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Abstract. Image-to-image translation is affected by entanglement phe-
nomena, which may occur in case of target data encompassing occlu-
sions such as raindrops, dirt, etc. Our unsupervised model-based learning
disentangles scene and occlusions, while benefiting from an adversarial
pipeline to regress physical parameters of the occlusion model. The ex-
periments demonstrate our method is able to handle varying types of
occlusions and generate highly realistic translations, qualitatively and
quantitatively outperforming the state-of-the-art on multiple datasets.

Keywords: GAN, image-to-image translation, occlusions, raindrop, soil

Target sample Source MUNIT [14] Ours disentangled Ours w/ focus drops

Fig. 1: Our method learns to disentangle scene from occlusions using unsuper-
vised adversarial disentanglement with guided injection of a differentiable occlu-
sion model. Here, we separate unfocused drops from rainy scene and show that,
opposed to existing baselines, we learn a fully disentangled translation without
drops and can re-inject occlusions with unseen parameters (e.g. in-focus drops).

1 Introduction

Image-to-image (i2i) translation GANs are able to learn the source 7→ target
style mapping of paintings, photographs, etc. [54,20,16]. In particular, synthetic
to real [4] or weather translation [29,38,27] attracted many works as they are
alternatives to the menial labeling task, and allow domain adaptation or finetun-
ing to boost performance on unlabeled domains. However, GANs notoriously fail
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to learn the underlying physics [45]. This is evident when target data encompass
occlusions (such as raindrop, dirt, etc.) as the network will learn an entangled
representation of the scene with occlusions. For example, with clear 7→ rain the
GAN translation will tend to have too many drops occlusions, often where the
translation is complex as it is an easy way to fool the discriminator.

We propose an unsupervised model-based adversarial disentanglement to sep-
arate target and occlusions. Among other benefits, it enables accurate transla-
tion to the target domain and permits proper re-injection of occlusions. More
importantly, occlusions with different physical parameters can be re-injected,
which is crucial since the appearance of occlusions varies greatly with the cam-
era setup. For example, drops occlusions appear different when imaged in-focus
or out-of-focus. There are obvious benefits for occlusion-invariant outdoor vision
like mobile robotics or autonomous driving. A comparison showcasing standard
i2i (that partially entangles unrealistic drops) and our framework capabilities
is available in Fig. 1. Our method builds on top of existing GAN architectures
enabling unsupervised adversarial disentanglement with the only prior of the
occlusion model. Parameters of the occlusion model are regressed on the target
data and used when training to re-inject occlusions further driven by our dis-
entanglement guide. We demonstrate our method is the only one able to learn
an accurate translation in the context of occlusions, outperforming the litera-
ture on all tested metrics, and leading to better transfer learning on semantic
segmentation. Our method is able to cope with various occlusion models such
as drops, dirt, watermark, or else, among which raindrop is thoroughly studied.
Our contributions may be summarized as follows:

– we propose the first unsupervised model-based disentanglement framework,
– our adversarial parameter estimation strategy allows estimating and repli-

cating target occlusions with great precision and physical realism,
– our disentanglement guidance helps the learning process without losing gen-

erative capabilities in the translation task,
– we conducted exhaustive experiments on raindrops occlusions proving we

outperform the literature, boost transfer learning, and provide a focus ag-
nostic framework of high interest for autonomous driving applications.

2 Related work

Image-to-image translation. Seminal works on image-to-image translation (i2i)
was conducted by Isola et al. [16] and Zhu et al. [54] for paired and unpaired
data respectively, where the later introduced the cycle consistency loss extended
in [55,48]. Liu et al. [20] further proposed using Variational Auto Encoders
to learn a shared latent space. A common practice to increase accuracy is to
learn scene-aware translation exploiting additional supervision from semantic
[19,30,41,6], instance [25] or objects [38]. Furthermore, a recent trend is to use
attention-guided translation [24,22,40,17] to preserve important features.
Regarding disentangled representations, MUNIT [14] and DRIT [18] decouple
image content and style to enable multi-modal i2i, similar in spirit to our goal,
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while FUNIT [21] uses disentangled representations for few-shot learning. Fine-
GAN [39] disentangles background and foreground using bounding boxes su-
pervision. Multi-domain i2i also opens new directions to control elements at the
image level [7,32,3,47,15], since it may be used to represent elements learned from
various datasets. Attribute-based image generation [43,44,51] follows a similar
scheme, explicitly controlling features. Nonetheless, these methods require at-
tributes annotations or multiple datasets – hardly compatible with occlusions.
Finally, Yang et al. [46] exploit a disentangled physical model for dehazing.

Lens occlusion generation (drops, dirt, soiling, etc.). Two strategies co-exist
in the literature: physics-based rendering or generative networks. Early works
on geometrical modeling showcased accurate rendering of raindrops via ray-
tracing and 3D surface modeling [34,35,13], sometimes accounting for complex
liquid dynamics [50] or focus blur [35,13]. A general photometric model was also
proposed in [10] for thin occluders, while recent works use displacement maps to
approximate the raindrops refraction behavior [28,2]. Generative networks were
also recently leveraged to learn general dirt generation [42] but using semantic
soiling annotations. To the best of our knowledge, there are no approaches that
simultaneously handle occlusions and scene-based modifications with i2i. Note
that we intentionally do not review the exhaustive list of works on de-raining or
equivalent as it is quite different from disentanglement in the i2i context.

3 Model-based disentanglement

We aim to learn the disentangled representation of a target domain and occlu-
sions. For example, when translating clear to rain images having raindrops on
the lens, standard image-to-image (i2i) fails to learn an accurate mapping as
the target entangles the scene and the drops on the lens. We depart from the
literature by learning a disentangled representation of the target domain from
the injection of an occlusion model, in which physical parameters are estimated
from the target dataset. Not only does it allows us to learn the disentangled
representation of the scene (e.g. target image without any occlusions) but also
to re-inject the occlusion model either with the estimated parameters or with
different parameters (e.g. target image with drops in focus).

Our method handles any sort of occlusions such as raindrops, soil, dirt, wa-
termark, etc. but for clarity we focus on raindrops as it of high interest and
exhibits complex visual appearance. Fig. 2 shows an overview of our training
pipeline, which is fully unsupervised and only exploits the prior of occlusion
type. To learn adversarial disentanglement by injecting occlusions (Sec. 3.1), we
first pretrain a baseline to regress the model parameters (Sec. 3.2) and estimate
domain shifts to further guide the disentanglement learning process (Sec. 3.3).

3.1 Adversarial disentanglement

Let X and Y be the domains of a source and a target dataset, respectively. In
an i2i setup, the task is to learn the X 7→ Y mapping translating source to
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Fig. 2: To disentangle the i2i translation process in an unsupervised manner,
we inject occlusions O(.) with estimated parameters w̃ before forwarding the
generated image G(x) through the discriminator D. The Disentanglement Guid-
ance (DG) avoids losing translation capabilities in low domain shift areas. Fake
and real data are drawn red and green, respectively.

target. Now, if the target dataset has occlusions of any sort, Y encompasses two
domains: the scene domain S , and the occlusion domain O. Formally, as in [27] we
introduce a disentangled representation of domains such that Y = {YS , YO} and
X = {XS}. In adversarial training strategies, the generator is led to approximate
PX and PY , the probability distributions associated with the domains stochastic
process, defined as

∀x ∈ X,x ∼ PX(x),

∀y ∈ Y, y ∼ PY (y).
(1)

Having occlusions, the target domain Y is interpreted as the composition of
two subdomains, and we seek to estimate PYS ,YO

(yS , yO) corresponding to the
scene and occlusion domain. To address this, let’s make the naive assumption
that marginals PYS

(yS) and PYO
(yO) are independent from each other. Thus,

exploiting the definition of joint probability distribution, PY (y) becomes

PY (y) = PYS ,YO
(yS , yO) = PYS

(yS)PYO
(yO), (2)

and it appears that knowing one of the marginals would enable learning disen-
tangled i2i translations between subdomains. In particular, if PYO

(yO) is known
it is intuitively possible to learn XS 7→ YS , satisfying our initial requirement.

In reality, transparent occlusions - such as raindrops - are not fully disen-
tangled from the scene, as their appearance is varying with scene content (see
ablation in Sec. 4.4). However, the physical properties of occlusions may be seen
as quite independent. As an example, while the appearance of drops on the lens
varies greatly with scene background, their physics (e.g. size, shape, etc.) is little-
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or un- related to the scene. Fortunately, there is extensive literature providing
appearance models for different types of occlusions (drop, dirt, etc.) given their
physical parameters, which we use to estimate PYO

(yO). We thus formalize oc-
clusion models as O(s, w, z) parametrized by the scene s, the set of disentangled
physical properties w, and a random noise vector z. The latter is used to map
characteristics that can not be regressed as they are stochastic in nature. This
is the case for raindrops positions for example. Assuming we know the type of
occlusion such as drop, dirt, etc., we rely on existing models (described in Sec. 4)
to render the visual appearance of occlusions.

Ultimately, as depicted in Fig. 2, we add occlusions rendered with a known
model on generated images before forwarding them to the discriminator. Assum-
ing sufficiently accurate occlusion models, the generator G is pushed to estimate
the disentangled PYS

, thus learning to translate only scene-related features. As a
comparison to a standard LSGAN [23] training which enforces a zero-sum game
by minimizing

yd = G(x),

Lgen = LG(yd) = Ex ∼PX(x)[(D(yd)− 1)2],

Ldisc = LD(yd, y) = Ex ∼PX(x)[(D(yd))
2] + Ey ∼PY (y)[(D(y)− 1)2],

(3)

with Lgen and Ldisc being respectively the tasks of the generator G and dis-
criminator D, we instead learn the desired disentangled mapping by injecting
occlusions O(.) on the translated image. Hence, we newly define yd as the dis-
entangled composition of translated scene and injected occlusions, that is

yd = αG(x) + (1− α)O(G(x), w̃, z), (4)

where α is a pixel-wise measure of the occlusion transparency. Opaque occlusions
will locally set α = 1 while a pixel with transparent occlusions has α < 1. Because
physical parameters greatly influence the appearance of occlusions (e.g. drop in
focus or out of focus), we render occlusions in Eq. 4 using w̃, the optimal set of
physical parameters to model occlusions in Y .

3.2 Adversarial parameters estimation

We estimate the set of physical parameters w̃ from Y in an unsupervised manner,
benefiting from the entanglement of scene and occlusion in the target domain.
We build here upon Eq. 2. Assuming a naive i2i baseline being trained on source
and target data, without disentanglement, the discriminator learned to distin-
guished examples from source and target by discriminating PX = PXS

from
PY = PYS

(yS)PYO
(yO). Let’s consider the trivial case where a generator G′ per-

forms identity (i.e. G′(x) = x) then we get PYS
(yS) = PXS

(xS) and it is now
possible to estimate the optimal w̃ as it corresponds to the distance minimiza-
tion of PY and PX . Intuitively, as the domain gap results of both occlusion and
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Fig. 3: We estimate the optimal parameters to use for the disentanglement adding
occlusions on source images and optimizing the parameters of the physical model
in order to fool the discriminator. Since we are not using a generator network, the
gradient, represented as red arrows, flows only in the occlusion model direction.

scene domain (which is fixed), reducing the source and target domain gap implies
reducing the occlusion domain gap, in extenso regressing w.

Fig. 3 illustrates the estimation process. In practice, we pretrain a simple i2i
baseline (e.g. MUNIT[14]) to learn X 7→ Y in a naive - entangled - manner, by
training a generator and discriminator. We then freeze the naive discriminator
denoted Dent and solve the following optimization objective

yp = αG′(x) + (1− α)O(G′(x), w, z),

min
w
LG(yp) ,

(5)

by backpropagating the gradient flow through the derivable occlusion model. For
most occlusions where transparency depends on the model, we in fact consider
the blending mask α = α(w, z). Note that it is required to freeze the discrimina-
tor otherwise we would lose any feedback capabilities on the images of the target
domain. For simplicity in Fig. 3, we omit the generator G′ during parameter es-
timation since G′(x) = x. Training until convergence, we extract the optimal
parameter set w̃. In Sec. 4.2 we evaluate our parameters estimation on synthetic
and real data.

Alternately, w̃ could also be tuned manually but at the cost of menial labor
and obvious approximation. Still, one may note than an inaccurate estimation
of w̃ would lead to a poor disentanglement of PYS

and PYO
.

3.3 Disentanglement guidance

We highlight now an easy pitfall in the disentangled GAN training, since an
unwanted optimum is reached if the generator simply adds occlusions. Indeed
because occlusions are visually simple and constitute a strong discriminative
signal for the discriminator, it may be easier for the generator to entangle occlu-
sions rather than to learn the underlying scene mapping. Specifically, occlusions
will be entangled where source and target differ the least, since it is an easy way
to minimize Lgen as even with a perfect i2i there the discriminator will provide
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relatively uncertain feedback. For example, we noticed that drops were entangled
over trees or buildings as both exhibit little visual differences in the clear and
rainy domains.

To avoid such undesirable behavior, we spatially guide the disentanglement
to prevent the i2i task from entangling occlusions in the scene representation.
The so-called disentanglement guide is computed through the estimation of the
domains gap database-wide. Specifically, we use GradCAM [37] which relies on
gradient flow through the discriminator to identify which regions contribute
to the fake classification, and thus exhibit a large domain gap. Similar to the
parameter estimation (Sec. 3.2), we pretrain a simple i2i baseline and exploit
the discriminator. To preserve resolution, we upscale and average the response
of GradCAM for each discriminator layer and further average responses over the
dataset3. Formally, using LSGAN we extract Disentanglement Guidance (DG)

DG = Ex ∼PX(x)[El∈L[GradCAMl(D(x))] , (6)

with L being the discriminator layers. During training of our method, the guide
serves to inject occlusions only where domain gaps are low, that is where DG <
β, with β ∈ [0, 1] a hyperparameter. While this may seem counter-intuitive,
explicitly injecting drops in low domain shift areas mimics the GAN intended
behavior lowering the domain shift with drops. This logically prevents entangle-
ment phenomena since they are simulated by the injection of occlusions. We refer
to Fig. 8b in the ablation study for a visual understanding of this phenomenon.

4 Experiments

We validate the performances of our method on various real occlusions, leverag-
ing recent real datasets such as nuScenes [5], RobotCar [28], Cityscapes [9] or
WoodScape [49], and synthetic data such as Synthia [33]. Our most comprehen-
sive results focus on the harder raindrops occlusion (Sec. 4.2), but we also extend
to soil/dirt and other general occlusions such as watermark, fence, etc. (Sec. 4.3).
For each type of occlusion we detail the model used and report qualitative and
quantitative results against recent works: DRIT [18], U-GAT-IT [17], Attention-
GAN [40], CycleGAN [54], and MUNIT [14]. Because the literature does not
account for disentanglement, we report both the disentangled underlying do-
main (Ours disentangled) and the disentangled domain with injection of target
occlusions (Ours target). Note that while still images are already significantly
better with our method, the full extent is better sensed on the supplementary
video as disentangling domains implicitly enforces temporal consistency.

4.1 Training setup

Our method is trained in a three stages unsupervised fashion, with the only prior
that the occlusion model is known (e.g. drop, dirt, watermark, etc.). First, we

3 Note that averaging through the dataset implies similar image aspects and view-
points. Image-wise guidance could be envisaged at the cost of less reliable guidance.
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train an i2i baseline to learn the entangled source 7→ target and extract Dent.
Second, the occlusion model parameters are regressed as in Sec. 3.2 and DG
is estimated with the same pre-trained discriminator following Sec. 3.3. While
being not mandatory for disentanglement, DG often improves visual results.
Third, the disentangled pipeline described in Sec. 3.1 is trained from scratch
injecting the occlusion model only where the Disentanglement Guidance allows
it. We refer to the supplementary for more details.
We use MUNIT [14] for its multi-modal capacity and train with LSGAN [23].
Occlusion models are implemented in a differentiable manner with Kornia [31].

4.2 Raindrops

We now evaluate our method on the complex task of raindrops disentanglement
when learning the i2i clear 7→ rain task. Because of their refractive and semi-
transparent appearance, raindrops occlusions are fairly complex.

Occlusion model. To model raindrops, we use the recent model of Alletto
et al. [2] which provides a good realism/simplicity trade-off. Following [2], we
approximate drop shapes with simple trigonometric functions and add random
noise to increase variability as in [1]. The photometry of drops is approached with
a displacement map (U, V ) encoding the 2D coordinate mapping in the target
image, such that drop at (u, v) with thickness ρ has its pixel (ui, vi) mapped to(

u+ U(ui, vi) · ρ, v + V(ui, vi) · ρ
)
. (7)

Intuitively, this approximates light refractive properties of raindrops. Technically,
(U,V, ρ) is conveniently encoded as a 3-channels image. We refer to [2] for details.
We also account for the imaging focus, as it has been highlighted that drops with
different focus have dramatically different appearance [12,8,2]. We approximate
focus blur with a Gaussian point spread function [26] which variance σ is learned,
thus w = {σ}. I.e., our method handles drops occlusions with any type of focus.
During training, drops are uniformly distributed in the image space, with size
being a hyperparameter which we study later, and defocus σ is regressed with
our parameters estimation (Sec. 3.2). During inference, drops are generated at
random position with pr probability, which somehow controls the rain intensity.
Fig. 4 illustrates our drop occlusion model with variable shapes and focus blur.

Datasets. We evaluate using 2 recent datasets providing clear/rain images.
nuScenes [5] is an urban driving dataset recorded in the US and Singapore with
coarse frame-wise weather annotation. Using the latter, we split the validation
into clear/rain and obtain 114251/29463 for training and 25798/5637 for testing.
RobotCar [28] provides pairs of clear/rain images acquired with binocular spe-
cialized hardware where one camera is continuously sprayed with water. The
clear images are warped to the rainy image space using calibration data, and we
use a clear/rain split of 3816/3816 for training and 1000/1000 for validation.
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Fig. 4: Raindrop occlusion model. Left are schematic views of our model where
the shape is modeled as trigonometric functions and photometry as displacement
maps (cf. Eq. 7), encoded here as RGB. Right demonstrates our ability to handle
the high variability of drops appearance with a different focus (σ).

Qualitative evaluation. Outputs of the clear 7→ rain i2i task are shown in
Fig. 5 against the above cited [18,17,40,54,14]. At first sight, it is evident that
drops are entangled in other methods, which is expected as they are not taught
to disentangle drops. To allow fair comparison we thus provide our disentangled
estimation (Ours disentangled) but also add drops occlusions to it, modeled with
the physical parameters w̃ estimated from target domain (Ours target).

Looking at Ours disentangled, the i2i successfully learned the appearance of
a rainy scene (e.g. reflections or sky) with sharp pleasant translation to rain,
without any drops. Other methods noticeably entangle drops, often at fixed po-
sitions to avoid learning i2i translation. This is easily noticed in the 4th column
where all methods generated drops on the leftmost tree. Conversely, we benefit
from our disentangled representation to render scenes with drops occlusions (row
Ours target) fairly matching the appearance of the target domain (1st row), sub-
sequently demonstrating the efficiency of our adversarial parameter estimation.

What is more, we inject drops with different sets of parameters {w, z} ar-
bitrary mimicking dashcam sequences (Fig. 5, last 2 rows). The quality of the
dashcam translations, despite the absence of similar data during training, proves
the benefit of disentanglement and the adequacy of the occlusion model. Note
that with any set of parameters, our occlusion (last 3 rows) respect the refractive
properties of raindrops showing the scene up-side-down in each drop, while other
baselines simply model white and blurry occlusions.

Quantitative evaluation.

GAN metrics. Tab. 1a reports metrics on the nuScenes clear 7→ rain task. Each
metric encompasses different meanings: Inception Score (IS) [36] evaluates qual-
ity/diversity against target, LPIPS distance [52] evaluates translation diversity
thus avoiding mode-collapse, and Conditional Inception Score [14] single-image
translations diversity for multi-modal baselines. Note that we evaluate against
our disentangled + target drops occlusion Ours target, since baselines are nei-
ther supposed to disentangle the occlusion layer nor to generate different kinds
of drop. On all metrics, our method outperforms the state of the art by a com-
fortable margin. This is easily ascribable to our output being both more realistic,
since we are evaluating with drops with the physical parameters extracted from
target dataset, and more variable, since we do not suffer from entanglement
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Fig. 5: Qualitative comparison against recent baselines on the clear 7→ rain task
with drops occlusions. Target samples are displayed in the first row for reference.
Other rows show the source image (2nd row) and all its subsequent translations
below. Our method efficiently disentangled drops occlusion from the scene (row
Ours disentangled) and subsequently allows the generation of realistic drops
matching target style (row Ours target) or any arbitrary style (last 2 rows).
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Network IS↑ LPIPS↑ CIS↑
CycleGAN [54] 1.151 0.473 -

AttentionGAN [40] 1.406 0.464 -

U-GAT-IT [17] 1.038 0.489 -

DRIT [18] 1.189 0.492 1.120

MUNIT [14] 1.211 0.495 1.030

Ours target 1.532 0.515 1.148

(a) GAN metrics

Method AP↑
Original (from [11]) 18.7

Finetuned w/

Halder et al. [11]
25.6

Finetuned w/

Ours target
27.7

(b) Semantic segmentation

Table 1: Quantitative evaluation of clear 7→ rain effectiveness on nuScenes [5] (for
all higher is better). (a) shows GAN metrics of ours i2i translation with target
drop inclusion (i.e. Ours Target) against i2i baselines. Our method outperforms
literature on all metrics which is imputed to the variability and realism that come
with the disentanglement. Note that CIS is multi-modal. (b) Evaluation of the
Average Precision (AP) of semantic segmentation when finetuning PSPNet [53]
and evaluating on a subset of nuScenes with semantic labels from [11].

phenomena that greatly limit the drops visual stochasticity. This is also evident
when comparing against [14] which we use as the backbone in our framework.
Technically, IS is computed over the whole validation set, CIS on 100 translations
of 100 random images (as in [14]), and LPIPS on 1900 random pairs of 100
translations. The InceptionV3 for IS/CIS was finetuned on source/target as [14].

Semantic segmentation. Because GAN metrics are reportedly noisy [52] we aim
at providing a different perspective for quantitative evaluation, and thus measure
the usefulness of our translated images for semantic segmentation. To that aim,
following the practice of Halder et al. [11] we use Ours target (i.e. trained on
rainy nuScenes) to infer a rainy version of the popular Cityscapes [9] dataset
and use it to finetune PSPNet [53]. The evaluation on the small subset of 25
semantic labeled images of rainy nuScenes provided by [11] is reported in Tab. 1b.
It showcases finetuning with our rainy images is better than with [11], which
uses physics-based rendering to generate rain. Note that both finetune Original
weights, and that the low numbers results of the fairly large Cityscapes-nuScenes
gap (recall that nuScenes has no semantic labels to train on).

Parameter estimation. We verify the validity of our parameter estimation
strategy (Sec. 3.2) using the RobotCar dataset, which provides real clear/rain
pairs of images. As the viewpoints are warped together (cf. Datasets details
above), there is no underlying domain shift in the clear/rain images so we set
G(x) = x and directly train on discriminator to regress physical parameters (we
get σ = 3.87) and render rain with it on clear images. We can then measure the
distance of the translated and real rainy images, with FID and LPIPS distances
reported in Fig. 6b. Unlike before, LPIPS measures distance (not diversity) so
lower is better. For both we significantly outperform [28], which is visually inter-
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Source Target [28] Ours target

(a) Sample images

Method FID↓ LPIPS↓
Porav et al. [28] 207.34 0.53

Ours target 135.32 0.44

(b) Benchmark on [28]

0.0 2.5 5.0 7.5 10.00

100

200

FI
D

Estimated 
Tested Values
Porav et al.

(c) FID

Fig. 6: Parameter estimation using real clear/rainy pairs of images from Robot-
Car [28]. Visually, Ours target is fairly closer to the Target sample regardless of
drops position/size (a), while quantitatively lower FID and LPIPS distance is ob-
tained (b). With FID measures at different defocus sigma in (c), we demonstrate
our estimated parameters (σ = 3.87) successfully led to the best parameters.

pretable in Fig. 6a, where drops rendered with our parameter estimation looks
more similar to Target than those of [28] (regardless of their size/position).

To further assess the accuracy of our estimation, we plot in Fig. 6c the FID
for different defocus blurs (σ ∈ {0.0, 2.5, 5.0, 7.5, 10}). It shows our estimated de-
focus (σ = 3.87) leads to the minimum FID of all tested values, further demon-
strating the accuracy of our adversarial estimation. We quantify the precision
by training on clear images with synthetic injection of drops having σ ∈ [5, 25],
and we measured an average error of 1.02% (std. 1.95%).

4.3 Extension to other occlusion models

To showcase the generality of our method, we demonstrate its performance on
two generally encountered types of occlusions: Dirt and General occlusion.

Dirt. We rely on the recent WoodScape dataset [49] and a simple occlusion
model to learn the disentangled representation.
Datasets. WoodScape [49] provides a large amount of driving fish-eye images,
and comes with metadata indicating the presence of dirt/soil4. Different from
rain sequences having rainy scenes+drops occlusions, apart from soiling there
isn’t any domain shift in the clean/dirt images provided. Hence, to study dis-
entanglement we introduce an additional shift by converting clean images to
grayscale and refer to them as clean gray. We train our method on non-paired
clean gray/dirt images with 5117/4873 for training and 500/500 for validation.
Occlusion model. To generate synthetic soiling, we use a modified version of our
drop model with random trigonometric functions and larger varying sizes. Dis-
placement maps are not used since we consider dirt to be opaque and randomly
brownish, with apparent semi-transparency only as a result of the high defocus.
As for drops, the defocus σ is regressed so again w = {σ}.
Performance. Fig. 7a (left) shows sample results where the task consists of disen-
tangling the color characteristics from the dirt occlusion (since color is only in the

4 Note that WoodScape provides soiling mask which we do not use.
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(a) Qualitative results

Model Network IS↑ LPIPS↑ CIS↑

Dirt
MUNIT [14] 1.06 0.66 1.08

Ours target 1.26 0.59 1.15

Fence
MUNIT [14] 1.26 0.55 1.11

Ours target 1.31 0.54 1.19

WMK
MUNIT [14] 1.17 0.57 1.01

Ours target 1.19 0.55 1.02

(b) GAN metrics

Model Network SSIM↑ PSNR↑

Dirt
MUNIT [14] 0.41 13.40

Ours disent. 0.76 20.23

(c) Colorization metrics

Fig. 7: Various occlusions disentanglement. We seek to learn disentangled rep-
resentation of clean gray 7→ clean color on WoodScape [49] (real) and clear 7→
snow on Synthia [33] (synthetic). For all, MUNIT [14] partly entangles occlusions
in the translation, often occluding hard-to-translate areas, while our method
learned correctly the color mapping and the snow mapping despite complex
occlusions (7a). Quantitative evaluation with GAN metrics (7b) confirms the
increase in image quality for all occlusions models and with colorization metrics
for dirt (7c) exploiting our unpaired disentanglement framework.

dirt data). Comparing to MUNIT [14], Ours disentangled successfully learned
color without dirt entanglement, while [14] failed to learn accurate colorization
due to entanglement. Performances are validated quantitatively in Tab. 7b-7c.

General occlusions (synthetic). In Fig. 7a (right) we also demonstrate the
ability to disentangle general occlusion, in the sense of an alpha-blended layer on
an image (watermarks, logos, etc.). We used synthetic Synthia [33] clear/snow
data, and augmented only snow either with a ”confidential” watermark (WMK)
or a fence image, both randomly shifted. Our i2i takes 3634/3739 clear/snow im-
ages for training, and 901/947 for validation. The occlusion model is the ground
truth composite alpha-blended model, with random translation, and without any
regressed parameters (i.e. w = ∅). From Fig. 7a, our method learned a disentan-
gled representation, while MUNIT [14] partially entangled the occlusion model.
In tab. 7b, CIS/IS confirm the higher quality visual results.

4.4 Ablation studies

Model complexity. We study here how much model complexity impacts disen-
tanglement, with the evaluation on the nuScenes clear 7→ rain task. We compare
three decreasingly complex occlusion models: 1) Ours, the raindrop model de-
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scribed in Sec. 4.2; 2) Refract, which is our model without any shape or thick-
ness variability; 3) Gaussian, where drops are modeled as scene-independent
Gaussian-shaped occlusion maps following [10]. From Fig. 8a, while Ours has
best performance, even simpler models lead to better image translation which
we relate to our disentanglement capability. To also assess that the occlusion
model doesn’t only play the role of an adversarial attack, we also compare the
FID of real RobotCar raindrops (as in Sec. 4.2) when training with either of the
models described in Sec. 4.2 and 4.3. The FID measured are 135.32 (drop) /
329.17 (watermark) / 334.76 (dirt) / 948.71 (fence). This advocates that a priori
knowledge of the occlusion type is necessary to achieve good results.

Disentanglement Guidance (DG). We study the effects of guidance (eq. 6) on
the nuScenes clear 7→ rain task, by varying the β threshold used to inject occlu-
sion where DG < β. From Fig. 8b, with conservative guidance (β = 0, i.e. no
occlusions injected) it behaves similar to MUNIT baseline entangling drops in
the translation, while deactivating guidance (β = 1) correctly achieves a disen-
tangled representation but at the cost of losing translation in high domain shifts
areas (note the lack of road reflections). Appropriate guidance (β = 0.75) helps
learning target characteristics while preserving from entanglement.

Model IS↑ LPIPS↑ CIS↑
N/A ([14]) 1.21 0.50 1.03

Gaussian 1.35 0.51 1.13

Refract 1.46 0.50 1.12

Ours 1.53 0.52 1.15

(a) Model complexity

Source β = 0 (i.e. [14]) β = 0.75 (ours) β = 1

(b) Disentanglement guidance

Fig. 8: Ablation of model complexity and disentanglement guidance for the
clear 7→ rain task on nuScenes. In (a), our disentanglement performs better
than baseline [14] with all occlusion models. In (b), studying the influence of β
we note that without guidance (β = 1) the translation lacks important rainy
features (reflections, glares, etc.) while with appropriate guidance (β = 0.75) it
learns correct rainy characteristics without entanglement.

5 Conclusion

We propose the first unsupervised method for model-based disentanglement in i2i
translation, relying on guided injection of occlusions with parameters regressed
from target and assuming only prior knowledge of the occlusion model. Our
method outperformed the literature visually and on all tested metrics, and the
applicability was shown on various occlusions models (raindrop, dirt, watermark,
etc.). Our strategy of adversarial parameter estimation copes with drops of any
focus, which is of high interest for any outdoor system as demonstrated in the
experiments.
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