview of the proposed framework can be found in Fig. 2. In this section,
we will detail the proposed occlusion-aware siamese network in three aspects,
feature erasing and reconstruction, siamese framework and optimal transport
divergence.

3.1 Feature Erasing and Feature Reconstruction

Occlusion poses great threat to human pose estimation due to missing semantics
of corresponding human joints and contamination of the features. Existence of
the occlusion confuses the network to make right decisions and hesitate around
the area of occlusion. Hence, predicting occlusion flag serves as a necessary task
to perceive the occlusion and provides essential cues for subsequent recognition
and location. Previous methods generally take use of auto-learned attention to
highlight the informative patches yet occluded regions are also picked out. It is
difficult to perform the cleaning schedule in this case. In this paper, we exploit
the occlusion flag which is additionally labeled to learn the attention explicitly.
Previous works seldom leverage this labeling resource and ignore this valuable
cue.
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Fig. 3. Ground truth of occlusion heatmaps and corresponding predictions. Red rect-
angles demonstrate the predicted continuous occlusion patches.

To model this occlusion pattern, multi-task learning is adopted here. As
shown in Fig. 2, predictions of occlusion map and joint heatmaps are regarded
as two separate tasks and the whole prediction process is modeled as a multi-
task learning framework. Hard sharing mechanism where backbone for feature
extraction is shared is adopted here.

We try two different approaches to perform the multi-task learning. For the
first one, we regard the prediction of occlusion status as a classification task,

Lo = −
N∑
i=1

C′−1∑
c=0

pi,clog(pi,c), (1)

where cross entropy loss is utilized, N represents the number of human joints and
C ′ indicates class numbers. Value of C ′ is 3 where class 0 indicates “not labeled”,
1 indicates “labeled but not visible” and 2 indicates “labeled and visible”.

In addition, we also try modeling the occlusion prediction as a heatmap
regression task. Supervision for heatmap regression is formulated as shown in
Fig. 3. We sum the occluded joint heatmaps up and the resulted heatmap is
clamped to [0, 1]. Loss for this branch is denoted as

Lo = ||Ho − Ĥo||22, (2)

whereHo is the predicted occlusion map and Ĥo represents corresponding ground
truth. From Fig. 3 we can observe that predicted occlusion heatmaps are capable
of predicting the continuous occlusion patch especially under extremely severe
occluded situations. Prediction manner shown in Equation 1 brings in perfor-
mance drop and we abandon the utilization of it. Directly classifying occlusion
flag seems to be a hard task. Loss for human joints regression is expressed as

LJ =

N∑
i=1

||Hi
J − Ĥi

J ||
2
2, (3)

where N represents the number of human joints. Overall loss for this multi-task
learning framework is denoted as

L = LJ + λoLo, (4)

where λo is a hyper-parameter which modulates the proportion of losses with
respect to these two tasks.



6 L. Zhou et al.

Rate=4Rate=2

cF

Fig. 4. Design of the reconstruction submodule. Two consecutive dilated convolution
operations are adopted.

We convert the resulted occlusion heatmap to corresponding attention map
via

HA = 1−Ho, (5)

where HA ∈ R1×H×W represents the occlusion-aware attention map. Operation
of feature cleaning can be denoted as

Fc = FJ �HA, (6)

where feature map FJ ∈ RC×H×W is weighted by HA. However, the missing
information may deteriorate the overall performance. It is critical for the net-
work to learn an automatic resuming mechanism and reconstruct the missing
knowledge.

To obtain enough semantic information from surrounding areas of the occlud-
ed patches, two consecutive dilated convolutions with kernel 3 × 3 are adopted
to ensure ample spatial coverage and enlarge respective field of the submodule.
Dilation rates are 2 and 4 respectively. Maybe more complex design can exhibit
better performance, however, it is not the main concern of this paper and the
submodule here has shown promising advantage. Concrete demonstrations can
be found in Fig. 4.

3.2 Siamese Framework

Feature reconstruction submodule reconstructs the erased features without any
instruction. Though it takes advantage of context from neighboring regions, it
still cannot recover the missing information precisely owing to the lack of prior
guidance. The information recovered may not be adequate for final locating
and still carries enormous distractive information. It is critical to provide a
precise mentor for the reconstruction submodule to make the reestablishment
process more reasonable. Perfect reestablishment may be the reproduction of
the features of the images without occlusion. The reconstructed feature in this
case can encode the same context as the un-occluded image.

It is intuitive to think of the teacher-student mode to perform the guidance
procedure, i.e., distillation. Pre-trained model which takes the un-occluded im-
ages as input serves as the teacher and the model to be trained with occluded
images acts as the student. Teacher model carrying more reliable sets of infor-
mation provides more confident supervision for the student model. Nevertheless,
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Fig. 5. (a) Illustrations of mask mechanism. (b) Illustrations of optimal transport
submodule.

the features and parameters of pre-trained teacher model differ largely from
the student and they are totally two different models. Directly executing the
distillation over these two feature sets from two completely different models is
challenging and not that adequate for our task.

In this paper, we abandon the usage of distillation and propose a novel
siamese framework to conduct the mimicking process. As depicted in Fig. 2,
siamese training is utilized to fulfill the mission of the similarity learning. The
first branch takes the image with artificial occlusions as input and encodes the
less confident information. The second branch takes the primal images without
artificial occlusions and offers more confident information. The self-supervised
training mechanism executes another form of teacher-student guidance and out-
performs the distillation technique mentioned above.

To enforce artificial occlusions on primal images, we follow the same pasting
operation as [13]. Random numbers of occlusion patches are chosen on each
image with different scales to enrich the occlusion types. However, some primal
images may have been endowed with some natural occlusions and it is non-trivial
to perform the mimicking with mask to exclude the interference of the natural
occlusions. The masked mimicking learning can effectively narrow the gap across
the two branches of siamese network.

3.3 Optimal Transport Divergence

The most straightforward manner for reducing the gap between the two branches
of siamese network is to narrow the corresponding pixel discrepancy. Various
evaluation losses can be adapted into this kind of framework. Distinct from
these methods, matching the distributions of these two branches acts as another
substitute. In contrast, matching corresponding distributions demonstrates more
superior advantages than correspondence-based techniques especially over the
space of high dimension. In this section, we will detail the feature mimicking
losses we explore.

Correspondence-based Approaches Correspondence-based methods seek to
measure the discrepancy between these two branches by means of pixel corre-
spondence. We denote the feature after reconstruction of the first branch as FRo ∈
RC×H×W , and the feature of the second branch is expressed as FR ∈ RC×H×W .
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Since there might exist some natural occlusions, it is necessary to exclude the
guidance from these areas. In these areas, features from the second branch suffer
from contamination as well and reconstruction may not be better than the first
branch. We add a mask which excludes the mimicking of the areas with natural
occlusions and is denoted as M ∈ R1×H×W . Illustrations can be found in Fig.
5(a). Feature map decorated by mask can be obtained via

FR = FR �M,

FRo = FRo �M,
(7)

where FR, FRo ∈ RC×H×W indicate masked feature maps. To minimize corre-
sponding distinctions, L2 loss is adopted as follows:

Lmimic =

N∑
i=1

||FR(i)− FRo (i)||22, (8)

where i means the ith location and N is H × W . Cosine similarity can be
implemented following the similar way.

Distribution-based Approaches Aligning the distributions of these two group-
s features serves as another variant to eliminate the existing discrepancy. Usually
KL divergence and JS divergence are two common measurements to assess the
divergence between two distinct distributions. However, the comparison of these
two distributions is still carried out on high-dimension space. To settle this dilem-
ma, optimal transport divergence is adopted to compare the two distributions
in a low-dimension feature space and relieves the difficulty.

Optimal transport seeks to find the optimal transportation strategy γ0 to
perform the mass moving from distribution u to distribution v and minimizes
the transport cost. Usually, discretized version of optimal transport is adopted,

γ0 = arg min
γ∈Π(u,v)

〈γ,M〉F ,

Π(u, v)
def.
= {γ ∈Rm1×m2

+ : γ1m2
= u, γT 1m1

= v},
(9)

where 〈., .〉F indicates the Frobenius dot product, 1m := (1/m, ..., 1/m) ∈ Rm+ .

M ∈ Rm1×m2
+ indicates the cost matrix.

Given the two sets of features FR, FRo shown in Fig. 2, masked features

are denoted as FR, FRo as well. Optimal transport divergence problem can be
formulated as

Lmimic = OT (FR, FRo )

= WM (FR, FRo )

def.
= min

γ∈Π(u,v)
〈γ,M〉F ,

(10)

where OT (FR, FRo ) evaluates the distance between these two distributions. The

channel number of FR and FRo is denoted as C. At first, a critic which attempts
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Algorithm 1 Iterative implementation of Sinkhorn divergence.

Input: Input masked feature maps FR and FR
o , critic module D

Output: Sinkhorn loss WM (FR, FR
o )

1: Feature FR and FR
o are both sent into the critic, F̃R = D(FR) and F̃R

o = D(FR
o )

2: ∀(i, j) in F̃R, F̃R
o , Mij

def.
= cos dis(F̃R(i), F̃R

o (j)) and M ∈ RC×C

3: Initialize b(0) ← 1C

4: Compute Gibbs Kernel Ki,j = exp(−Mi,j/ε)
5:

for r = 0; r < R; r + + do
ar+1 := 1C

KT br
, br+1 := 1C

Kar

end for

6: Matrix PR can be obtained via diag(bR) ·K · diag(aR)
7: WM can be obtained via: 〈M,P 〉
8: return WM

to down-sample these two groups features from C×H×W to C×H ′×W ′
with

only one convolution layer is utilized and channel dimension is kept unchanged.

The changed features are denoted as F̃R, F̃Ro . Concrete illustrations can be found

in Fig. 5(b). F̃R, F̃Ro are then reshaped into C × k and k = H
′ ×W ′

. When it
comes to the computation ofWM , we take the same policy as [15, 9] in an iterative
manner. Sinkhorn divergence is hence implemented and reduces the computa-
tional complextiy. Cost Mij is defined as the cosine distance. Illustrations of the
algorithm can be found in Algorithm 1. Coefficient ε in Algorithm 1 is set to 0.1
and iteration number R is set to 5 finally.

Compared with correspondence-based manners, OT divergence overcomes
the defect of sensitivity to the disturbances from outliers. Compared with KL
divergence, for one hand, OT divergence conducts the similarity comparison
in a low-dimension feature space. On the other hand, OT divergence relieves
the issue of “vanishing gradient” under the circumstances of non-overlapped [2,
35] distributions and enforces more strict constraints. The optimal transport
assures that distributions between FR and FRo become closer and facilitates the
mimicking process.

3.4 Training and Inference

Effectiveness of the algorithm is validated on two backbones Hourglass [21] and
HRNet [28]. Erasing and reconstruction submodule is appended at the end of
both two backbones.

Loss of the framework can be separated into three parts and denoted as
follows:

L = LJ + λoLo + λmimicLmimic, (11)

where λo, λmimic represent the balancing factors to regulate the proportion of
these losses and Lmimic represents all the feature mimicking losses mentioned in
section 3.3. LJ and Lo take advantages of MSE loss which is a common scheme
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in human pose estimation. Here, λo is taken as 1. Value of λmimic depends on the
loss type. When L2 distance, cosine distance, and OT divergence are accepted,
it is endowed with value 0.001. When KL divergence is taken, it is endowed with
100 to achieve better balance.

During inference, heatmaps fetched from the last stack of hourglass and the
end of the HRNet are evaluated.

4 Experiments

4.1 Datasets

We evaluate our approach on three widely applied benchmarks, MPII [1], LSP
[12] and COCO datasets [16]. MPII dataset contains 25k images with around
40k poses. LSP dataset consists of primal LSP split which contains 2k samples
and LSP-extended split which possesses 10k samples. Usually, 1k samples out
of the primal LSP dataset are used for test purpose and the other 11k sam-
ples are employed for training. COCO serves as one of the largest human pose
benchmarks where 200k images are involved with 250k person instances labeled.
In our implementation, 150k images with around 150k person instances are in-
cluded during the training process. The proposed method is evaluated on the
validation split where 5000 images are engaged.

4.2 Implementations

Data Augmentation. The experiments conducted on the MPII and LSP dataset
take utilization of the same data augmentations scheme as previous works [39,
8]. During training, random rotation (±30), color jittering, random scaling and
random flipping are adopted. Input resolution is 256 × 256. Experiments on
COCO dataset take advantage of completely the same data augmentations as
[28] for fair comparison.

Training Schedule. All the experiments are conducted on the platform of
Pytorch. For hourglass-based model, we employ RMSProp [31] to optimize the
network. Learning rate is initialized with 5.0 × 10−4 and dropped by 10 at the
epoch of 150, 170, and 200 with overall 220 epochs. For HRNet-based model,
training schedule follows [28]. Learning rate for HRNet-based model is initialized
with 1.0×10−3 and decayed by 10 at the epoch of 170 and 200. Adam optimizer
[14] is adopted in HRNet-based model.

Test Schedule. Test over the MPII, LSP dataset follows [39, 8, 30] and takes
use of six-scale pyramid pattern with flipping. Test over the COCO dataset
follows the same procedure as [28] and bounding boxes used are kept the same
as [28] as well.

4.3 Benchmark Results

MPII Dataset. Results on the MPII test set can be found in Table 1. Hourglass-
based model (8 stacks) is used for test. We can observe that our approach
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Table 1. Evaluation results using PCKh@0.5 as measurement on the MPII test set

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Insafutdinov et al. [10] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Wei et al. [36] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Newell et al. [21] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Ning et al. [23] 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2
Chu et al. [8] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
Liu et al. [17] 98.4 96.4 92.0 87.9 90.7 88.3 85.3 91.6
Chou et al. [5] 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8
Yang et al. [39] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0
Ke et al. [13] 98.5 96.8 92.7 88.4 90.6 89.3 86.3 92.1
Tang et al. [30] 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3
Sun et al. [28] 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3
Zhou et al. [41] 98.5 96.9 92.8 89.3 91.8 89.5 86.4 92.5
Tang et al. [29] 98.7 97.1 93.1 89.4 91.9 90.1 86.7 92.7

ours (hg) 98.5 97.0 93.0 89.4 91.7 90.3 86.5 92.7
ours (HRNet-W32) 98.8 97.0 92.9 89.1 91.3 89.3 85.8 92.4

Table 2. Performance of our model based on HRNet-w32 over MPII validation split.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

HRNet 97.03 96.02 90.73 86.62 89.41 86.66 82.45 90.33
HRNet+Ours 97.24 96.50 91.07 86.81 89.55 87.08 83.63 90.71

achieves promising results compared with previous state-of-the-art methods. Fi-
nal PCKh score is 92.7 and the improvement over baseline reaches up to 1.8%.

To validate the effectiveness of the algorithm, we try different backbones and
results of HRNet-based methods over MPII validation split can be found in Table
2. For HRNet-based methods, we test on the MPII validation split with flipping
and omit the six-scale pyramid testing for fair comparison. Compared with o-
riginal HRNet which achieves 90.33 PCKh@0.5 score (We re-implement HRNet
and the results is almost consistent with the results from official website.), our
new algorithm achieves 90.71 PCKh@0.5 score and surpasses primal version by
0.38%. The occlusion-aware siamese network can still improve the performance
even based on a strong baseline. Results over test split with 6-scale pyramid test
can be found in Table 1, which achieve 92.4 PCKh score.

LSP dataset. Results of the LSP dataset can be found in Table 3. When
training LSP dataset, MPII dataset is included following previous works [39, 8].
However, occlusion flag for LSP-extended split is omitted somehow and cannot
provide precise supervision for LSP training. To obtain corresponding supervi-
sion for occlusion attention map, attention map from model pre-trained on MPII
dataset is employed as the ground truth which serves as an approximation. From
Table 3, we can observe that our model achieves promising results compared with
previous state-of-the-art methods.

COCO dataset. For COCO dataset, evaluation results on the validation set
are illustrated in Table 4. The model is based on primal HRNet and input size
is set to 256 × 192. The results displayed of the other works are fetched from
[28]. Following completely the same training and testing strategy as HRNet, our
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Table 3. Evaluation results using PCK@0.2 as measurement on the LSP dataset

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Rafi et al. [24] 95.8 86.2 79.3 75.0 86.6 83.8 79.8 83.8
Insafutdinov et al. [10] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Wei et al. [36] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
Chu et al. [8] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6
Liu et al. [17] 98.1 94.0 91.0 89.0 93.4 95.2 94.4 93.6
Yang et al. [39] 98.3 94.5 92.2 88.9 94.4 95.0 93.7 93.9
Chou et al. [5] 98.2 94.9 92.2 89.5 94.2 95.0 94.1 94.0
Tang et al. [29] 98.6 95.4 93.3 89.8 94.3 95.7 94.4 94.5

ours (hg) 98.8 95.2 92.3 89.8 95.2 95.5 94.7 94.5

Table 4. Results on the COCO validation set.

Method Backbone Pretrain Input Size Params GFLOPs AP AP 50 AP 75 APM APL AR

HRNet-W32 [28] HRNet-W32 N 256× 192 28.5M 7.10 73.4 89.5 80.7 70.2 80.1 78.9
HRNet-W32 [28] HRNet-W32 Y 256× 192 28.5M 7.10 74.4 90.5 81.9 70.8 81.0 79.8
HRNet-W48 [28] HRNet-W48 Y 256× 192 63.6M 14.6 75.1 90.6 82.2 71.5 81.8 80.4

Ours HRNet-W32 Y 256× 192 29.9M 9.0 75.0 90.4 81.8 71.5 81.9 80.4
Ours HRNet-W48 Y 256× 192 66.0M 17.3 75.5 90.7 82.4 72.0 82.4 80.7

HRNet-w32 surpasses the baseline by 0.6 mAP and HRNet-w48 surpasses the
baseline by 0.4 mAP.

Improvement over occluded and un-occluded human joints. Table 5 demon-
strates the overall improvement over occluded and un-occluded human joints.
The models are based on 2-stack hourglass model and HRNet. Improvement
over occluded joints based on hourglass model is 1.72. The algorithm improves
the performance over occluded joints. In contrast, the improvements over un-
occluded joints is 1.12. These improvements can be ascribed to the reconstruction
model which also benefits the un-occluded joints due to the capturing of more se-
mantics. When utilizing HRNet as backbone, we can observe that improvement
over occluded human joints makes the main contribution to the performance
boosting. Progress over occluded human joints reaches about 1.51 PCKh score
while progress over un-occluded human joints is only 0.19. From Table 5, we can
observe that the algorithm improves the performance of occluded human joints
across different backbones.

4.4 Ablation Study

We conduct the ablation study on the validation split of the MPII dataset and
take 2-stack hourglass model whose result serves as the baseline as backbone. All
the evaluation results are tested with single scale image and flipping operation
is not involved.

Effectiveness of the E&R submodule. Different forms of the multi-task learn-
ing of occlusion prediction cause distinct effects. For classification-based methods
shown in Eq. 1, performance drops obviously compared with baseline. In con-
trast, regression-based approach shown in Fig. 3 maintains the performance and
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Table 5. Evaluation results using PCKh@0.5 as measurement on the MPII validation
set with respect to the occluded joints and un-occluded joints

Method Occluded Un-occluded Method Occluded Un-occluded

hourglass 72.59 92.06 HRNet 76.21 94.00
hourglass(ours) 74.31 93.18 HRNet(ours) 77.72 94.19

86.25 86.50 86.75 87.00 87.25 87.50 87.75 88.00

Baseline

Class.

Regress.

Recon.

E&R

87.42

86.56

87.44

87.76

87.91

(a)

87.6 87.8 88.0 88.2 88.4 88.6 88.8 89.0

Non

Distill

L2

Cosine

KL

OT

0.350.35 0.35 0.35 0.35

88.34

88.23

88.41

88.39

88.46

88.29

88.56

88.69

87.76

88.09

(b)

non-detach
detach

Fig. 6. (a) Effectiveness of the erasing and reconstruction submodule. “Class.” means
predicting occlusion flag via classification-based methods, “Regress.” means predicting
occlusion flag leveraging regression-based methods, “Recon.” means the reconstruction
without cleaning. “E&R” means cooperation of erasing and reconstruction. (b) Ef-
fectiveness of different losses of the feature mimicking. “L2”,“Cosine”,“KL”,“OT” are
four different losses we adopted in our paper. “Non” represents the omitting of the
mimicking loss. ”detach” indicates operation of detachment of the un-occluded branch,
whilst ”non-detach” indicates the omitting of the detachment.

causes non-deterioration. The disparity may primarily come from the large gap
of different types losses and we adopt the regression-based methods in the end.
The effectiveness of the erasing and reconstruction submodule can be found in
Fig. 6(a). We can note that reconstruction without cleaning improves the per-
formance by 0.34%. The improvement mainly originates from the enrichment
of context and enlargement of respective field, which confirms the rationality of
the reconstructing design. When erasing operation is involved, the improvement
promotes further. The erasing procedure excludes enormous interferences and
thus benefits reconstruction process.

Effectiveness of the OT divergence. Effectiveness of different losses of the
feature mimicking can be found in Fig. 6(b). For each loss listed in Fig. 6(b),
we investigate two different formats of the mimicking. The first format means
the feature of the un-occluded branch is detached to provide supervision for the
occluded branch, yet the second format which is denoted as “non-detach” means
that feature of the un-occluded branch is not detached and back propagated
together with occluded branch to update the parameters of the network.
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If L2 loss is adopted, PCKh score of the whole framework reaches up to
88.46 without “detach” operation and 88.34 with “detach” operation. If we u-
tilize cosine distance, PCKh score reaches up to 88.23 with “detach” operation
and 88.46 without “detach” operation. Both of these two methods improve the
performance, which verifies the effectiveness of mimicking mechanism.

When KL divergence is applied as loss to narrow the gap between distri-
butions, performance can be improved to 88.41 PCKh score with “detach” op-
eration and 88.56 without “detach” operation. If optimal transport divergence
is involved, performance can be further boosted up to 88.39 PCKh score with
“detach” operation and 88.69 PCKh score without “detach” operation.

We can notice that distribution-based methods outperform correspondence-
based approaches overall, which confirms our conjecture that narrowing the cor-
respondence discrepancy over high-dimension feature space seems less efficien-
t. From Fig. 6(b), variants without “detach” operation generally exceed those
with “detach” operation. This can be ascribed to the unprecise supervised sig-
nal at the early stage. Among these approaches, OT without “detach” operation
achieves the best performance and certifies the effectiveness. If we omit the fea-
ture mimicking loss and retrain model, which is displayed as “Non” in Fig. 6(b),
PCKh score of this variant reaches 88.09 and the improvement over the E&R
submodule mainly comes from the data augmentation. However, it is not the
main concern of this work. If we utilize distillation to replace the siamese frame-
work, we can notice that distillation-based approach results in no improvement
at all. For visualization, we provide several examples shown in Fig. 1. Predictions
under severe occlusions get improved via our approach.

5 Conclusion

The paper proposes an occlusion-aware siamese network for human pose esti-
mation. Firstly, erasing and reconstruction submodule is utilized to erase and
reconstruct the occluded features. Secondly, to improve the quality of reconstruc-
tion, we propose the siamese framework which enforces the occluded branch to
mimic the behavior of the occluded branch. Finally, we employ optimal trans-
port divergence to narrow the distribution discrepancy of these two branches. We
conduct our method on three widely used human pose benchmarks and achieve
promising results.
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