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We provide in this document more experimental results and details of the
proposed method. Specifically, we show the structure of the customized networks,
the IDs of images used in the main manuscript, the top-5 predictions of the
composite image, the evaluation of the pointing game, and more visualization
results on the ImageNet dataset with a pre-trained VGG-16 model, We provide
figures of the sensitivity analysis to give a better illustration on the influence of
the hyper-parameters in our proposed method. We also provide a video to show
the learning process of attribution maps.

1 Details of the customized models

1.1 Customizing CNN on the CIFAR-10 dataset

The customized CNN model we used on CIFAR-10 dataset contains four con-
volutional layers followed by ReLU activations and two fully connected layers.
Dropout with ratio 0.25 are also adopted after MaxPooling layers and fully con-
nected layer. The details of architecture are shown in Tab. 1.

1.2 Customizing CNN on the MNIST dataset

The customized CNN model we used on the MNIST dataset contains two convo-
lutional layers followed by ReLU activation and two fully connected layers. The
details of architecture are shown in Tab. 2.
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Custom CIFAR-10 CNN
Conv 2D (3x3, 32)

ReLU
Conv 2D (3x3, 32)

ReLU
MaxPooling (2x2)

Dropout2d(p=0.25)
Conv 2D (3x3, 64)

ReLU
Conv 2D (3x3, 64)

ReLU
MaxPooling (2x2)

Dropout2d(p=0.25)
Linear (256)

ReLU
Dropout2d(p=0.5)

Linear (10)

Table 1: Details of the customized
CNN on the CIFAR-10 dataset.

Custom MNIST CNN
Conv 2D (5x5, 20)

ReLU
Conv 2D (5x5, 50)

ReLU
Linear (500)

ReLU
Linear (10)

Table 2: Details of the customized
CNN on the MNIST dataset.

2 Information of the images

We make the composite image, shown in Fig. 10 of the main manuscript, by using
two images of two different classes from the test set of the ImageNet dataset .
The IDs of these two images are 8194 and 8213 respectively. The names of the
top five predictions of the composite images are: rhinoceros beetle, landrover,
snowplow, tow truck, and pickup truck respectively.

The ID of the image used in Fig. 1 in the main manuscript is 98855.

3 Pointing game evaluation

For the point game evaluation, the models are trained as multi-label classifier
and we adopt binary cross entropy function as the loss the function. The first
archtecture of the learnable plugin module is used which is similar as the con-
volution without summation and shares parameters within one layer.

Tab. 3 shows the pointing game results of different methods. Our method
yields a very competitive performance on both Pascal VOC and COCO datasets.
Note that the purpose of the subjective evaluation is to measure how the gen-
erated attribution map aligns with human perception. The performance of such
evaluation does not necessarily relate to the performance of explanation, as how
the model perceives the input may differ from how human does.

4 More visualizations

We provide in Fig. 2, Fig. 3 and Fig. 4 more visualization of the samples from
the test set of ImageNet with a pre-trained VGG-16 model. Some interesting
phenomenons can be observed from these visualization:

– Most compared methods are very sensitive to the high-frequency compo-
nents, like the grass in the third row of Fig. 2 and ocean wave in the last
row of Fig. 3.
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Method
VOC07 Test COCO14 Val
All Diff All Diff

Cntr. 69.6 42.4 27.8 19.5
Grad [7] 76.3 56.9 37.7 31.4

DConv [11] 67.5 44.2 30.7 23.0
Guid. [9] 75.9 53.0 39.1 31.4

MWP [12] 77.1 56.6 39.8 32.8
cMWP [12] 79.9 66.5 49.7 44.3

RISE [3] 86.9 75.1 50.8 45.3
GCAM [4] 86.6 74.0 54.2 49.0
sMask [1] 88.0 76.1 51.5 45.9

Ours 85.7 74.2 51.7 46.1

Table 3: Evaluation of pointing game.
All methods adopt VGG-16 network as
the base model. Our proposed method
provides comparable performance dur-
ing such subjective evaluation. Note
that sMask learn the mask under several
predefined constraints and needs 1600
iterations to learn a single mask. Our
method generates the mask based on the
gradient of input and needs only 40 it-
erations. The difficult subset is adopted
from MWP [12].

– Some methods tend to highlight regions that are irrelevant to the target
class, like the last row of Fig. 4, and the last row of Fig. 2.

– Some methods give wrong signs to the contribution in the attribution map,
like the fourth row of Fig. 4.

5 Sensitivity analysis on hyper-parameters

We provide additional figures shown in Fig. 1, to gain a better understanding
of the sensitivity of hyper-parameters. We can see from Fig. 1 that the AUC
performance is not sensitive to most of the hyper-parameters, such as the it-
eration, learning rate, and weight of the mask loss. For the shift and Gamma
parameters, setting them to a reasonable values within a wide range, such as
0.8-0.9 and 10-30 respectively, will lead to similar AUC results.

6 Illustration of the learning process of attribution maps

We provide a video to show how the attribution map updates during the opti-
mization process, where we can see that the irrelevant regions are indeed removed
from the attribution map during the process while the attribution map focuses
on the most critical regions of the target class.
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Fig. 1: Sensitivity analysis. Each figure depicts the relationship between a hyper-
parameter and its AUC of the MoRF curve. We can see that the AUC is stable after
a few iterations, and is not sensitive to the learning rate as well as the weight of the
mask loss. For the shift and Gamma parameters, setting them to values in a reasonably
wide range leads to very similar AUC results.

Original DeepLIFT [5] GradXIn [6] Mask [2] GuidedBP [9] IG [10] Saliency [7] SG [8] Ours

Fig. 2: More visualization of the compared methods. Our proposed method provides
more concentrated attribution maps.
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Original DeepLIFT [5] GradXIn [6] Mask [2] GuidedBP [9] IG [10] Saliency [7] SG [8] Ours

Fig. 3: More visualization of the compared methods. Notice that almost all the other
methods are sensitive to the background with high-frequency components, such as the
ocean wave in the last row.
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Original DeepLIFT [5] GradXIn [6] Mask [2] GuidedBP [9] IG [10] Saliency [7] SG [8] Ours

Fig. 4: More visualization of the compared methods. Our method is less sensitive to
the high-frequency components and irrelevant areas, such as the background building
in the third row.
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