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Abstract. This paper proposes a set of rules to revise various neural
networks for 3D point cloud processing to rotation-equivariant quater-
nion neural networks (REQNNs). We find that when a neural network
uses quaternion features, the network feature naturally has the rotation-
equivariance property. Rotation equivariance means that applying a spe-
cific rotation transformation to the input point cloud is equivalent to ap-
plying the same rotation transformation to all intermediate-layer quater-
nion features. Besides, the REQNN also ensures that the intermediate-
layer features are invariant to the permutation of input points. Compared
with the original neural network, the REQNN exhibits higher rotation
robustness.
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1 Introduction

3D point cloud processing has attracted increasing research attention in recent
years. Unlike images with rich color information, 3D point clouds mainly use
spatial contexts for feature extraction. Therefore, the rotation is not supposed
to have essential impacts on 3D tasks, such as 3D shape classification and re-
construction. Besides, reordering input points should not have crucial effects on
these tasks as well, which is termed the permutation-invariance property.

In this study, we focus on the problem of learning neural networks for 3D
point cloud processing with rotation equivariance and permutation invariance.
• Rotation equivariance: Rotation equivariance has been discussed in recent
research [6]. In this study, we define rotation equivariance for neural networks
as follows. If an input point cloud is rotated by a specific angle, then the feature
generated by the network is equivalent to applying the transformation w.r.t. the
same rotation to the feature of the original point cloud (see Fig. 1 (left)). In
this way, we can use the feature of a specific point cloud to synthesize features
of the same point cloud with different orientations. Specifically, we can apply
the transformation of a specific rotation to the current feature to synthesize the
target feature.

? Wen Shen, Binbin Zhang and Shikun Huang have equal contributions.
† Quanshi Zhang is the corresponding author.
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Fig. 1. Overview. In the REQNN, both input point clouds and intermediate-layer
features are represented by quaternion features (blue). In this paper, the rotation equiv-
ariance is defined as follows. When we rotate the input point cloud x (a) with a specific
angle (e.g. 60◦) to obtain the same point cloud x′ (b) with a different orientation, then
the intermediate-layer feature (d) generated by the REQNN is equivalent to applying
the transformation w.r.t. the same rotation to the feature (c) of the original point cloud.
I.e. the rotation equivariance is defined as g(Rotateθ(x)) = Rotateθ(g(x)). REQNNs
exhibit significantly higher rotation robustness than traditional neural networks.

• Permutation invariance: Permutation invariance measures whether
intermediate-layer features essentially keep unchanged when we reorder input 3D
points. Fortunately, we find that quaternion features in a neural network natu-
rally satisfy the rotation-equivariance property under certain conditions (details
will be introduced later). Therefore, we propose a set of rules to revise most ex-
isting neural networks to rotation-equivariant quaternion neural networks (RE-
QNNs). Given a specific neural network for 3D point cloud processing (e.g.
PointNet [21], PointNet++ [22], DGCNN [33], PointConv [37], etc., which are
learned for various tasks, such as 3D shape classification and reconstruction), our
rules can help revise the network to a REQNN with both properties of rotation
equivariance and permutation invariance.

To revise a neural network to a REQNN with rotation equivariance, we trans-
form both the input and intermediate-layer features of the original neural net-
work into quaternion features (i.e. vectors/matrices/tensors, in which each el-
ement is a quaternion). A quaternion is a hyper-complex number with three
imaginary parts (i, j, and k) [11]. 3D rotations can be represented using quater-
nions. I.e. rotating a quaternion q ∈ H with an angle θ ∈ [0, 2π) around an axis
o = 0 + o1i+ o2j + o3k ∈ H (o1, o2, o3 ∈ R) can be represented as RqR, where

R = eo
θ
2 ∈ H; R = e−o

θ
2 ∈ H is the conjugation of R.

In this way, the rotation equivariance of a REQNN is defined as follows.
When we apply a specific rotation to the input x ∈ Hn, i.e. x′=R ◦ x ◦R, the
network will generate an intermediate-layer quaternion feature g(x′) ∈ Hd, where
◦ denotes the element-wise multiplication. The rotation equivariance ensures
that g(x′) = R ◦ g(x) ◦ R. Note that the input and the feature here can be
vectors/matrices/tensors, in which each element is a quaternion.
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Therefore, we revise a number of layerwise operations in the original neural
network to make them rotation-equivariant, such as operations of the convolu-
tion, ReLU, batch-normalization, max-pooling, 3D coordinates weighting [37],
etc., in order to ensure the rotation-equivariance property.

Note that most tasks, such as the shape classification, require outputs com-
posed of real numbers. However, the REQNN’s features consist of quaternions.
Therefore, for real applications, we revise quaternion features of a specific high
layer of the REQNN into ordinary features, in which each element is a real num-
ber. We transform quaternion features into real numbers by using the square of
the norm of each quaternion element in the feature to replace the corresponding
feature element. We put the revised real-valued features into the last few layers
to generate real-valued outputs, as Fig. 1 (right) shows. Such revision ensures
that the last few layerwise operations are rotation invariant. We will introduce
this revision in Section 3.5.

Besides the rotation-equivariance property, the REQNN is also supposed to
have the permutation-invariance property as follows. When we reorder 3D points
in the input point cloud x to obtain the same point cloud xreorder with a different
order, the network will generate the same feature, i.e. g(xreorder) = g(x). There-
fore, we revise a few operations in the original neural network to be permutation
invariant, e.g. the farthest point sampling [22] and the ball-query-search-based
grouping [22], to ensure the permutation-invariance property of the REQNN.

In this study, we do not limit our attention to a specific architecture. Our
method can be applied to various neural networks for different tasks. Experi-
mental results proved that REQNNs exhibited superior performance than the
original networks in terms of rotation robustness.

Contributions of our study are summarized as follows. We propose a set of
generic rules to revise various neural networks to REQNNs with both properties
of rotation equivariance and permutation invariance. The proposed rules can be
broadly applied to different neural networks for different tasks, such as 3D shape
classification and point cloud reconstruction. Experiments have demonstrated
the effectiveness of our method that REQNNs exhibit higher rotation robustness
than traditional neural networks.

2 Related Work

Deep learning for 3D point cloud processing: Recently, a series of studies
have focused on deep neural networks (DNNs) for 3D point cloud processing and
have achieved superior performance in various 3D tasks [21, 28, 27, 41, 32, 25]. As
a pioneer of using DNNs for 3D point cloud processing, PointNet [21] aggregated
all individual point features into a global feature using a max-pooling operation.
In order to further extract contextual information of 3D point clouds, existing
studies have made lots of efforts. PointNet++ [22] hierarchically used PointNet
as a local descriptor. KC-Net [24] proposed kernel correlation to measure the
similarity between two point sets, so as to represent local geometric structures
around each point. PointSIFT [14] proposed a SIFT-like operation to encode
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contextual information of different orientations for each point. Point2Sequence
[18] employed an RNN-based encoder-decoder structure to capture correlations
between different areas in a local region by aggregating multi-scale areas of each
local region with attention.

Unlike images, 3D point clouds cannot be processed by traditional convo-
lution operators. To address this problem, Kd-network [16] built a kd-tree on
subdivisions of the point cloud, and used such kd-tree structure to mimics the
convolution operator to extract and aggregate features according to the sub-
divisions. PointCNN [17] proposed an X -Conv operator to aggregate features
from neighborhoods into fewer representative points. Pointwise CNN [12] binned
nearest neighbors into kernel cells of each point and convolved them with kernel
weights. PointConv [37] treated convolution kernels as nonlinear functions that
were learned from local coordinates of 3D points and their densities, respec-
tively. Besides, some studies introduced graph convolutional neural networks for
the extraction of geodesic information [27, 33]. Some studies focused on the use
of spatial relations between neighboring points [19, 44]. In this study, we aim to
learn DNNs with properties of rotation equivariance and permutation invariance.

3D rotation robustness: The most widely used method to improve the ro-
tation robustness was data augmentation [31]. However, data augmentation sig-
nificantly boosted the computational cost. Spatial Transformer Networks (STNs)
[13] allowed spatial manipulations of data and features within the network, which
improved the rotation robustness.

Some studies went beyond rotation robustness and focused on rotation in-
variance. The rotation-invariance property means that the output always keeps
unchanged when we rotate the input. One intuitive way to achieve rotation in-
variance was to project 3D points onto a sphere [40, 23, 42] and constructed
spherical CNNs [5] to extract rotation-invariant features. Other studies learned
rotation-invariant representations that discarded orientation information of in-
put point clouds [4, 8, 43].

However, such rotation-invariant methods directly discarded rotation infor-
mation, so the rotation equivariance is proposed as a more promising property
of feature representations. Rotation-equivariant methods both encode rotation
information and disentangle rotation-independent information from the point
cloud. To the best of our knowledge, there were very few studies in this direc-
tion. Previous studies developed specific network architectures [45] or designed
specific operations [29] to achieve rotation equivariance. In comparison, we aim
to propose a set of generic rules to revise most existing neural networks to achieve
the rotation-equivariance property. Unlike [45, 29], our method can be applied
to various neural networks for different tasks.

Complex and quaternion networks: Recently, besides neural networks
using real-valued features, neural networks using complex-valued features or
quaternion-valued [11] features have been developed [2, 35, 7, 36, 10, 30, 39, 9, 15,
46, 20]. In this study, we use quaternions to represent intermediate-layer features
and 3D rotations to achieve 3D rotation-equivariance property.
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3 Approach

3.1 Quaternion Features in Neural Networks and Rotations

Quaternion: A quaternion [11] q = q0 + q1i + q2j + q3k ∈ H is a
hyper-complex number with a real part (q0) and three imaginary parts
(q1i, q2j, q3k), where q0, q1, q2, q3 ∈ R; H denotes the algebra of quater-
nions. If the real part of q is 0, then q is a pure quaternion. If the norm of
a quaternion ‖q‖ =

√
q20 + q21 + q22 + q23 = 1, then q is a unit quaternion.

The conjugation of q is q = q0 − q1i− q2j − q3k.
The products of basis elements i, j, and k are defined by i2 = j2 = k2 =

ijk = −1 and ij = k, jk = i,ki = j, ji = −k,kj = −i, and ik = −j.
Note that the multiplication of two quaternions is non-commutative, i.e.
ij 6= ji, jk 6= kj, and ki 6= ik.

Each quaternion has a polar decomposition. In this study, we only
focus on the polar decomposition of a unit quaternion in the form of
q = cos θ2 + sin θ

2 (o1i + o2j + o3k),
√
o21 + o22 + o23 = 1. The polar decom-

position of such a unit quaternion is q = eo
θ
2 , where o = o1i + o2j + o3k.

As aforementioned, multiplication of two quaternions is non-commutative,
therefore, eo

θ
2 pe−o

θ
2 6= p.

For a traditional neural network, inputs, features, and parameters are vec-
tors/matrices/tensors, in which each element is a real number. However, in a
REQNN, inputs and features are vectors/matrices/tensors composed of quater-
nions; parameters are still vectors/matrices/tensors composed of real numbers.

Quaternion inputs and features: In a REQNN, each u-th point
([xu, yu, zu]> ∈ R3) in a 3D point cloud is represented as a pure quaternion
xu = 0 + xui + yuj + zuk. Each v-th element of the intermediate-layer feature
is also a pure quaternion fv = 0 + avi + bvj + cvk, where av, bv, cv ∈ R.

Quaternion rotations: Each element of a feature, fv = 0 + avi + bvj +
cvk, can be considered to have an orientation, i.e. [av, bv, cv]

>. In this way, 3D
rotations can be represented using quaternions. Suppose we rotate fv around
an axis o = 0 + o1i + o2j + o3k (where o1, o2, o3 ∈ R, ‖o‖ = 1) with an angle
θ ∈ [0, 2π) to get f ′v. Such a rotation can be represented using a unit quaternion

R = cos θ2 + sin θ
2 (o1i + o2j + o3k) = eo

θ
2 and its conjugation R, as follows.

f ′v = RfvR. (1)

Note that f ′v = RfvR 6= fv. The advantage of using quaternions to represent
rotations is that quaternions do not suffer from the singularity problem, but
the Euler Angle [34] and the Rodrigues parameters [26] do. Besides, although
the redundancy ratio of quaternions is two, the redundancy does not affect the
rotation equivariance property of the REQNN.

To ensure that all quaternion features are rotation equivariant, all imaginary
parts (i.e. i, j, and k) of a quaternion element share the same real-valued



6 W. Shen et al.

parameter w. Take the convolution operation ⊗ as an example, w⊗ f = w⊗ (0+
ai+ bj + ck) = 0 + (w⊗ a)i+ (w⊗ b)j + (w⊗ c)k, where w is the real-valued
parameter; f is the quaternion feature; a, b, and c are real-valued tensors of
the same size for the convolution operation in this example.

3.2 Rotation Equivariance

In order to recursively achieve the rotation-equivariance property for a REQNN,
we should ensure that each layerwise operation of the REQNN has the rotation-
equivariance property. In a REQNN, the rotation equivariance is defined as fol-
lows. Let x ∈ Hn and y = Φ(x) ∈ HC denote the input and the output of
the REQNN, respectively. Note that outputs for most tasks are traditional vec-
tors/matrices/tensors, in which each element is a real number. In this way, we
learn rotation-equivariant quaternion features in most layers, and then trans-
form these features into ordinary real-valued rotation-invariant features in the
last few layers, as shown in Fig. 1 (right). We will introduce details for such
revision in Section 3.5.

For each rotation R = eo
θ
2 and its conjugation R, the rotation equivariance

of a REQNN is defined as follows.

Φ(x(θ)) = R ◦Φ(x) ◦R, s.t. x(θ) , R ◦ x ◦R, (2)

where ◦ denotes the element-wise multiplication (e.g. x(θ) , R◦x◦R can also be

formulated as x
(θ)
u , RxuR, u = 1, 2, ..., n). As discussed in the previous para-

graph, outputs for most tasks are real-valued features. Therefore, Equation (2)
does not hold for all layers in the neural network. Instead, we transform features
in last few layers to be real-valued rotation-invariant features.

To achieve the above rotation equivariance, we must ensure the layerwise
rotation equivariance. Let Φ(x) = ΦL(ΦL−1(· · ·Φ1(x))) represent the cascaded
functions of multiple layers of a neural network, where Φl(·) denotes the function
of the l-th layer. Let fl = Φl(fl−1) ∈ Hd denote the output of the l-th layer. The
layerwise rotation equivariance is given as follows.

Φl(f
(θ)
l−1) = R ◦ Φl(fl−1) ◦R, s.t. f

(θ)
l−1 , R ◦ fl−1 ◦R. (3)

This equation recursively ensures the rotation-equivariance property of the RE-
QNN. Let us take a neural network with three layers as a toy example. Φ(xθ) =
Φ3(Φ2(Φ1(R ◦ x ◦ R))) = Φ3(Φ2(R ◦ Φ1(x) ◦ R)) = Φ3(R ◦ Φ2(Φ1(x)) ◦ R) =
R ◦ Φ3(Φ2(Φ1(x))) ◦R = R ◦Φ(x) ◦R. Please see supplementary materials for
more discussion.

3.3 Rules for Rotation Equivariance

We propose a set of rules to revise layerwise operations in the original neural
network to make them rotation-equivariant, i.e. satisfying Equation (3). Ta-
ble 1 shows the list of layerwise operations in the original neural network with
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Operation
Rotation Permutation

Operation
Rotation Permutation

equivariance invariance equivariance invariance

Convolution × – Grouping (k-NN)[37] X X
ReLU × – Grouping (ball query) [22] X ×
Batch-normalization × – Density estimation [37] X X
Max-pooling × – 3D coordinates weighting [37] × X
Dropout × – Graph construction [33] X X
Farthest point sampling[22] X ×

Table 1. Rotation-equivariance and permutation-invariance properties of layerwise
operations in the original neural network. “×” denotes that the operation does not
have the property, “X” denotes that the operation naturally has the property, and
“–” denotes that the layerwise operation is naturally unrelated to the property (which
will be discussed in the last paragraph of Section 3.4). Please see Section 3.3 and
Section 3.4 for rules of revising layerwise operations to be rotation-equivariant and
permutation-invariant, respectively.

the rotation-equivariance property, and those without the rotation-equivariance
property. The rotation-equivariance property of the revised layerwise operations
has been proved in supplementary materials.

Convolution: We revise the operation of the convolution layer, Conv(f) =
w ⊗ f + b, to be rotation-equivariant by removing the bias term b, where w is
the real-valued parameter and f is the quaternion feature.

ReLU: We revise the ReLU operation as follows to make it rotation-
equivariant.

ReLU(fv) =
‖fv‖

max{‖fv‖, c}
fv, (4)

where fv ∈ H denotes the v-th element in the feature f ∈ Hd; c is a positive
constant, which can be implemented as c = 1

d

∑d
v=1‖fv‖.

Batch-normalization: We revise the batch-normalization operation to be
rotation-equivariant, as follows.

norm(f (i)v ) =
f
(i)
v√

Ej [‖f (j)v ‖2] + ε

, (5)

where f (i) ∈ Hd denotes the feature of the i-th sample in the batch; ε is a tiny
positive constant to avoid dividing by 0.

Max-pooling: We revise the max-pooling operation, as follows.

maxPool(f) = fv̂ s.t. v̂ = arg max
v=1,...,d.

[‖fv‖]. (6)

Note that for 3D point cloud processing, a special element-wise max-pooling op-
eration designed in [21] is widely used. The revision for this special max-pooling
operation can be decomposed to a group of operations as Equation (6) defined.
Please see our supplementary materials for revision details of this operation.
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Dropout: For the dropout operation, we randomly drop out a number of
quaternion elements from the feature. For each dropped element, both the real
and imaginary parts are set to zero. Such revision naturally satisfies the rotation-
equivariance property in Equation (3).

3D coordinates weighting: The 3D coordinates weighting designed in [37]
focuses on the use of 3D coordinates’ information to reweight intermediate-layer
features. This operation is not rotation-equivariant, because the rotation changes
coordinates of points. To make this operation rotation-equivariant, we use the
Principal Components Analysis (PCA) to transform 3D points to a new local
reference frame (LRF). Specifically, we choose eigenvectors corresponding to
the first three principal components as new axes x, y, and z of the new LRF.
In this way, the coordinate system rotates together with input points, so the
transformed new coordinates are not changed. Note that contrary to [45] relying
on the LRF, our research only uses LRF to revise the 3D coordinates weighting
operation, so as to ensure the specific neural network designed in [37] to be
rotation equivariant.

The following five layerwise operations in the original neural network, which
are implemented based on distances between points, are naturally rotation-
equivariant, including the farthest point sampling [22], the k-NN-search-based
grouping [33, 37], the ball-query-search-based grouping [22], the density estima-
tion [37], and the graph construction [33] operations.

3.4 Rules for Permutation Invariance

As shown in Table 1, the farthest point sampling [22], and the ball-query-search-
based grouping [22] are not permutation-invariant. Therefore, we revise these two
operations to be permutation-invariant as follows.

Farthest point sampling: The farthest point sampling (FPS) is an opera-
tion for selecting a subset of points from the input point cloud, in order to extract
local features [22]. Suppose that we aim to select n points from the input point
cloud, if i − 1 points have already been selected, i.e. Si−1 = {x1, x2, . . . , xi−1},
then the next selected point xi is the farthest point from Si−1. The FPS is not
permutation-invariant, because the subset selected by this operation depends on
which point is selected first. To revise the FPS to be permutation-invariant, we
always use the centroid of a point cloud, which is a virtual point, as the first
selected point. In this way, the FPS would be permutation-invariant.

Grouping (ball query): The ball-query-search-based grouping is used to
find K neighboring points within a radius for each given center point, in order to
extract contextual information [22]. This operation is not permutation-invariant,
because when there are more than K points within the radius, the top K points
will be selected according to the order of points. To revise this operation to be
permutation-invariant, we replace the ball query search by k-NN search when
the number of points within the radius exceeds the required number.

Other operations that implemented based on distances between points are
permutation-invariant, because reordering input points has no effects on dis-
tances between points, including the k-NN-search-based grouping [33, 37], the
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density estimation [37], the 3D coordinates weighting [37], and the graph con-
struction [33] operations.

Note that there is no need to discuss the permutation invariance of the convo-
lution, the ReLU, the batch-normalization, the max-pooling, and the dropout op-
erations. It is because the permutation invariance of these operations depends on
receptive fields. I.e. if the receptive field of each neural unit keeps the same when
we reorder input points, then the operation is permutation-invariant. Whereas
receptive fields are determined by other operations (e.g. the FPS and grouping).

3.5 Overview of the REQNN

Although using quaternions to represent intermediate-layer features helps achieve
the rotation-equivariance property, most existing tasks (e.g. the shape classifi-
cation) require outputs of real numbers. Thus, we need to transform quaternion
features into ordinary real-valued features, in which each element is a real num-
ber. Note that for the point cloud reconstruction task, features of the entire neu-
ral network are quaternions. It is because outputs required by the point cloud
reconstruction task are 3D coordinates, which can be represented by quaternions.

Therefore, as Fig. 1 shows, the REQNN consists of (a) rotation-equivariant
quaternion module, (b) Quaternion2Real module, and (c) task module.

Rotation-equivariant quaternion module: Except for very few lay-
ers on the top of the REQNN, other layers in the REQNN comprise the
rotation-equivariant quaternion module. This module is used to extract rotation-
equivariant quaternion features. We use rules proposed in Section 3.3 to revise
layerwise operations in the original neural network to be rotation-equivariant,
so as to obtain the rotation-equivariant quaternion module. We also use rules in
Section 3.4 to revise these layerwise operations to be permutation invariant.

Quaternion2Real module: The Quaternion2Real module is located after
the rotation-equivariant quaternion module. The Quaternion2Real module is
used to transform quaternion features into real-valued vectors/matrices/tensors
as features. Specifically, we use an element-wise operation to compute the square
of the norm of each quaternion element as the real-valued feature element. I.e.
for each v-th element of a quaternion feature, fv = 0+avi+bvj+cvk, we compute
the square of the norm ‖fv‖2 = a2v + b2v + c2v as the corresponding element of the
real-valued feature. Note that the transformed features are rotation-invariant.

Task module: The task module is composed of the last few layers of the
REQNN. The task module is used to obtain ordinary real-valued outputs, which
are required by the task of 3D shape classification. As aforementioned, the
Quaternion2Real module transforms quaternion features into real-valued vec-
tors/matrices/tensors as features. In this way, the task module (i.e. the last
few layers) in the REQNN implements various tasks just like traditional neural
networks.

Complexity of the REQNN: The REQNN’s parameter number is no
more than that of the original neural network. The REQNN’s operation number
is theoretically less than three times of that of the original neural network. We
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PointNet++1 [22] DGCNN2 [33] PointConv [37] PointNet [21]
FLOPs(G) #Params(M) FLOPs(G) #Params(M) FLOPs(G) Params(M) FLOPs(G) #Params(M)

Ori. 0.87 1.48 3.53 2.86 1.44 19.57 0.30 0.29

REQNN 2.51 1.47 8.24 2.86 4.22 20.61 0.88 0.28

Table 2. Comparisons of the number of floating-point operations (FLOPs) and the
number of parameters (#Params) of original neural networks and REQNNs. All neural
networks were tested on the ModelNet40 dataset.

Layerwise operation PointNet++ [22] DGCNN [33] PointConv [37] PointNet [21]

Convolution X X X X
ReLU X X X X
Batch-normalization X X X X
Max-pooling X X X
Dropout X X X X
Farthest point sampling X X
Grouping (k-NN) X X
Grouping (ball query) [22] X
Density estimation [37] X
3D coordinates weighting [37] X
Graph construction [33] X

Table 3. Layerwise operations of different neural networks. “X” denotes that the
network contains the layerwise operation.

have compared numbers of operations and numbers of parameters of original
neural networks and REQNNs in Table 2.

3.6 Revisions of Traditional Neural Networks into REQNNs

In this study, we revise the following four neural networks to REQNNs, including
PointNet++ [22], DGCNN [33], PointConv [33], and PointNet [21].

Model 1, PointNet++: As Table 3 shows, the PointNet++ [22] for shape
classification includes seven types of layerwise operations. To revise the Point-
Net++ for shape classification1 to a REQNN, we take the last three fully-
connected (FC) layers as the task module and take other layers as the rotation-
equivariant quaternion module. We add a Quaternion2Real module between
these two modules. We use rules proposed in Section 3.3 to revise four types
of layerwise operations to be rotation-equivariant, including the convolution,
ReLU, batch-normalization, and max-pooling operations. We also use rules pro-
posed in Section 3.4 to revise farthest point sampling and ball-query-search-based
grouping operations in the original PointNet++ to be permutation-invariant.

1 The PointNet++ for shape classification used in this paper is slightly revised by
concatenating 3D coordinates to input features of the 1-st and 4-th convolution
layers, in order to enrich the input information. For fair comparisons, both the
REQNN and the original PointNet++ are revised in this way.



3D-Rotation-Equivariant Quaternion Neural Networks 11

Model 2, DGCNN: As Table 3 shows, the DGCNN [33] for shape classi-
fication contains seven types of layerwise operations. To revise the DGCNN for
shape classification to a REQNN, we take the last three FC layers as the task
module and take other layers as the rotation-equivariant quaternion module.
The Quaternion2Real module2 is added between these two modules. We revise
four types of layerwise operations to be rotation-equivariant, including the con-
volution, ReLU, batch-normalization, and max-pooling operations. All layerwise
operations in the original DGCNN are naturally permutation-invariant. There-
fore, there is no revision for permutation invariance here.

Model 3, PointConv: As Table 3 shows, the PointConv [37] for shape
classification includes eight types of layerwise operations. To revise the Point-
Conv for shape classification to a REQNN, we take the last three FC layers as
the task module and take other layers as the rotation-equivariant quaternion
module. The Quaternion2Real module is added between these two modules. We
revise the following four types of layerwise operations to be rotation-equivariant,
i.e. the convolution, ReLU, batch-normalization, and 3D coordinates weighting
operations. We also revise all farthest point sampling operations in the original
PointConv to be permutation-invariant.

Model 4, PointNet: In order to construct a REQNN for shape reconstruc-
tion, we slightly revise the architecture of the PointNet [21] for shape classi-
fication. As Table 3 shows, the PointNet for shape classification contains five
types of layerwise operations. We take all remaing layers in the PointNet as the
rotation-equivariant quaternion module except for the max-pooling and Spatial
Transformer Network (STN) [13]. The STN discards all spatial information (in-
cluding the rotation information) of the input point cloud. Therefore, in order
to encode rotation information, we remove the STN from the original PointNet.

Note that there is no the Quaternion2Real module or the task module in this
REQNN, so that all features in the REQNN for reconstruction are quaternion
features. We revise the following four types of layerwise operations to be rotation-
equivariant, i.e. the convolution, the ReLU, the batch-normalization, and the
dropout operations.

4 Experiments

Properties of the rotation equivariance and the permutation invariance of RE-
QNNs could be proved theoretically, please see our supplementary materials for
details. In order to demonstrate other advantages of REQNNs, we conducted
the following experiments. We revised three widely used neural networks to RE-
QNNs for the shape classification task, including PointNet++ [22], DGCNN [33],
and PointConv [37]. We revised the PointNet [21] to a REQNN for the point

2 We add one more convolution layer in the Quaternion2Real module in the REQNN
revised from DGCNN, in order to obtain reliable real-valued features considering
that the DGCNN has no downsampling operations. For fair comparisons, we add
the same convolution layer to the same location of the original DGCNN.
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Method
ModelNet40 dataset 3D MNIST dataset

Baseline Baseline
REQNN

Baseline Baseline
REQNN

w/o rotations w/ rotations w/o rotations w/ rotations

PointNet++1 [22] 23.573 26.43 63.95 44.15 51.16 68.99

DGCNN2 [33] 30.053 31.34 83.03 45.37 49.25 82.09

PointConv [37] 21.93 23.72 78.14 44.63 50.95 78.59

Table 4. Accuracy of 3D shape classification on the ModelNet40 and the 3D MNIST
datasets. “Baseline w/o rotations” indicates the original neural network learned with-
out rotations. “Baseline w/ rotations” indicates the original neural network learned
with the z-axis rotations (data augmentation with the z-axis rotations has been widely
applied in [22, 33, 37]). “REQNN” indicates the REQNN learned without rotations.
Note that the accuracy of shape classification reported in [22, 33, 37] was obtained un-
der the test without rotations. The accuracy reported here was obtained under the test
with rotations. Therefore, it is normal that the accuracy in this paper is lower than
the accuracy in those papers.

cloud reconstruction task. In all experiments, we set c = 1 in Equation (4) and
set ε = 10−5 in Equation (5).

3D shape classification: We used the ModelNet40 [38] dataset (in this
study, we used corresponding point clouds provided by PointNet [21]) and the
3D MNIST [1] dataset for shape classification. The ModelNet40 dataset con-
sisted of 40 categories; and the 3D MNIST dataset consisted of 10 categories.
Each shape consisted of 1024 points. In this experiment, we conducted experi-
ments on three types of baseline neural networks, including (1) the original neural
network learned without rotations, (2) the original neural network learned with
the z-axis rotations (the z-axis rotations were widely used in [22, 33, 37] for data
augmentation), and (3) the REQNN learned without rotations (the REQNN
naturally had the rotation-equivariance property, so it did not require any rota-
tion augmentation). The testing set was generated by arbitrarily rotating each
sample ten times. We will release this testing set when this paper is accepted.

As Table 43 shows, the REQNN always outperformed all baseline neural
networks learned with or without rotations. We achieved the highest accuracy
of 83.03% using the REQNN revised from DGCNN2. Baseline neural networks
that were learned without rotations exhibited very low accuracy (21.93%–31.34%
on the ModelNet40 dataset and 44.15%–51.16% on the 3D MNIST dataset). In
comparison, baseline neural networks that were learned with z-axis rotations had
little improvement in rotation robustness.

Besides, we compared the REQNN with several state-of-the-art methods for
3D point cloud processing in two scenarios, including neural networks learned

3 The classification accuracy in the scenario of NR/AR in Table 4 and Table 5 was
slightly different for PointNet++ [22] (23.57% vs. 21.35%) and DGCNN [33] (30.05%
vs. 29.74%). It was because architectures of PointNet++1 and DGCNN2 examined
in Table 4 and Table 5 were slightly different. Nevertheless, this did not essentially
change our conclusions.
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Method
NR/NR (do not NR/AR

consider rotation in testing) (consider rotation in testing)

PointNet [21] 88.45 12.47
PointNet++ [22] 89.82 21.353

Point2Sequence [18] 92.60 10.53
KD-Network [16] 86.20 8.49
RS-CNN [19] 92.38 22.49
DGCNN [33] 92.90 29.743

PRIN [40] 80.13 68.85
QE-Capsule network [45] 74.73 74.07

REQNN
(revised from DGCNN2 ) 83.03 = 83.03

Table 5. Comparisons of 3D shape classification accuracy between different methods
on the ModelNet40 dataset. NR/NR denotes that neural networks were learned and
tested with No Rotations. NR/AR denotes that neural networks were learned with
No Rotations and tested with Arbitrary Rotations. Experimental results show that
the REQNN exhibited the highest rotation robustness. Note that the classification
accuracy of the REQNN in scenarios of NR/NR and NR/AR was the same due to the
rotation-equivariance property of the REQNN.

with No Rotations and tested with No Rotations, and neural networks learned
with No Rotations and tested with Arbitrary Rotations, as Table 5 shows.
Note that the classification accuracy of the REQNN in the scenario of NR/NR
was the same as that of NR/AR, because the REQNN was rigorously rotation
equivariant. The best REQNN in this paper (i.e. the REQNN revised from the
DGCNN2) achieved the highest accuracy of 83.03% in the scenario of NR/AR,
which indicated the significantly high rotation robustness of the REQNN. Tradi-
tional methods, including PointNet [21], PointNet++ [22], Point2Sequence [18],
KD-Network [16], RS-CNN [19], and DGCNN [33], achieved high accuracy in
the scenario of NR/NR. However, these methods performed poor in the scenario
of NR/AR, because they could not deal with point clouds with unseen orienta-
tions. Compared with these methods, PRIN [40] and QE-Capsule network [45]
made some progress in handling point clouds with unseen orientations. Our RE-
QNN outperformed them by 14.18% and 8.96%, respectively, in the scenario of
NR/AR.

3D point cloud reconstruction: In this experiment, we aimed to prove
that we could rotate intermediate-layer quaternion features of the original point
cloud to synthesize new point clouds with target orientations. Therefore, we
learned a REQNN revised from the PointNet [21] for point cloud reconstruction
on the ShapeNet [3] dataset. Each point cloud consisted of 1024 points in our
implementation. We took the output quaternion feature of the top fourth linear
transformation layer of the REQNN to synthesize quaternion features with differ-
ent orientations. Such synthesized quaternion features were used to reconstruct
point clouds with target orientations.
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Fig. 2. Manual manipulation of intermediate-layer features to control the object ro-
tation in 3D point cloud reconstruction. The experiment was conducted to prove
that point clouds reconstructed using the synthesized quaternion features had the
same orientations as point clouds generated by directly rotating the original point
cloud. Here we displayed results of four random orientations for each point cloud.
Point clouds (“original” (b-e)) were generated by directly rotating the original
point cloud (“original” (a)) around axis [0.46, 0.68, 0.56]> with angle π

3
, around axis

[−0.44,−0.61, 0.66]> with angle π
4

, around axis [0.34, 0.94, 0.00]> with angle π
6

, and

around axis [0.16, 0.83, 0.53]> with angle 2π
3

, respectively. Given a specific intermediate-
layer quaternion feature of the original point cloud (“original” (a)), we rotated the
quaternion feature with the same angles to obtain quaternion features with different
orientations, which were used to reconstruct point clouds (“reconstructed” (b-e)).

As Fig. 2 shows, for each given point cloud (Fig. 2 “original” (a)), we directly
rotated it with different angles (Fig. 2 “original” (b-e)). For comparison, we
rotated the corresponding quaternion feature of the original point cloud with
the same angles to synthesize quaternion features. These generated quaternion
features were used to reconstruct point clouds (Fig. 2 “reconstructed” (b-e)). We
observed that these reconstructed point clouds had the same orientations with
those of point clouds generated by directly rotating the original point cloud.

5 Conclusion

In this paper, we have proposed a set of generic rules to revise various neural net-
works for 3D point cloud processing to REQNNs. We have theoretically proven
that the proposed rules can ensure each layerwise operation in the neural net-
work is rotation equivariant and permutation invariant. Experiments on various
tasks have shown the rotation robustness of REQNNs.

We admit that revising a neural network to a REQNN has some negative
effects on its representation capacity. Besides, it is challenging to revise all lay-
erwise operations in all neural networks for 3D point cloud processing.
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