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Abstract. Temporal Activity Localization via Language (TALL) in video
is a recently proposed challenging vision task, and tackling it requires
fine-grained understanding of the video content, however, this is over-
looked by most of the existing works. In this paper, we propose a novel
TALL method which builds a Hierarchical Visual-Textual Graph to model
interactions between the objects and words as well as among the objects
to jointly understand the video contents and the language. We also de-
sign a convolutional network with cross-channel communication mech-
anism to further encourage the information passing between the visual
and textual modalities. Finally, we propose a loss function that enforces
alignment of the visual representation of the localized activity and the
sentence representation, so that the model can predict more accurate
temporal boundaries. We evaluated our proposed method on two popu-
lar benchmark datasets: Charades-STA and ActivityNet Captions, and
achieved state-of-the-art performances on both datasets. Code is avail-
able at https://github.com/forwchen/HVTG.

Keywords: Temporal Activity Localization via Language · Hierarchical
Visual-Textual Graph · Visual-Textual Alignment

1 Introduction

Localizing temporal region-of-interest in video is a popular research topic in com-
puter vision. Human actions have been the main target for temporal localization
in video, and significant progresses are made [27,35,10,4,23,34,55] during the past
few years thanks to the development of deep learning. However, actions that are
categorized to a limited number of classes are not sufficient for understanding
the events in videos. Recently, Gao et al. [12] and Hendricks et al. [16] proposed
to localize complex activities in videos via free-form language queries (i.e., sen-
tence descriptions), and the task is named Temporal Activity Localization via
Language (TALL). An example of TALL is shown in Fig. 1. The main difference
between TALL and action localization is that an activity can be a composition
of multiple actions or sub-activities (e.g., opening refrigerator, taking bottle,
and closing refrigerator), and an activity involves frequent interactions among
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Sentence: A person takes a bottle of water from the refrigerator.

1.4s 8.4sLocalized segment:

Fig. 1. Demonstration of the Temporal Activity Localization via Language task. The
motivation for our work is that the objects and their interactions must be explicitly
modeled while jointly considering the sentence content. In this example, the model
should understand the interactions among the key objects from the query: bottle,
person, and refrigerator, so that it is aware of when the refrigerator is opened/closed
and the bottle is taken out of the refrigerator.

persons and objects. Moreover, some actions or sub-activities are not explicitly
described by the sentence. Thus, one key to tackling this challenging task is the
fine-grained joint understanding of the video’s visual content and the sentence’s
textual content.

TALL has recently attracted attention from both the computer vision and
natural language processing communities. Early approaches for solving TALL
are inspired by action localization methods and are mainly based on sliding win-
dow proposals. In [24,37,25], candidate temporal regions are first generated by
sliding windows of fixed scales over the video, then each candidate and the sen-
tence are separately processed by visual and textual encoding modules, and they
are finally fed to a cross-modal processing module to generate a ranking score
and boundary offsets. These sliding window candidates are query-irrelevant, so
some works [48,7] try to generate learned query-guided proposals by leveraging
sentence semantics to assign weights to temporal regions. Proposal-based meth-
ods generate a large amount of candidate regions in order to achieve a high
recall, thus they suffer from high computational cost in both the training and
testing phases. Moreover, proposal-based methods are two-stage and cannot be
optimized in an end-to-end manner. Similar to the efficient action localization
method [4], a group of works [6,42] adopt anchor-based network structure that
can generate multi-scale region predictions for all time steps in one pass. Anchor-
based methods are end-to-end trainable and can address the efficiency problem,
however, they still rely on heuristic rules such as the candidate region scales and
strides, which are usually dependent on the dataset statistics. Most recently,
some works [53,26] try to discard proposals and directly predict the start and
end boundaries of an activity. Although this type of approaches cannot gener-
ate multiple proposals, they are computationally more efficient and do not rely
on the dataset statistics to design heuristic rules. To summarize, most existing
methods focus on generating and refining temporal proposals and improving
efficiency, but rarely explore the modeling of fine-grained object interactions.

We argue that while actions can be well captured by their motion patterns [5],
understanding activities requires fine-grained modeling of the relations among
the objects/persons in videos. As shown in Figure 1, the main motivation for
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this work is that object interactions should be modeled jointly with the sentence
content for better localization. Existing methods mostly use pretrained action
recognition network (such as C3D [39]) to extract global feature representations
for video frames, but such representations do not preserve the object-level infor-
mation inside frames. To address this issue, we extract object-level features in
each video frame via an object detection network, and then use a Hierarchical
Visual-Textual Graph (HVTG) to encode the features. In the HVTG, objects
and words in the sentence are all considered graph nodes. In the first level, the
object features first connect and interact with word representations to gather
textual information that’s relevant to themselves. This achieves a fine-grained
understanding of the sentence query based on the video’s contents. Next, a fully-
connected object graph models the object-object interactions inside each frame,
and each node (object) absorbs information from its neighbors. To further ag-
gregate the object graph to obtain a compact representation, a sentence-guided
node aggregation is applied to each frame’s object features and then bidirectional
temporal relation is built via LSTMs. Following the HVTG, we design a con-
volutional localizer with cross-channel communication [51] between visual and
textual modalities (which can be regarded as a more fine-grained visual-textual
graph) to predict each frame’s relatedness with the sentence. Finally, in order
to further close the gap between the visual and textual modalities, an auxiliary
loss function is used to align the visual representation of the localized activity
and the textual representation. We abbreviate our method as HVTG.

Our contributions in this work are summarized as follows:
• We propose Hierarchical Visual-Textual Graph (HVTG), a novel model for

the Temporal Activity Localization via Language (TALL) task. HVTG per-
forms visual-textual interaction in both the object and channel levels, and
is among the first methods that consider fine-grained object interactions for
the TALL task.

• We propose a novel loss function for the TALL task which aligns the visual
representation of the localized activity and the sentence representation, and
can effectively improve the localization performance.

• We demonstrate the effectiveness of our HVTG through extensive ablation
studies and experiments on two challenging benchmark datasets: Charades-
STA and ActivityNet Captions. Our HVTG outperformed recent state-of-
the-art methods on both datasets.

2 Related Work

Temporal Action Localization and Proposals. Temporal action localiza-
tion is closely related to TALL and has been extensively studied in the computer
vision literature. The current state-of-the-art methods can be divided into two
groups: proposal-based methods and anchor based methods, according to how
they generate proposals (candidate temporal segments). Proposal-based meth-
ods first generate a set of candidate temporal segments of the target action and
then produce classification scores and boundary refinements for the proposals.
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Representative methods such as SCNN [35] and TCN [9] generate proposals
with simple multi-sale sliding-window strategy, and then exhaustively evaluate
the video segments using CNNs. Based on the SCNN proposals, Shou et al. [34]
further design a more powerful 3D CNN to model the spatio-temporal structure
in raw videos and produce fine-grained predictions for temporal boundary re-
finement. Another direction for improvement is designing more effective proposal
generation strategy. Zhao et al. [57] propose the Temporal Actionness Group-
ing (TAG) method for merging high actionness snippets into a proposal using
a grouping scheme similar to [32]. Proposal-based methods are not efficient due
to their exhaustive evaluation of all the proposals. Anchor-based methods such
as DAP [10], SS-TAD [3], and SST [4] overcome this efficiency problem by using
RNN (GRU [8] and LSTM [17]) to process videos in one pass and generate a set
of fixed-length proposals with confidence scores at every time step. Another line
of work adopts CNN architectures to process videos. SSAD [23] applies multiple
2D convolutions to multi-scale video feature maps and predicts action categories
and locations at multiple layers. R-C3D [47] extends the ROI-pooling method
in object detection, and it applies 3D ROI-pooling to proposals’ feature maps
from 3D CNN, and the ROI-pooling produces fixed-size features for predicting
temporal boundaries and action scores. The proposal generation strategies in
most TALL methods are similar to those used in temporal action localization.
However, actions are restricted to a predefined categories and can often be cap-
tured by their motion patterns. Thus, localizing activities via language is more
flexible and challenging.

Video/Image-Text Retrieval. Video/image-text retrieval is also a closely re-
lated topic. State-of-the-art methods mainly focus on either learning a visual-
semantic common space or encoding techniques for video and text. In [30], video
and text (sentence) are respectively encoded with CNN and RNN in parallel
and then projected into a common space where embeddings of relevant videos
and texts are pulled close. Faghri et al. [11] propose VSE++ which improves
the visual-semantic common space learning objective by utilizing hard nega-
tive image-text pairs. Miech et al. [28] design a Mixture of Embedding Experts
(MEE) model which computes similarity scores between text and video as a
weighted combination of multiple expert embeddings, where the weights are es-
timated from the aggregated word representations. Wray et al. [45] propose to
learn separate embeddings for each part-of-speech in a sentence, such as verbs
and nouns for retrieving fine-grained actions in videos. The importance of sen-
tence structure is also noted by methods that focus on the encoding techniques.
Xu et al. [50] and Lin et al. [22] both parse a sentence into a parse tree to obtain
the syntactic role of each word during sentence encoding. Information fusion is
also important when encoding the video or text. Mithun et al. [29] utilize mul-
timodal cues in video, such as motion, audio, and object features. JSFusion [52]
deeply fuses text and video representations by constructing a pairwise joint rep-
resentation of word and frame sequences using a soft-attention mechanism. A
recent work [54] explores video retrieval with multiple sentences by encoding
and aligning video and text hierarchically. Our method draws inspiration from
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video-text retrieval to perform feature alignment of the localized activity and
sentence in a common space.
Temporal Activity Localization via Language. A large body of TALL
methods are proposal-based [12,24,13,25,18,37], which adopt a sliding-window
proposal generation strategy and evaluate each proposal using visual-textual
cross-modal processing models. Xu et al. [49] use the temporal segment proposal
network in R-C3D [47], however, R-C3D is designed for action localization and
there is a discrepancy between action and activity. Some methods also incor-
porate semantic information of the sentence into the proposal generation pro-
cess. The QSPN [48] method uses a query-guided segment proposal network
which incorporates sentence embeddings to derive attention weights and re-
weight the video features for proposal generation. SAP [7] computes frame-wise
visual-semantic correlation scores by extracting concepts from video frames and
sentence, then uses a score grouping method to form proposal regions. TGN [6],
CBP [42], and MAN [56] use the one-shot proposal generation strategy simi-
lar to the one in SST [4], the visual and textual features are fused using RNN
or CNN to generate a set of proposals at each time step. Recently, ABLR [53]
and DEBUG [26] discard proposals and directly predict a (start, end) time pair,
which is more efficient. Although there are a few works that use object-level fea-
tures [18], we emphasize that fine-grained interaction between visual and textual
modalities is rarely considered for the TALL task.

3 Proposed Approach

As shown in Fig. 2, our method can be divided into two parts: the HVTG
for encoding the video, and the sentence localizer for generating predictions.
In Sec. 3.1, we first describe how our HVTG models the interaction between
objects and sentence and among the objects. In Sec. 3.2, we then present our
convolutional sentence localizer with the cross-channel communication mecha-
nism to further encourage information passing between the visual and textual
modalities. In Sec. 3.3, we formulate the set of losses for training our proposed
model, among which the visual-textual alignment loss is critical.

3.1 Hierarchical Visual-Textual Graph

Given a video, we first uniformly sample N frames and extract object-level fea-
tures for each frame: On = {o1

n,o
2
n, ...,o

M
n }, where n ∈ [1, N ] is the frame index,

M is the number of object features, and on ∈ Rdobj is a feature vector. The
sentence is represented by a sequence of words S = {w1,w2, ...,wQ}, where
w ∈ Rdword is a word vector produced by the GloVe [31] word embedding. Note
that the sentence is zero-padded or truncated to a fixed length Q. The goal of
Hierarchical Visual-Textual Graph is to aggregate object-level visual features
to obtain a compact representation for each frame, and simultaneously capture
the interaction between objects and sentence and among the objects. As Fig. 2
shows, the HVTG processes the video frame by frame with shared parameters.



6 S. Chen and Y.G. Jiang

GloVe Embeddings

Object-Sentence
Subgraph

(Bipartite Graph)

Object-Object
Subgraph

(Complete graph)

Sentence-Guided
Node Aggregation

⊙

Temporal Conv.

Visual-Textual 
Relevance

Boundary
Prediction

Localized Activity
Representation LSTM

LSTM

Bidirectional
Temporal Relation

Temporal Convolution

Object Features

MP

R
ep

eat

Visual-Textual
Alignment

Tile

MP

Softmax

GloVe Embeddings

Person drinks a cup of coffee at the kitchen table.
Hierarchical Visual-Textual Graph

HTVG

Object Features

HTVG

Object Features

HTVG

Object Features

HTVG

Object Features

HTVG

…

𝑓𝑖𝑛 𝑓𝑜𝑢𝑡
Norm. 
& Act.

Cross-Channel
Communication 

Graph

Fig. 2. Overview of our approach. The object features are extracted from each
frame, and then processed by the Hierarchical Visual-Textual Graph (HVTG) in four
stages: Object-Sentence Subgraph (Eq. (1),(2)), Object-Object Subgraph (Eq. (3),(4)),
Sentence-Guided Node Aggregation (Eq. (5),(6)), and Bidirectional Temporal Relation
(Eq. (7)). The aggregated visual representation for each frame is processed by multi-
layer temporal convolutions with the channel interaction mechanism (Eq. (9),(10)),
where fin and fout are linear transformations. Finally, boundary prediction and local-
ized activity representation are obtained based on the visual-textual relevance scores.

Object-Sentence Subgraph (OSS). As Fig. 2 shows, the OSS is a bipar-
tite graph, in which the nodes are divided into two disjoint and independent sets
(objects and words) and every edge connects an interacting pair of object and
word. We compute the weight of the edge connecting oi

n and wj as

Iij
n = 1T

(
(oi

nWO)� (wjWS)
)
, (1)

where WO ∈ Rdobj×d and WS ∈ Rdword×d are projection matrices for projecting
the object and word features into a common space, � denotes element-wise
multiplication, and 1 is a vector of ones. We then normalize the edge weights for
each object node i, and use them to gather textual information from the whole
sentence:

Îij
n = Softmaxj(I

ij
n ), oi

n =

Q∑
j=1

Îij
n (wjUS), (2)

where Softmaxj(·) represents column-wise Softmax normalization of a matrix,
and US ∈ Rdword×dobj projects word feature vectors into the object feature space.
The resulting object feature oi

n now carries textual information that’s relevant
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to itself. We also introduce a residual connection from the object feature oi
n to

oi
n to preserve the original object information. Then a Layer Normalization [2]

and an object-wise feed-forward network are used to transform the outputs into
a lower-dimensional space. The outputs are the sentence-aware object features
for the n-th frame, and they are denoted by Ôn = {ô1

n, ..., ô
M
n }.

Object-Object Subgraph (OOS). Since the basic elements of an activity
are object-object interactions, we build a complete (fully-connected) subgraph
inside each frame. The object features from the OSS are the graph nodes, and
the edge weight between two arbitrary objects ôi

n and ôj
n is computed as

eijn = g(ôi
n||ôj

n). (3)

Since the object features are already in the same feature space, we use a single-
layer feed-forward neural network for g(·) as in [41], and it linearly transforms
the concatenation of ôi

n and ôj
n into a scalar, and it has a LeakyReLU [46]

activation. Again, the edge weights for each node i are then normalized and
used to gather information from all its neighbors:

êijn = Softmaxj(e
ij), õi

n =

M∑
j=1

êijn ô
j
n. (4)

The resulting object features Õn = {õ1
n, ..., õ

M
n } now carry object-object inter-

actions between all pairs of objects inside each frame.
Sentence-Guided Node Aggregation. The object-object subgraph needs

to be further aggregated in order to reduce computational cost for subsequent
steps. Unlike the previous work [44], which aggregates all the nodes of a graph us-
ing mean-pooling, we instead use a sentence-guided attention to assign sentence
relevance scores to the objects:

u = tanh(SWS + ÕnWO + bO), û = Softmax(uWr + br), (5)

where S is the mean-pooled sentence feature used to guide the attention, and
WS ∈ Rdword×drel ,WO ∈ Rdobj×drel , bO ∈ Rdrel , Wr ∈ Rdrel×1, and br ∈ R1

are the learnable parameters. The normalized sentence relevance scores û ∈ RM

are then used to re-weight the object features to obtain an aggregated visual
representation for each frame:

vn =

M∑
i=1

ûiõi
n. (6)

Note that the operations in Eq. (1)-(6) are performed for each frame with shared
parameters.

Bidirectional Temporal Relation. Finally, we establish temporal rela-
tions among the frames with a bidirectional LSTM network:

Ṽ = f
(−−−−→
LSTM({v1, ...,vN})||

←−−−−
LSTM({vN , ...,v1})

)
, (7)
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where
−−−−→
LSTM and

←−−−−
LSTM are the LSTM cells that take the visual representa-

tion sequence and produce outputs by aggregating information temporally in
forward and backward directions, respectively. We then use a single-layer feed-
forward neural network with ReLU activation denoted by f(·) to transform the

concatenated LSTM outputs. The final outputs of HVTG, Ṽ ∈ RN×dvis , have
aggregated the visual information both spatially (in the object level) and tem-
porally, and textual information is also incorporated during the process.

3.2 Sentence Localizer

Given the encoded visual representation Ṽ , the sentence localizer’s goal is to
compute the position-wise visual-textual relevance scores of each frame with the
sentence, and then make boundary predictions based on the relevance scores.
For this purpose, we first encode the sentence (word sequence) using a bidi-
rectional LSTM like in Eq. (7), and then mean-pool over the LSTM outputs,

resulting in an aggregated sentence representation S̃ ∈ Rdsent . Since computing
the frame-wise visual-textual relevance should focus more on the local structure
of the visual representation, we use an L-layer temporal convolutional network
to process Ṽ . Basically, the l-th convolutional layer can be formulated as

Cl = Convl(Ṽ l−1||S̃; (kl, cl)), (8)

where Ṽ l−1 is the output from the previous layer (Ṽ 0 = Ṽ ), S̃ is tiled along
the temporal dimension, and || is tensor concatenation along the channel axis.
The convolutional operation has two main hyper-parameters: kernel size kl and
number of output channels cl.

Cross-Channel Communication Graph. We add one key component
to the convolutional network, which is a cross-channel communication mech-
anism [51] that encourages information passing across feature channels in the
same layer. By building a cross-channel communication graph (C3G) on the
convolutional outputs of the channel-concatenated visual and textual features,
more complementary cross-modal representations can be learned in addition to
the HVTG.

Firstly, Cl ∈ RN×cl is linearly projected to a lower dimensional space to

reduce computational cost for the C3G, resulting in P l ∈ RN×dl

. Then the edge
weight for each pair of channels is computed as (the layer index l is omitted)

T ij
n = −(P i

n − P j
n)2, (9)

where the subscript n stands for index of temporal location (frame), and the su-
perscripts i, j are channel indices. The edge weights for channel i are normalized
and averaged across all temporal locations to increase robustness, and then used
to aggregate information from all channels:

T̂ ij =
1

N

N∑
n=1

Softmaxj(T
ij
n ), P̂ i

n =

dl∑
j=1

P j
nT̂

ij , (10)
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where P̂ i
n is the i-th channel output. In linear transformations (such as con-

volution), each output channel’s computation is independent from the others.
By concatenating visual and textual features along the channel axis and then
connecting the channels via this C3G, fine-grained cross-modal information will
be captured. Finally, P̂ i

n is projected back to the original cl-dimensional space,

resulting in Ĉl ∈ RN×cl . Residual connection, Instance Normalization [40], and

LeakyReLU [46] activation are sequentially applied to Ĉl, producing the output
for the l-th convolutional layer:

Ṽ l = LeakyReLU(InstanceNorm(Ĉl + Cl)). (11)

Prediction. Note that the L-th (last) layer is the prediction layer, which has
1 output channel. The visual-textual relevance scores are obtained by applying
Softmax to Ṽ L, and we make boundary predictions based on the scores:

d = Softmax(Ṽ L), r = ReLU(dWd + bd), (12)

where d ∈ RN represents the relevance scores for all the temporal locations
(frames) in the video, and r ∈ R2 are two scalars representing the predicted
start and end time of the localized sentence.

3.3 Losses

The training is done in a mini-batch optimization manner. We denote the batch
predictions by D = {d1, ...,dB} and R = {r1, ..., rB}. The ground-truth labels

are denoted by R̂ = {r̂1, ..., r̂B}, where r̂i ∈ R2 is the human-annotated start
and end times. We first use two basic objectives for the boundary and relevance
score predictions.

Boundary Loss. We simply use the Huber loss for boundary prediction:

Lossb =

B∑
i=1

Huber(ri − r̂i). (13)

Relevance Loss. Based on the ground-truth temporal boundaries, we con-
struct the position-wise relevance masks D̂ = {d̂1, ..., d̂B}, where d̂i ∈ RN is
constructed as

d̂i[n] =

{
1 r̂i[0] ≤ n ≤ r̂i[1],

0 otherwise,
(14)

where [·] is the indexing operator along the first axis. Then the relevance loss is
computed as

Lossr = −
B∑
i=1

d̂i · log(di)∑
n d̂i[n]

, (15)
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where · represents vector dot-product. This loss encourages the visual-textual
relevance scores to be high at the ground-truth locations.

Visual-Textual Alignment Loss. Based on the predicted visual-textual
relevance scores, we can obtain the representation for the localized activity by
a weighted-sum of the visual representation (convolutional outputs prior to the
prediction layer) using the relevance scores as the weights:

V i =

N∑
n=1

di[n]Ṽ L−1
i [n]. (16)

Then the visual-textual alignment is performed across the mini-batch:

Lossa =
1

B2
(

B∑
i=1

log(1 + exp(−simi,i)) +
1

B

B∑
i=1

B∑
j=1
j 6=i

log(1 + exp(simi,j))). (17)

where simi,j is the similarity function (e.g., negative `2 distance) between the

visual representation V i and the textual representation S̃j in a mini-batch. The
representations of the matching video segment and sentence are pulled close
in the feature space by this loss, and otherwise their representations are pushed
away. Note that this loss supervises not only the learning of the visual and textual
representations, but also the relevance score predictions, since the gradients back-
propagate through V , S̃, and also d.

Feature Normalization Loss. To regularize the feature learning for visual-
textual alignment and make the model focus more on predicting better visual-
textual relevance scores, we further apply a learnable feature normalization [58]
to the (L− 1)-th convolutional layer’s outputs:

Lossn =

B∑
i=1

N∑
n=1

(||Ṽ L−1
i [n]||2 − F )2, (18)

where || · ||2 is the `2-norm of a vector, and F is a learnable parameter. Finally,
the above losses are combined with constant weights to balance their scales:

Loss = λbLossb + λrLossr + λaLossa + λnLossn. (19)

4 Experiments

In this section, we conduct extensive ablation studies to validate the design
choices for the different components of our model, and we also present perfor-
mance comparisons with state-of-the-art methods on the benchmark datasets.

4.1 Datasets and Experimental Settings

Charades-STA. The Charades-STA dataset [12] is built based on the Charades
dataset [36], which contains around 10k videos with temporal action (157 classes)
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annotations and video-level descriptions for indoor activities. Charades-STA is
built by semi-automatically constructing temporal sentence annotations for the
activities, and the annotations are human-checked. There are 12,408 and 3,720
sentence-video pairs for training and testing, respectively. The average video
duration is 30 seconds, and the average sentence length is 6.2 words.

ActivityNet Captions. The ActivityNet Captions dataset [20] contains
around 20k videos with temporal sentence annotation. The dataset is originally
split into 10,024, 4,926, and 5,044 videos for training, validation, and testing,
respectively. Since the testing set is not publicly available, we follow previous
works to use the validation set for testing. ActivityNet Captions is the largest
dataset for TALL, and it also has the most diverse activities. The average video
duration is 117 seconds, and the average sentence length is 13.5 words.

Evaluation Metrics. We measure the average recall of our predictions of
N sentence-video pairs at different temporal IoU thresholds, and this is the
same as previous works [12,53]. Formally, Recall = 1

N

∑N
i=1R(si, ai,m), where

R(si, ai,m) = 1 if the temporal IoU between our prediction si and annotation
ai is greater than m, otherwise R(si, ai,m) = 0. We also choose the same IoU
thresholds {0.3, 0.5, 0.7} as previous works.

Implementation Details. The video frames are temporally down-sampled
with a rate of 1/4 and 1/32 for Charades-STA and ActivityNet Captions, re-
spectively. For each frame, we extract 16 object regions (bounding boxes) with
the object detection network [33,1] trained on Visual Genome [21], and then we
perform ROIAlign [15] on the InceptionResnet V2 [38] feature maps to obtain
object features. The sentences are truncated or padded to a maximum length
of 12 words and 30 words for Charades-STA and ActivityNet Captions, respec-
tively. Then the words are initialized with the 300d GloVe [31] embeddings, and
all word vectors are fixed during training. The temporal boundaries for each sen-
tence are normalized to be in [0, 1]. In the HVTG, we employ 8 attention heads
as [41] in the object-sentence subgraph to learn more diverse representations.
We use 4 convolutional layers for the sentence localizer, whose output channel
numbers are [512, 256, 256, 1] and kernel sizes are set to 5 or 3. The learnable
parameter F for the feature normalization loss is initialized to 10. We use the
Adam optimizer [19] with a learning rate of 0.0001 and a batch size of 32 to
optimize the loss in Eq. (19). The loss weights λb, λr, λa, and λn are empirically
set to 1, 5, 1, and 0.001, respectively.

4.2 Ablation Study

To demonstrate the effectiveness of our proposed approach, we first examine the
effects of each important component by performing ablation studies1.

Effects of Hierarchical Visual-Textual Graph Components. As shown
in Table 1, for the HVTG, we mainly focus on the effects of the object-sentence
subgraph (OSS), object-object subgraph (OOS), and sentence-guided node ag-
gregation (SGNA). When all the three components are removed from our model,

1 Due to the space limit, more experiments are placed in the Supplementary Material.
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Table 1. Performances of our model variants with different HVTG configurations.
OSS means object-sentence subgraph, OOS means object-object subgraph, and SGNA
means sentence-guided node aggregation.

# OSS OOS SGNA IoU=0.3 IoU=0.5 IoU=0.7
0 7 7 7 55.56 40.38 19.49
1 3 7 7 58.36 44.97 21.77
2 7 3 7 57.42 42.31 19.97
3 7 7 3 58.46 42.93 20.86
4 3 3 3 61.37 47.27 23.30

Table 2. Performances of our model variants with Cross-Channel Communication
Graph (C3G) and alignment loss enabled/disabled. Note that the experiments are
done with all the HVTG components of Table 1 enabled.

# C3G Alignment Loss IoU=0.3 IoU=0.5 IoU=0.7
0 7 7 58.18 43.23 20.77
1 7 3 60.36 45.51 22.31
2 3 7 59.27 44.65 22.42
3 3 3 61.37 47.27 23.30

the objects do not connect and interact with the sentence and their features are
simply mean-pooled and fed to the bi-LSTM, which is the case of setting 0 in
Table 1 and is used as the baseline here. And note that disabling SGNA also
means the object features are just mean-pooled, and the sentence localizer used
here is the same as in our full model. Comparing settings 1, 2, and 3 with the
baseline, we can see that each of the three components can effectively improve
the performances. The average improvements brought by OSS, OOS, and SGNA
are 9.5%, 3.7%, and 6.3%, respectively. This demonstrates that the visual-textual
interaction in the HVTG is crucial for TALL. Combining all the three compo-
nents consistently yields better performances, which indicates that our HVTG
can benefit from the these interactions to better understand the video content
and sentence query.

Effects of Cross-Channel Communication Graph. C3G is the critical
component of our convolutional localizer. As shown in Table 2, enabling it leads
to a significant performance boost (comparing Settings 0 and 2, or 1 and 3).
This means that visual-textual interaction at the object-sentence level is not
enough, and channel-level interaction is an effective way to further encourage
the messaging passing between the two modalities, and the local associations
between video frames and sentence are better captured with C3G.

Effects of Alignment Loss. Comparing settings 0 and 1 (or 2 and 3) in
Table 2, it is clear that the alignment loss is beneficial for the TALL task, which
validates our design of encouraging the localized activity and the sentence to be
close in the feature space.

4.3 Comparison with State-of-the-Art Methods

Compared Methods. The state-of-the-art TALL methods we compared with
are categorized as follows:
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Table 3. Performance comparison on the
Charades-STA dataset.

Method IoU=0.3 IoU=0.5 IoU=0.7
MCN [16] 32.59 11.67 2.63
ACRN [24] 38.06 20.26 7.64
ROLE [25] 37.68 21.74 7.82
SLTA [18] 38.96 22.81 8.25
CTRL [12] - 23.63 8.89
VAL [37] - 23.12 9.16
ACL [13] - 30.48 12.20
SAP [7] - 27.42 13.36
SM-RL [43] - 24.36 11.17
TripNet [14] 51.33 36.61 14.50
QSPN [48] 54.7 35.6 15.8
CBP [42] - 36.80 18.87
MAN [56] - 46.53 22.72
ABLR [53] 51.55 35.43 15.05
DEBUG [26] 54.95 37.39 17.69
HVTG 61.37 47.27 23.30

Table 4. Performance comparison on the
ActivityNet Captions dataset.

Method IoU=0.3 IoU=0.5 IoU=0.7
QSPN [48] 45.3 27.7 13.6
TGN [6] 43.81 27.93 -
TripNet [14] 48.42 32.19 13.93
CBP [42] 54.30 35.76 17.80
ABLR [53] 55.67 36.79 -
DEBUG [26] 55.91 39.72 -
HVTG 57.60 40.15 18.27

• Sliding-window proposal methods: TALL [12], ACRN [24], MAC [13], ROLE [25],
SLTA [18], and VAL [37].

• Learned proposal generation methods: QSPN [48], EF+Cap [49], and SAP [7].
• Anchor-based methods: TGN [6], CBP [42], and MAN [56].
• Direct boundary prediction methods: ABLR [53] and DEBUG [26].
• Reinforcement Learning-based methods: SM-RL [43] and TripNet [14].

Results on Charades-STA. Table 3 shows the performance comparison on
the Charades-STA dataset, which is more commonly used. As can be observed,
our HVTG outperforms all the compared methods in all three evaluation metrics.
Especially when comparing with methods that also adopt the direct boundary
prediction strategy, ABLR [53] and DEBUG [26], the advantages of our HVTG
is significant, which demonstrates the effectiveness of modeling visual-textual
interaction and alignment for the TALL task.

Results on ActivityNet Captions. The video contents of the ActivityNet
dataset and the Charades-STA dataset are quite different, because ActivityNet
contains not only indoor activities and the duration of its videos are generally
longer. Moreover, the language queries in ActivityNet Captions are more com-
plex than Charades-STA. Thus, strong adaptivity is required for TALL methods
to work well on both datasets. There are less state-of-the-art methods that have
reported results on ActivityNet Captions. As shown in Table 4, our HVTG also
outperforms the compared methods, demonstrating the superiority of HVTG.
It is worth noting that limited by the GPU memory, the ActivityNet videos
are temporally down-sampled with a larger stride, which may have affected the
performances of our method.

4.4 Result Visualizations

In Fig. 3, we provide some examples with visualization of the visual-textual
relevance scores. As can be observed in the first two examples (top and middle),
when the visual-textual alignment is enabled, our model predicts better relevance
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Sentence: Person stops to pour some water in a glass.

Sentence: Person puts something on the table.

Sentence: Person sitting on top of bed closes laptop.

Fig. 3. Example results with the visual-textual relevance scores visualized. The last
one is a failed case where the relevance scores do not match the ground-truth well.

scores which are more concentrated in the ground-truth region. We also show
a failed example (bottom), where the “closes laptop” activity is not accurately
localized. We conjecture the reason is that the poor lighting affects the quality
of the captured visual information in the object features.

5 Conclusions

We presented a novel method named Hierarchical Visual-Textual Graph (HVTG)
for tackling the Temporal Activity Localization via Language (TALL) task,
which is challenging since it requires fine-grained understanding of visual con-
tents while jointly considering the language query. To tackle the challenge, our
HVTG method builds a hierarchical graph structure to perform interactions
between the object and sentence and among the objects. We also adopt a cross-
channel communication graph to encourage more fine-grained information pass-
ing between the visual and textual modalities. Finally, visual-textual alignment
is enforced to encourage the localized activity to be close to the corresponding
language query in the feature space. We achieved state-of-the-art performances
on two challenging datasets: Charades-STA and ActivityNet Captions. Future
work includes incorporating temporal relation modeling into the object sub-
graphs and improving the interpretability of visual-textual interactions inside
the graph.
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