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1 Architecture Details

Feature Extraction The images are normalized and resized to (592·592), then for-
warded to the pre-trained Faster-RCNN [2,1]. The output of the Faster R-CNN
for each image includes a number of proposal bounding boxes, corresponding
(512 · 7 · 7) feature maps and 151-d primary object distributions.

Object Detection For each proposal box, a 200-dimensional semantic embedding
vector is obtained by multiplying the 151-d object distribution and the (151·200)
embedding matrix. The 4-d annotation of the box position is forwarded into a
batch normalization layer and a linear layer with ReLU activation to obtain the
128-dimensional position embedding vector. These two vectors are concatenated
with the feature vector resulting from compressing the 512 · 7 · 7 feature maps
to size 4096. The concatenated vectors of the proposal boxes are compressed by
a linear layer to size 1024, then organized as sequence with random order and
forwarded into the O-ODE which uses a single layer bidirectional LSTM as the
approximate function in the ODE solver. The output dimension of the O-ODE
is the same as the input dimension. Object classification scores are computed by
a fully-connected layer.

Predicate Prediction For each object pair, the 512 · 7 · 7 feature maps of the
union box and the 2 ·27 ·27 spatial masks with value in [−0.5, 0.5] which present
the positions of subject and object are computed at first. The spatial masks
are forwarded into a convolution layer with 256 kernels of size 7 · 7, a max
pooling layer (kernel size 3, stride 2) and another convolution layer with 512
kernels of size 3 · 3 so that the output has the same size 512 · 7 · 7 and can
be element-wisely added to the feature map of the union box. To avoid a large
number of parameters, the 512 · 7 · 7 feature maps are compressed with global
average pooling to obtain outputs of size 512. Then the features of the subject,
object, and union boxes are concatenated as a (512·3)-dimensional visual vector.
Two 200-dimensional semantic embedding vectors are generated by a word2vec
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module with the subject and object classes which is provided by the ground-
truth in the training or predicted by the Object Classifier in the evaluation and
concatenated as a 400-dimensional semantic vector.

The 1536-dimensional visual vectors and the 400-dimensional semantic vec-
tors of the object pairs can be pre-processed in three ways before the P-ODE: FC-
Layer (Fig. 1): The (3 ·512)-dimensional the visual vectors and 400-dimensional
semantic vectors are forwarded into two independent fully connection layers that
both have 512 neurons. Then, the outputs are concatenated together as 1024-
dimensional representation vectors for the P-ODE. GCNN (Fig. 2): The visual
vectors and semantic vectors are first concatenated. Then, we use a two-layer
graph convolutional neural network (GCNN) to infer information about context.
The hidden size and output size are both 1024. Since the number of object pairs
in each image is variable, we set each element on the diagonal of the adjacency
matrix to 0.8. The weight of 0.2 is uniformly distributed among the remaining
entries of each row. The output vectors of the GCNN are passed into the P-
ODE. LSTM (Fig. 3): Similar as for the first variant, the (3 · 512)-dimensional
visual vectors and the 400-dimensional semantic vectors are fed into two single
layer LSTMs, respectively. Both of them have the output dimension 512. We
concatenate the two outputs for the P-ODE.
The P-ODE also uses a single layer bidirectional LSTM with 512 hidden size as
the approximate function in the ODE solver. The final predicate distributions
are computed by two linear layers with ReLU activation.
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(a) FC Layer

Fig. 1. Pre-Processing with fully connected layer. Blue boxes represent the visual vec-
tors, green ones the semantic vectors and the numbers above the lengths of the input
vectors.
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(b) GCNN

Fig. 2. Pre-Processing with a graph convolutional neural network (GCNN). Blue boxes
represent the visual vectors, green ones the semantic vectors and the numbers above
the input lengths.
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(c) LSTM

Fig. 3. Pre-Processing with an LSTM. Blue boxes represent the visual vectors, green
ones the semantic vectors and the numbers above the input lengths.

2 Object Classification by Linear Program

We are interesting in assessing the performance of the object classifier proposed
in Eq. (1). For faster calculations, we simplify Eq. (1) to

max
∑

u∈Uobj

∑
l∈Lobj

αu,lxu,l (9a)

s.t. xu,l ∈ [0, 1],
∑

l∈Lobj

xu,l ≤ 1. (9b)

We thus relax the Integer Linear Problem to a Linear Program (LP) which is
much easier to solve than the ILP.

Regarding the scores αu,l, we select the first 20 occurrences of each object
class in a training epoch (with random selection of the mini-batches). For each
object class, we then created dictionaries Dl ∈ R1024×20, l ∈ Lobj , of the fea-
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ture representations that are used as input for the following ODE layer. During
validation, we compute the scores for a given sample su by

αu,l =

20∑
k=1

D>l,k · su. (10)

Motivated by the recall-at-50, we further add the constraint that∑
u∈Uobj

∑
l∈Lobj

xu,l ≤ 50, (11)

i.e. at maximum 50 objects can be detected in an image.

Using a feature generating network pre-trained by the proposed ODE-layers,
we noticed that the continuous variables xu,l usually obtain values that are
very close to either zero or one. That indicates that the assumption of using
dictionaries is reasonable. That also justifies the hypothesis that the gradient
generated by the ODE layer forces the feature network to embed samples of the
same class coherently.

The computational complexity of solving even Eqs. 9 is very large. Using an
interior-point solver with the maximal number of iterations set to 20, a single so-
lution requires between several seconds and 30 minutes. In comparison, a single
forward pass through the ODE layer is negligibly small (< 0.1 seconds). Sur-
prisingly, the average recall-at-50 after 100 images (about 0.3% of the validation
data) was comparable to the one obtained by using the proposed architecture.
ODE layer followed by linear layers to compute the class scores. We stopped the
computation after 4 hours. Using a non-trained network, we could not obtain a
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Fig. 4. Qualitative results from our model in the scene graph generation setting. Purple
boxes denote correctly detected objects while orange boxes denote ground truth objects
that are missing. Purple edges correspond to correctly classified relationships at the
Re@20 while orange edges denote ground truth relationships that are not detected.
Blue edges denote detected relationships that do not exist in ground truth annotations
(false positives). Note that sometimes blue edges are also semantically correct.
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good score using the model defined by Eqs. (9). This clearly demonstrates that
end-to-end training is essential for this task. In other words, it justifies the use
of the ODE layer for scene graph estimation.

3 Additional Qualitative Results

Fig. 4 shows the additional qualitative results for scene graph generation from
Visual Genome dataset. Purple boxes denote correctly detected objects while
orange boxes denote ground truth objects that are not detected. Purple edges
correspond to correctly classified relationships at the R@20 setting while orange
edges denote ground truth relationships that are not detected. Blue edges de-
note detected relationships that do not exist in ground truth annotations (false
positives).
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