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Abstract. Recently, video streams have occupied a large proportion of
Internet traffic, most of which contain human faces. Hence, it is nec-
essary to predict saliency on multiple-face videos, which can provide
attention cues for many content based applications. However, most of
multiple-face saliency prediction works only consider visual information
and ignore audio, which is not consistent with the naturalistic scenar-
ios. Several behavioral studies have established that sound influences
human attention, especially during the speech turn-taking in multiple-
face videos. In this paper, we thoroughly investigate such influences by
establishing a large-scale eye-tracking database of Multiple-face Video in
Visual-Audio condition (MVVA). Inspired by the findings of our investi-
gation, we propose a novel multi-modal video saliency model consisting
of three branches: visual, audio and face. The visual branch takes the
RGB frames as the input and encodes them into visual feature map-
s. The audio and face branches encode the audio signal and multiple
cropped faces, respectively. A fusion module is introduced to integrate
the information from three modalities, and to generate the final saliency
map. Experimental results show that the proposed method outperforms
11 state-of-the-art saliency prediction works. It performs closer to human
multi-modal attention.
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1 Introduction

Saliency prediction [2] is an effective way to model the deployment of possible
attention on visual inputs in biological vision system. In the recent years, a surge
of interest in video saliency prediction has emerged, partly because of a large
number of its applications in various areas. Besides, it can be also found that
most videos over the Internet contain faces, as shown in Fig. 1(a). In particular,
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Fig. 1: (a) Thumbnails of various videos over the Internet. Most contain faces. (b)
Example of visual attention on a multiple-face video. Four persons are speaking
in a sequence from the left to the right. The first row (“visual-only”) represents
the condition when subjects view only mute frames. The second row (“visual-
audio”) shows the condition when both visual and audio information is present.

video conference applications (e.g., Skype and Zoom) have become popular re-
cently, in which almost every frame has human faces. It has been reported [35]
that Zoom Video Communications achieved over 39 billion annualized meeting
minutes in 2018. Thus, it is necessary to predict saliency on multiple-face videos,
since saliency can be used as attention cues for the content based applications,
including perceptual video coding [30], quality assessment [17] and panoramic
video processing [31].

Most of the video saliency works focus on the visual information and few
works have taken auditory information into account. Previous works barely men-
tion soundtracks or explicitly discard them during the eye-tracking experiments.
In practice, videos are always played with sound and the world we live in always
contains multi-modal information. Human attention is driven by several factors.
Two most important ones include visual and auditory cues. As shown in Fig.
1(b), humans focus on different regions in visual-only condition vs. visual-audio
condition. They fixate at the salient face and transit to another faster when
sound is available. Without sound, people can only rely on visual cue (e.g. mo-
tion) to locate the speaking person, leading to slower attention transition. Thus,
only considering visual information is not enough to predict where people look.

To address the above shortcomings, we first create a large-scale eye-tracking
database dubbed Multiple-face Videos in Visual-Audio condition (MVVA). It
includes fixations of 34 subjects viewing 300 videos with diverse content. To the
best of our knowledge, so far this is the largest dataset of its kind. During the eye-
tracking experiment, both video and audio have been presented to the viewers.
Through analysis on our database, we find that faces indeed explain the majority
of fixations. We further confirm that audio influences the fixation distribution
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Table 1: The information of the existing visual-audio eye-tracking databases.
Database Video Num. Resolution Duration Subject Details

Coutrot I
[5]

60 720× 576 10-24.8sec
20 (10 per

auditory condition)
French; Scenes: one MO (Moving Object),
several MO, conversation and landscapes.

Coutrot II
[7]

15 720× 576 12-30sec
72 (18 per

auditory condition)
French; Scenes: Conversation.

Coutrot III
[8]

15 1232× 504 20-80s 40 English; Scenes: 4 persons meeting.

Pierre et al.
[19]

148 (from Coutrot
dbs & Hollywood)

≤ 1232× 504 0.9-35s
averaged 44

each experiment
Scenes: MO, conversation and landscapes.

Ours 300 ≥ 1280× 720 10-30s 34 Chinese & English; 6 kinds of scenes

on faces and attention transition across faces. In particular, human attention
in visual-audio condition significantly differs from visual-only condition, when
turn-taking takes place. Inspired by these findings, we propose a novel multi-
modal network to predict fixations on videos in the visual-audio condition. Our
work takes faces, global visual content and audio information into consideration.
It consists of three branches, namely visual, audio and face branches, to process
these information respectively. Specifically, the visual branch constructs a two-
stream architecture to model spatial-temporal visual saliency representation.
Without other information, the output of the visual branch can be seen as the
saliency map under the visual-only condition. The audio branch encodes the
1D audio signal into a 2D feature map sequence. Additionally, the face branch
processes multiple cropped faces and explore the relationship between them. And
then it generates a face saliency map. After that, a fusion module is introduced
to integrate the three modalities, and to generate the final saliency map. We
study the impact of each of these cues individually.

To summarize, our main contributions include:

– We introduce a large-scale eye-tracking database including multiple-face
videos with sound, to facilitate the research on visual-audio saliency pre-
diction.

– We present a thorough analysis on our database and study how human
attention is affected by multiple factors including face and sound.

– We propose a novel multi-modal network, which fuses visual, face and audio
information to obtain effective features for accurate saliency prediction.

2 Related Work

Visual saliency prediction. Visual saliency models have been widely develope-
d to predict where people look in images [13,33,21,27,4] or videos [12,1,18,15,28,20,32].
Recently, DNNs have achieved a great success in visual saliency prediction. Over
images, some deep saliency models [13,27] use multi-scale visual information to
predict saliency. Over videos, most works [15,28,18] combine a CNN and an L-
STM to learn spatial and temporal visual features. Bak et al. [1] proposed a
two-stream CNN architecture. RGB frames and optical flow sequences were fed
to the two streams. Zanca et al. [32] leveraged various visual features, such as
face and motion, to predict the fixation scanpath. Recently, some works have
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focused on predicting saliency over multiple-face videos. Liu et al. [18] presented
an architecture which combined a CNN and a multiple-stream LSTM to learn
face features. None of the methods above take audio modality into account. In
contrast, our approach utilizes both audio and video modalities.
Visual-audio saliency prediction. Only a few methods take the auditory in-
formation into account. Early saliency models adopted hand-crafted features.
For instance, in [6], low-level features (e.g., luminance information) and faces
are used as visual information. Audio is fed into a speaker diarization algorithm
to locate the speaking person. A saliency map is then generated by integrating
the two modalities. [8] improved this method by taking the body into considera-
tion. These methods rely heavily on the detection algorithms, which limits their
performance and usability. Recent works tend to make use of learning-based
methods. Tsiami et al. [26] combined a visual saliency model [14] and an audio
saliency model [16]. But it only considers the scenario that a simple stimuli mov-
ing in clustered images. More recently, [25] used a two-stream 3D-CNN to encode
visual and audio information into feature vectors, which are then concatenated
to learn the final prediction.
Visual-audio databases. Few datasets have been collected for studying visual-
audio attention as shown in Tab. 1. They have three main drawbacks. Firstly,
they usually have a small scale. The number of videos in these datasets are
typically under 100. Secondly, they contain only one or a few scenes. For example,
Coutrot II [7] and Coutrot III [8] only consider eye-tracking events in a specific
scene. Thirdly, their videos have low resolution. Coutrot I [5] and Coutrot II [7]
contain videos with a 720 x 576 resolution. Consequently, the existing visual-
audio saliency prediction methods are designed under specific conditions (e.g.
under a certain scene or a low resolution). The efficiency and generalization of
these models need further verification. Driven by these motivations, here we
propose a dataset of 300 videos with the resolution of at least 1280 x 720 over
6 different scenes. Further, we analyze our dataset to reveal the impact of audio
on human attention, and give some inspirations for saliency prediction.

3 The Proposed Dataset

In this section, we introduce a large-scale eye-tracking database called Multiple-
face Video in Visual-Audio condition (MVVA). The proposed dataset contains
eye-tracking fixations when both audio and video were presented. To the best
of our knowledge, our dataset is the first public eye-tracking database that
has multiple-face videos with audio. In addition to saliency, it can be used
in other research areas such as sound localization, since the faces of speak-
ers are manually marked in our dataset. Our dataset is publicly available in
https://github.com/MinglangQiao/MVVA-Database.

3.1 Data collection

Stimuli. A total number of 300 videos with 146,529 frames, containing both
images and audio, were collected. Among them, 143 videos were selected from
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Fig. 2: (a) NSS of saliency on different facial landmarks in visual-only
(MUVFET)/visual-audio (Ours) conditions. (b) Contextual NSS of optical flow
maps over different face regions.

MUFVET [18] and other 157 videos were selected from YouTube, with the cri-
terion that the videos should contain obvious faces and audio. All of them were
encoded by H.264 with duration varying from 10 to 30 seconds. Note that these
videos are either indoor or outdoor scenes, and can be classified into 6 categories:
TV play/movie, interview, video conference, variety show, music and group dis-
cussion. The audio content covers different scenarios including quiet scenes (e.g.,
news broadcasting) and noisy scenes (e.g., interview at subway).

Apparatus. For monitoring the binocular eye movements, an eye tracker, Eye-
Link 1000 Plus [24], was used in our experiment. EyeLink1000 Plus is an inte-
grated eye tracker with a 23.8” TFT monitor at screen resolution of 1280x720.
During the experiment, EyeLink1000 Plus captured gaze data at 500 Hz. Ac-
cording to [24], the gaze accuracy can reach 0.25-0.5 visual degrees in the head
free-to-move mode. For more details on EyeLink1000 Plus, see [24].

Participants. 34 participants (21 males and 13 females), aging from 20 to 54
(24 in average), were recruited to participate in the eye-tracking experiment. All
participants had normal or corrected-to-normal vision. It is worth pointing out
that only subjects who passed the eye tracking calibration were quantified for the
experiment. As a result, 34 subjects (out of 39) were selected in our experiment.

Procedure. During the eye tracking experiment, all subjects were required to
sit on a comfortable chair with the viewing distance of ∼ 55cm from the screen.
Before viewing the videos, each subject was required to perform a 9-point cal-
ibration for the eye tracker. Afterwards, videos were shown in a random order
and subjects were asked to view them freely. Note that the audio and video
stimuli were presented simultaneously during the experiment. In order to avoid
eye fatigue, the 300 videos were equally divided into 6 sessions, and there was a
5-minute rest after viewing each session. Besides, a 5-second blank period with a
black screen was inserted between each two successive videos for a short break.
In total we collected 5,013,980 fixations over all 34 subjects and the 300 videos.
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Fig. 3: Examples of saliency
maps in visual-only (the first
row) and visual-audio condition
(the second row). The red dots
are fixation points, and the yel-
low dots are facial landmarks.

3.2 Database analysis

Here, we thoroughly analyze our data. To annotate faces and face landmark-
s in video frame, we used [34] and [22], respectively, and then corrected the
predictions manually. The talking/non-talking faces are manually annotated.

Finding 1: Audio influences the fixation distribution on faces. With the
presence of audio, fixation distribution is different from that of visual-only sce-
nario. First, we find that the face saliency distribution in visual-audio condition
is slightly more dispersed than that in visual-only condition. We compute the av-
eraged entropy and dispersion [19,9] of each face saliency map, and obtain 10.58
and 44.06 on our MVVA (visual-audio condition), larger than 10.16 and 39.34
of MUVFET (visual-only condition). It may be because people need to focus on
mouth to identify the talking face without audio, but do not need that when
audio is available. Second, as shown in Fig. 3, in the visual-audio condition, hu-
man attention tends to fixate at the center of the face (i.e., near the nose), while
people tend to focus on mouth in the visual-only condition. We calculate the
Normalized Scanpath Saliency (NSS) between saliency map and different facial
landmarks to quantify the correlation between salient regions and facial regions
in Fig. 2(a). It depicts that saliency maps in our database have the highest NSS
values on nose, while on MUFVET the salient region is on mouth. This may be
because people do not need to concentrate on the mouth motion, when they can
clearly hear the sound. Third, attention transits from mouth/nose to eyes when
face becomes larger. We compute NSS of saliency map on facial landmarks, and
calculate the Pearson correlation coefficient between the NSS and the normalized
face size. We find that the Pearson correlation coefficients between face size and
NSS on {eyes, mouth, nose} in order are {0.29, -0.44, -0.12} in our dataset, and
{0.54, -0.49, 0.14} in MUFVET. Positive correlation between face size and NSS
on eyes reflects more attention on eyes when subjects are viewing larger faces.

Finding 2: In the turn-taking scenes, the transition of fixations across
faces is largely influenced by audio. Fig. 4(a) shows an example of at-
tention transition in the turn-taking scenes. It can be observed that human
fixations transit and follow the talking face faster in the visual-audio condition
than that in the visual-only condition. Fig. 1 also shows the similar observation.
For quantitative analysis, we compare the attention transition time in visual-
audio and visual-only conditions. We define the attention transition time by the
average number of frames that fixations transit to the talking face, when turn-
taking happens. Here, Fva and Fvo denote the attention transition time in MVVA
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(a)

(b1) Attention maps
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Fig. 4: (a) An example of attention transition in Visual-Only (VO, the first row of
heat maps) and Visual-Audio condition (VA, the second row of heat maps). (b1)
One video example showing the saliency difference between visual-only condition
(the first row) and visual-audio condition (the second row). The person at the
right is talking while the other is turning his head. (b2) The corresponding
optical flow maps of each frame.

(visual-audio condition) and MUVFET (visual-only condition), respectively. The
results of Fva and Fvo are 30 and 24 frames. Thus, the attention transition time
in visual-audio condition is shorter than that in visual-only condition by 25%.
From the above results, we can conclude that the fixations transit across faces
are largely influenced by audio.
Finding 3: Human attention is more influenced by motion in the ab-
sence of audio. It is intuitive that people are guided by the visual cues (e.g.,
motion) more in the visual-only condition, compared to the visual-audio condi-
tion. This is because people can only rely on the visual cues to figure out what is
going on in the video under the visual-only condition. For instance, in Fig. 4(b),
in visual-only condition attention is mostly attracted to the person on the left
who is turning his head, while in the visual-audio condition, subjects concen-
trate on the right speaking person. To quantify the relationship between motion
and saliency, we computed the contextual NSS [25] of the optical flow maps on
fixations. Fig. 2(b) illustrates that human attention correlates more with motion
in the visual-only condition.

4 The Proposed Method

According to the findings above, visual information, audio and faces are all
important factors that influence human attention. In this section, we introduce
our multi-modal saliency method that utilizes these information for predicting
fixations over multiple-face videos. Fig. 5 summarizes the overall framework of
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the proposed method. A three-branch neural network is used to integrate mul-
tiple information cues and to generate a saliency map. Particularly, a video
segment V ideo = {V,A,F}, comprising visual frames V = {Vt}Tt=1, audio sig-
nals A = {At}Tt=1 and faces F = {Ft}Tt=1, is first fed into our multi-modal neural
network. Each component of the video segment is conveyed to the correspond-
ing branch of the network. The predicted saliency maps S = {St}Tt=1 are then
computed as:

S = f(V,A,F) = Φ(fV (V), fA(A), fF (F)), (1)

where f(·) is the proposed model, and fV (·), fA(·), fF (·) are the three branches
for visual, audio and face cues, respectively. Besides, Φ(·) is the fusion module
to integrate the three modalities and to generate the final saliency maps.

4.1 Architecture

Visual branch. Fig. 5 shows visual branch constructs a two-stream CNN &
convolutional LSTM architecture to model spatial-temporal visual representa-
tion. In detail, on the one hand, the frames V are fed to an RGB sub-branch
to obtain the features of texture. On the other hand, frames are fed to a flow
sub-branch to get the features of motion. Note that the flow sub-branch is ini-
tialized by FlowNet [10] so that it can obtain motion-oriented features. Then,
these extracted features are concatenated (denoted as C(·)) and are fed to a two-
layer convolutional LSTM [29], which is leveraged to process spatial-temporal
information. After that, feature maps fV (V) are obtained as:

fV (V) = LSTM(C(g1(V), g2(V))). (2)

Note that g1(·) represents the RGB sub-branch, consisting of four CNN blocks
of VGG-16 [23]. And g2(·) denotes the flow sub-branch, which comprises three
CNN blocks and one deconvolutional layer of FlowNet.
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Audio branch. In audio branch, a frequency domain based 3D-CNN is designed
to convolute 1D audio signal by converting it to 2D spectrum. As such, the spec-
trum can be better integrated with 2D image features. In detail, the audio signal
is first re-sampled to 22kHz and is then transformed to log-mel spectrogram us-
ing Short-Time Fourier Transform (STFT) and mel-mapping [11], with a hop
length of 512. To be consistent with the visual frame, the log-mel spectrogram
is converted into a sequence of successive overlapping frames, and is cropped in
a (−230, 230] ms window. After that, 4-layer 3D-CNNs g3d(·) are embedded to
encode the log-mel spectrogram sequence and to obtain the audio feature maps:

fA(A) = g3d(STFT(A)). (3)

Face branch. In face branch, a dynamic multi-stream spatial-temporal LSTM
model is designed for exploring relationship between multi-faces with features
interacting with each other. Fig. 6(a) gives a detailed illustration of the face
branch. Firstly, given a sequence of video frames, the MTCNN face detector [34]
is leveraged to detect and crop faces. Secondly, N cropped faces are fed into
N parameter-shared sub-branches containing an 13-layer CNNs and a 2-layer
LSTM, and are transformed to N feature vectors. After that, these features are
fused by the fusion part of face branch, which helps face features to capture
the correlation and competition with each other. Hence, each face sub-branch
perceives the sufficient information and we can obtain N face saliency weights:
w1 = {w1,t}Tt=1,w2, ...,wN . Larger weight for a face means that it is more salient.
Finally, we calculate the face feature map fF (Ft) at the t-th frame as follows,

fF (Ft) =

N∑
n=1

wn,t · Nn,t. (4)

Here, we follow [18] to regard saliency on the n-th face as a Gaussian distribution
Nn,t(µn,t, Σn,t)

1.

The parameter-sharing architecture can process videos with different face
numbers. As shown in Fig. 6(b), a new CNN-LSTM stream is instantiated when
there is a new face appearing in the video. To be specific, we use PyTorch to
instantiate CNN-LSTM streams with different number at each iteration.

In the training process, firstly we pre-train the face branch. The fixation
proportion of the n-th face to all faces at frame t (denoted as wn,t) is taken as
the Ground Truth (GT) weight to supervise the predicted face saliency weight
(denoted as ŵn,t). Hence, the optimization can be formulated as

min

T∑
t=1

N∑
n=1

||ŵn,t − wn,t||22, s.t.

N∑
n=1

ŵn,t = 1. (5)

Fusion. After encoding each video modality to feature maps, the proposed model
integrates visual, audio and face feature maps together to learn a joint represen-
tation. We propose a fusion module depicted in Fig. 5, instead of direct concate-
nation. Given visual, audio and face feature maps {fF (Vt), f

F (At), f
F (Ft)}, the

1 Nn,t(x) = exp{− 1
2
(x− µn,t)

TΣ−1
n,t(x− µn,t)}
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Fig. 6: (a) Structure of face branch. (b) An example of face branch processing
variant face numbers.

fusion module performs the computations below:

MV
t = ΘV

2 ∗ C(ht, f
V (Vt)),

MA
t = ΘA

2 ∗ C(ht, f
A(At)),

MF
t = ΘF

2 ∗ C(ht, f
F (Ft)),

s.t. ht = ΘV
1 ∗ fF (Vt) +ΘA

1 ∗ fF (At) +ΘF
1 ∗ fF (Ft).

(6)

Note that the Θs are the parameters of different CNN blocks, which align multi-
modal features with different scales and receptive fields (e.g., visual branch out-
puts global features while face branch outputs local features). And ’∗’ denotes
convolution operator and C(·) is the concatenation operation. With help of the
fusion module, the three branches can share information and preserve original
characteristics of themselves.

4.2 Optimization

To train and optimize the proposed multi-modal network, we use the GT
fixation map G, obtained from the fixation density map, to supervise the pre-
dicted saliency map S. The loss function is the Kullback-Leibler (KL) divergence
between the two maps,

L =

T∑
t=1

KL(Gt||St) =

T∑
t=1

∑
i∈I

Gt(i)log
Gt(i)

St(i)
, (7)

in which i denotes a position in the 2D saliency map. Note that KL divergence
is chosen because Huang et al. [13] have proven that the KL divergence is more
effective than other metrics in training DNNs for predicting saliency. To make
the convergence speed faster, we pre-train the three branches. In particular, the
visual and face branches are pre-trained on MVVA separately. For the visual
branch, the RGB sub-branch is initialized with VGG parameters on ImageNet,
while the Flow sub-branch is initialized with FlowNet parameters. The face
branch is also initialized with VGG. Then, the audio branch is pre-trained jointly
with the visual branch, since only audio cannot locate salient faces.
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Table 2: Accuracy of saliency prediction by our method and 11 competing meth-
ods over different datasets.

Ours TASED SAM res SAM vgg Liu ACLNet DeepVS SalGAN Coutrot SALICON OBDL BMS G-Eymol

MVVA

AUC 0.905 0.905 0.897 0.896 0.893 0.889 0.890 0.891 0.869 0.866 0.786 0.765 0.615
NSS 3.976 3.319 3.495 3.466 3.279 3.437 3.270 2.650 2.604 2.523 1.342 0.936 0.551
CC 0.722 0.653 0.634 0.634 0.625 0.639 0.615 0.539 0.509 0.477 0.273 0.193 0.125
KL 0.823 0.970 1.004 1.012 1.098 1.044 1.117 1.234 1.557 1.447 1.995 2.051 4.253

AUC 0.922 0.877 0.905 0.849 0.908 0.848 0.896 0.900 0.883 0.865 0.723 0.751 0.698
Coutrot II NSS 3.568 2.731 3.446 3.306 2.833 3.127 3.058 2.286 3.033 2.408 0.730 0.739 0.884

[7] CC 0.639 0.545 0.607 0.593 0.585 0.521 0.556 0.553 0.606 0.433 0.181 0.153 0.162
KL 0.915 1.271 1.031 1.093 1.035 1.357 1.209 1.717 1.428 1.514 2.228 2.073 2.932

5 Experiments and Results

5.1 Settings

In our experiment, 300 videos in our MVVA are randomly divided into train-
ing (240 videos) and test (60 videos) sets. Specifically, for the visual branch, RGB
frames are resized to 256x256. To train the convolutional LSTM, we temporally
segment 240 training videos into 9,806 clips, all of which have T = 12 frames. For
the audio branch, we use the 16-frame segmented log-mel spectrograms which
are also resized to 256x256. For the face branch, the resolution of N input faces
is 128x128. The parameters of the proposed network are updated by using the
Stochastic Gradient Descent (SGD) algorithm with Adam optimizer. The initial
learning rate is set to be 1e-4.

To evaluate our method, we adopt four metrics: Area Under the receiver
operating Characteristic curve (AUC), NSS, Correlation Coefficient (CC), and
KL divergence [2]. Note that the larger values for AUC, NSS or CC indicate
more accurate saliency prediction. The opposite holds for the KL divergence.
Please see [3] for more details on these metrics. All experiments are conducted
on a computer with Intel(R) Core(TM) i7-8700 CPU@3.20 GHz, 62.8 GB RAM
and 2 Nvidia GeForce GTX 1080 Ti GPUs.

5.2 Performance Comparison

We compare the performance of our multi-modal method with 11 state-of-
the-art saliency prediction methods, including TASED [20], SAM [4], Liu [18],
ACLNet [28], DeepVS [15], SalGAN [21], SALICON [13], Coutrot [8], OBDL
[12], BMS [33] and G-Eymol [32]. Among them, SalGAN, SALICON, SAM and
BMS are state-of-the-art saliency prediction methods over images, and others
are for videos. SAM has two versions, including SAM res with ResNet backbone
and SAM vgg with VGGNet backbone. Note that Coutrot and Liu focus on
multiple-face videos. In Coutrot, static saliency map, dynamic saliency map,
speaker map and center bias map are weighted with estimated weights, and
merged into the final saliency map. To eliminate the influence of the feature
extraction algorithm (e.g., face/speaking detection), we re-implement Coutrot
et al. method with manual annotated features and treat the performance as the
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Input Human Ours SALICONSAM_res SAM_vgg Liu ACLNet DeepVS SalGAN BMSTASED Coutrot OBDL G-Eymol

Fig. 7: Saliency maps of 5 videos randomly selected from the test set of our
eye-tracking database.
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Fig. 8: Saliency maps for different frames of two video sequences, selected from
our MVVA and Coutrot II [7].

upper bound of Coutrot et al. Liu is the latest DL based method for multiple-
face videos, but it ignores the audio information. Besides, face is also considered
in G-Eymol as a semantic-based feature. To effectively assess the power of our
method, we test it on different databases as follows.

Evaluation on our dataset. Tab. 2 presents AUC, NSS, CC and KL divergence
for the proposed method versus 11 competing methods. Scores are averaged over
60 test videos in our eye-tracking database. As shown in this table, the proposed
method performs significantly better than all other methods over all 4 metric-
s. Specifically, compared with the best competing result, our method achieves
over 0.481, 0.069 and 0.147 improvements in NSS, CC and KL, respectively.
The main reasons for this result are: 1) Most of state-of-the-art methods do not
consider audio information, while our method does utilize audio cue for salien-
cy prediction, 2) The face temporal subnet of our method learns detailed face
features to predict salient faces, and 3) Our fusion module effectively integrates
the multi-modal information.

Next, we compare models qualitatively. Fig. 7 demonstrates saliency maps
over 5 randomly selected videos in the test set, predicted by the proposed method
and 11 other methods. As is shown, our method is capable of locating the salient
faces. Its prediction is much closer to the GT. Besides, the proposed method
shows excellent performance on predicting attention transition, as depicted in
Fig. 8. In contrast, most of the other methods fail to accurately predict the
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Table 3: Performance of different modules in our model.
Models CC KL NSS AUC

Different modules

Visual (RGB only) 0.527 1.324 2.728 0.860
Visual (Flow only) 0.510 1.354 2.631 0.869
Visual (RGB+flow) 0.632 1.043 3.358 0.893

Visual (RGB+flow+LSTM) 0.671 0.971 3.548 0.896
Visual+audio 0.712 0.843 3.838 0.907

Face only 0.569 1.292 2.766 0.872
Face+audio 0.609 1.116 3.211 0.878

Visual+audio+face 0.722 0.823 3.976 0.905

regions that attract human attention, perhaps because these methods do not
consider extra information such as sound and face.

Evaluation on generalization ability. To evaluate the generalization capa-
bility of the proposed method, we further evaluate our method and 11 other
methods on the Coutrot II database [7]. Tab. 2 compares the average AUC,
NSS, CC and KL scores. As shown in this table, the proposed method again
outperforms all the competing methods. In particular, there are at least 0.032
and 0.116 improvements in CC and KL, respectively. Such improvements are
comparable to those in our MVVA. Qualitative results, shown in Fig. 8, shows
the proposed method predicts attention transition accurately, while other meth-
ods miss salient faces. These results demonstrate the generalization capability
of our method in video saliency prediction.

5.3 Ablation Analysis

Here, we thoroughly analyze the effectiveness of each module in our method.

Visual branch. Visual branch uses basic visual information, i.e., texture, mo-
tion and temporal cues, to predict saliency. We evaluate the visual branch of the
proposed network and report the results in Tab. 3. It shows that visual branch
reaches to CC of 0.632 and KL of 1.043, which is better than many methods
and comparable with the best competing method TASED. When adding convo-
lutional LSTM to fuse the temporal cues, the performance reaches to 0.671 in
CC and 0.971 in KL. Hence, the entire visual branch and its components are
all useful to saliency prediction. Moreover, as shown in Tab. 3, combination of
face and audio results in lower performance than combining all cues (i.e., the
whole network, visual+audio+face) by a large margin. It further manifests the
effectiveness of visual branch. We add visual branch, because there are still some
other regions drawing attention, besides faces.

Audio branch. Besides visual branch, we add audio branch to the framework.
With the help of the audio branch, the visual-audio model achieves 0.712 in CC
and 0.843 in KL, much better than the visual branch. In addition, the combi-
nation of face and audio branches improves the performance of the single face
branch, by 0.040 in CC and 0.176 in KL. Thus, these results manifest the contri-
bution of audio information and the effectiveness of the proposed audio branch.
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Fig. 9: Face saliency
weights across frames
for a randomly selected
video.

Face branch. Finally, the face branch is added to complete the whole net-
work. From Tab. 3, CC of 0.722 and KL of 0.823 are reached, after combining
face branch with visual-audio model. It is worth mentioning that the single face
branch can only achieve a fair performance, which is inferior to other combi-
nations. Hence, single face branch cannot reach the best accuracy, even most
attention is attracted by faces. In addition, since the face branch aims at pre-
dicting saliency weight of faces across the video frames, we plot the face saliency
weights of the proposed face branch and GT in Fig. 9. In this figure, the curve of
the face branch fits close to the curve of GT. It can be concluded that the face
branch accurately predicts the salient face and further enhances the performance
of the proposed model.

In summary, the ablation analysis manifests the necessity of different cues
for saliency prediction, and verifies the effectiveness of each part in our model.
More details can be found in the supplementary document.

6 Conclusion

In this paper, we explored how audio influences human attention in multiple-
face videos. Various findings have been verified by the statistical analysis on our
new eye-tracking database. To predict multiple-face video saliency, we presented
a novel multi-modal network consisting of visual, audio and face branches. The
three branches encode visual frames, audio spectrograms and faces into feature
maps, respectively. A fusion module was designed to integrate the three modali-
ties, and to generate the final saliency map. Finally, experimental results shown
that our method outperforms 11 state-of-the-art methods over several datasets.
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