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Abstract. Prior gradient-based attribution-map methods rely on hand-
crafted propagation rules for the non-linear/activation layers during the
backward pass, so as to produce gradients of the input and then the
attribution map. Despite the promising results achieved, such methods
are sensitive to the non-informative high-frequency components and lack
adaptability for various models and samples. In this paper, we propose
a dedicated method to generate attribution maps that allow us to learn
the propagation rules automatically, overcoming the flaws of the hand-
crafted ones. Specifically, we introduce a learnable plugin module, which
enables adaptive propagation rules for each pixel, to the non-linear layers
during the backward pass for mask generating. The masked input image
is then fed into the model again to obtain new output that can be used
as a guidance when combined with the original one. The introduced
learnable module can be trained under any auto-grad framework with
higher-order differential support. As demonstrated on five datasets and
six network architectures, the proposed method yields state-of-the-art
results and gives cleaner and more visually plausible attribution maps.
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Fig. 1: What makes this image a newt? This figure shows the attribution maps gen-
erated by different methods. Existing gradient-based methods fail even in this simple
case. For example, IG and GuidedBP focus on non-relevant regions, such as the bound-
ary of the hand. Our method, on the other hand, produces cleaner and more focused
attribution map.
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Fig.2: Comparing the perturbation-based method, graident-based method, and our
proposed method for generating attribution maps. Different from the perturbation-
based method that introduces various constraints to the mask, we generate the mask by
making use of the gradients of the input; Moreover, unlike the gradient-based method

that handcrafts the propagation rules, we make them learnable.

1 Introduction

Deep learning has made encouraging progress and yielded state-of-the-art perfor-
mances in almost all vision and language tasks. The gratifying results, however,
come at cost of huge amount of training effort as well as the often uninterpretable
behaviors, making deep networks less dependable under some circumstances such
as medical image processing. Recently, interpreting deep networks has aroused
more and more attention from researchers [1,4,22,42,12,2,9, 40,7, 36, 37, 25, 39,
38]. Among the many endeavors, estimating the attribution map has become a
mainstream direction. The main goal of producing an attribution map is to gen-
erate a mapping between the pixels and their corresponding contributions to
the prediction, so that the supports of the prediction can be discovered. The
work of [31,32] have also demonstrated that attention maps can be utilized in
estimating task transferability.

Existing attribution-map generation methods can be divided into three cat-
egories: optimization-based, perturbation-based, and gradient-based methods.
Optimization-based methods produce attribution maps using conventional op-
timization methods like signal estimation [16], and local function approxima-
tion [21]. Such optimizers, however, often require a large number of samples,
making them data-dependent and time-consuming. Perturbation-based meth-
ods, on the other hand, produce attribution maps by modifying the input image
according to a mask and then recording the change of output. However, they
ignore the original gradients of the input. Gradient-based methods explicitly
utilize gradients of the input for attribution map generation, and therefore en-
code the interaction across different pixels, yielding more informative attribution
maps [19]. Given a trained model with fixed parameters, gradients of the input
are obtained through loss back-propagation, where existing methods focus on
designing hand-crafted propagation rules for the non-linear/activation layers [6,
3]. However, such pre-defined and thus fixed rules lack adaptability for various
models and samples.
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In this paper, we propose a new method to generate the attribution map that
makes the propagation rules for the non-linear layers learnable, and optimize the
rules using supervision from the model and the input image themselves. In Fig. 1,
we compare our produced attribution map with those obtained from the state-
of-the-art methods. Conventional gradient-based methods such as DeepLIFT
and e-LRP are prone to noisy attributions even for the uniformed-colored back-
ground. Most of the methods focus on non-relevant high-frequency regions, such
as the boundary of the hand. Our method, thanks to the more flexible rules, gen-
erates a neat and more focused attribution map. Fig. 2 illustrates a comparison
of different methods. Unlike conventional gradient-based approaches that rely
on a single unifying hand-crafted propagation rule for all models and samples,
we now make the rules adaptive for any given sample and model. Specifically,
within our method, each output feature of the non-linear layers is allowed to
behave differently during the backward pass, making it possible to learn more
flexible and advisable propagation rules for the attribution map. As a result, the
non-informative regions, e.g. the high-frequency ones, are suppressed under the
supervision, leading to a cleaner attribution map.

To learn the propagation rules, a new optimization scheme is proposed as
shown in Fig. 3. The input image is first fed into a trained neural network with
fixed parameters to obtain the original prediction. Then, gradients of the input
can be obtained during the backward pass, in which process, a learnable plugin
module, e.g. neural network, is introduced to control the propagation rules of
the non-linear layers. After obtained the gradients of the input, we compute the
attribution map and then generate masks for the input. The input image will
then be masked and fed into the trained network for deriving the difference with
respect to the original prediction. Such difference is adopted as a supervision to
optimize the learnable plugin module through a new backward pass. Since the
computation of second-order gradients is required, an auto-grad framework with
higher-order differential support is used to implement the proposed optimization
scheme.

Our contribution is therefore, to our best knowledge, the first dedicated ap-
proach that enables the learning of the propagation rules for the non-linear layers
to generate attribution maps. Unlike the hand-crafted rules, our method makes
it possible to find adaptive propagation rules for any given model and sample.
The learning of the rule is achieved via a novel optimization scheme: the learn-
able module we introduced can be optimized under any auto-grad framework
with higher-order differential support. We conduct experiments on three differ-
ent datasets and six models with different architectures. Our proposed method
yields state-of-the-art results and produces a cleaner attribution map.

2 Related Work

Here we give a brief description of the related work. We start by reviewing
the attribution-map methods of three categories: optimization-based, gradient-
based, and perturbation-based methods. We then discuss the higher-order differ-
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ential algorithms for implementing our proposed method. Note that the proposed
method differs from all three categories of attribution-map methods. Specifically,
compared with optimization-based methods, our proposed method depends only
on given samples; compared with gradient-based methods, our proposed method
enables the learning of the propagation rules; compared with perturbation-based
methods, our proposed method involves the gradients of inputs as the condition
to generate the mask rather than the human designed constraints.

Optimization-based methods. These methods adopt conventional opti-
mization scheme to generate an attribution map. For example, PatternNet [16]
designs a signal detector to filter out the non-informative components. Then,
a quality measurement criterion is introduced to optimize the attribution map
generation. Instance feature selector [8] learns a feature selector by maximizing
the mutual information between the selected features and the model’s response.
Another method, LIME [21], locally approximates a non-linear model with a
linear function on the given sample, and then generates the attribution map
from the linear function. However, these methods are data-dependent and time-
consuming.

Gradient-based methods. Such methods utilize gradients of the input to
generate an attribution map. For example, Deep saliency [28] generates the at-
tribution map by backwarding the loss with respect to the input and taking
the absolute value of the gradients. Moreover, the element-wise multiplication
between the input and its gradients improves the performance [27]. Another
method, Guided backpropagation [33], shows that ignoring the negative gradi-
ents helps to distinguish the contribution of each pixel. As for DeepLIFT [26],
reference features are added to the non-linear layers to reduce the influence from
baseline. However, the fixed propagation rules of these methods lack adaptability
for various models and samples.

Perturbation-based methods. Methods along this line make the assump-
tion that removing important pixels will degrade the prediction accuracy, and
generate the mask based on some constraints. One of the methods, Occlusion [41],
generates the attribution map by systematically occluding different parts of the
input image and then recording the change of output. Moreover, it is also possible
to obtain an occlusion mask by learning [11] rather than brute force searching.
sMask [10] introduce predefined area constrain and smooth constrain.

Higher-order differential algorithms. High-order differential algorithms
make the second-order gradients computation possible [13,18], and are thus es-
sential for our proposed attribution-map method. Most of the current deep learn-
ing libraries implement these algorithms. In Pytorch, for example, gradients of a
variable remains a variable, which enables the computation of higher-order gra-
dients by recursively computing the first-order gradients. These implementations
serve as the backbone of our proposed optimization scheme.
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Fig. 3: Illustration of our proposed optimization scheme. Step a forwards the input
image through the trained model to obtain the original activation and its loss. Specif-
ically, we use the pre-softmax/pre-sigmoid output as the activation of the model. Step
b then backwards the gradients of input image with respect to the prediction loss, in
which we introduce the Learnable Plugin Module. The attribution map is obtained by
the element-wise multiplication between the input image and its gradients. Next, step
c generates the masks with the attribution map. Finally, step d masks the input image
and then forwards the masked image through the trained model to get a new activa-
tion. The difference between the new activation and the original one of the target class
serves as the loss, which is used to optimize the learnable plugin module.

3 Method

Propagation rules for the non-linear layers during the backward pass can be
treated as a pixel-to-pixel mapping between gradients of the adjacent feature
maps. For gradient-based attribution-map methods, they are proven to be unified
and distinguished only on the propagation rules of the non-linear layers [3].
However, existing gradient-based methods formulate the gradient computation
as hand-crafted rules, which are hard to fit all models and samples. For example,
a method may work well for images with clean backgrounds but fail on those
with complex backgrounds.

To this end, we propose a novel method, which makes the rules learnable. The
rules will be optimized individually under the supervision of every combination
of the input image and the trained neural network, making it adaptive for given
models and samples. Fig. 3 illustrates the proposed optimization scheme, which
is also based on the gradient-descent optimization method. There are four steps
in a single optimization iteration for attribution map generation. In Step 1,
we forward the input image throughout the network; in Step 2, we backward
gradients of the input through our learnable plugin module for attribution map
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generation; in Step 3, we generate the mask with the attribution map; in Step 4,
we forward the masked input image to obtain the loss by computing the differ-
ence of activations between the original input and the masked one, where the
activation is referred as the pre-softmax/pre-sigmoid output of the model.

3.1 Step 1: Forwarding the input image

In this step, the input image is fed into a trained neural network model to
obtain the activation. Once the target class to be interpreted is chosen, we set
the gradient of the activation to one for target class and zero for the others
which is commonly used in gradient-based methods [33, 27, 6]. We then pass the
gradient to the next step.

3.2 Step 2: Backwarding the gradients of the input

Given the gradient of the model’s activation from previous step, the gradients
of the input image can be computed through the back-propagation algorithm.
During this process, we implement our proposed learnable plugin module to learn
the propagation rules for non-linear layers, instead of modifying the hand-crafted
function.

Specifically, after feeding a feature map f;,, into a non-linear function g, we
will have the output fout = g(fin). Let £ denotes the training loss during the
backward pass. The gradient of f,,; is the partial derivatives of £ with respect
to the output feature map that be expressed as 8?5,”‘

Then, following the chain rule of the back-propagation algorithm, the partial
derivatives of £ with respect to f,yu:, can be computed as

oL oL .8g(a:) oL '8g(fm) 1)
8f7,n B 8fout afzn B afout afzn ’

denotes the derivation of non-linear function g with respect to it’s

9g(x)
ox

where
input.

In existing gradient-based methods, a%(ﬁ) is manually modified for different
purposes, such as ignoring the neurons that suppress the target output [33].
Although numerous hand-crafted propagation rules are proposed, none of them is
optimal for all scenarios. For example, some hand-crafted rules are unresponsive
to certain target class, while others may be too sensitive to ignore non-relevant

high-frequency components.

Therefore, instead of using a fixed hand-crafted aga(;), we introduce a learn-

able plugin module, denoted as G, as the basic modules. This module takes the

gradients of feature map B?i - from the upper layer and computes aaf% as
oL oL
— = G( ) 2)
8fzn afout

where G can be plug-and-play without modifying the original architecture of
the given trained neural network. We provide two architectures for G, For the
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first architecture, we have C' parameters per layer, where C' is the number of
channels. The operation of GG is similar to a standard convolutional operation
without the sum operation, which shares parameters across different positions
within a same layer. For the second architecture, we do not share parameters
across different positions, leading to more flexible control of the rules at cost of
more parameters. Once the gradients of the input are obtained, the attribution
map can be computed as
oL

A= 31 ol, (3)
where A, I, and ‘g—f denote the attribution map, input image, its gradients
respectively, and o is Hadamard product. The pros and cons of multiplying the
generated gradient with the input have been discussed in [30]. In this paper,
this multiplication is adopted across all experiments.

3.3 Step 3: Mask generation

Given the attribution map, a mask can be generated to segment out the image
parts that contribute most to the target-class recognition. Since the distribu-
tion of attribution map varies a lot, we propose a Mask Generation Module for
generating suitable masks here.

It can be seen from Fig. 4 that the attribution map is first scaled to [0, 1]
and then shifted to a fixed center. Finally, we implement the mask generation
using a sigmoid function. We write,

1

S
M= ey @)
Y — 5
= TF By )

where MP denotes the positive mask that segments pixels with positive con-
tribution, M™ denotes the negative mask that segments pixels with negative
contribution, «,  denote the fixed centers and y denotes the scale factor for
sharpening the mask.

Notice that many other mask generation strategies can be directly adopted
here, leading to different properties of the generated attribution map. For ex-
ample, in order to generate smoother mask, a Gaussian smooth function can be
replaced for the previous mask generation functions, which can be written as:

ZUGA SU(U - ’U)A(’L}) W) = 67%
S W= (6)

where A is the generation attribution map, u,v is the index of values in A and
S is the smooth function.

MP =
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Fig. 4: Illustration of the mask gen-
eration module. First, the attribu-
tion map is generated by element-
wise multiplication between the in-
put image and its gradients. Then,
the two masks are computed by feed-
ing the shifted and scaled attribution
map into a sigmoid function.

x = —f(x—0.25)

3.4 Step 4: Forwarding the masked image

Based on the generated masks, pixels with special contributions will be seg-
mented out from the input image to form the masked image. We then forward
the masked image through the trained model to obtain the difference between
the activation of input image and masked image, which is used as the loss to
train the learnable plugin module.

Some pixels in the masked image contribute to correct prediction while some
pixels degrade the accuracy. Therefore, instead of measuring the contribution
according to the sign of gradients, we propose a sign-aware loss to distinguish
the pixels.

There are two terms in the sign-aware loss, a positive term and a negative
one. The positive term LP considers the positively contributed components of
the input image:

Lp:Ft(IOMp)—Ft(I), (7)

where F' denotes the trained model, ¢ denotes the index of the target class, and
F;(I) denotes the predicted possibility of I to be class t. By the same token, the
negative term is defined as

LM = F(I) = Fi(I o M"). (8)

This term is defined as the difference of predictions between the input image
and the negatively masked image, because deleting the negatively contributed
pixels should improve the prediction accuracy.

To avoid the trivial solutions like an all-zero mask or an all-one mask, we
introduce mask loss to constrain the strength of the generated masks:

L =1-MP|+]1-M", (9)

where | o | denotes the L1-Norm, 1 denotes matrix with all ones. We thus have
the final loss function:

L=(LPALY)Y+X- LT (10)

where A is the hyper-parameter for loss balancing.
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4 Experiments

4.1 Evaluation protocols

There are two kinds of attribution-map errors: error from the attribution-map
method itself and error from the trained model. We conduct objective evaluation
which focuses purely on the first type of error. We adopt most important relevant
features (MoRF) curve as one of the metrics, as done by many other methods [23,
5, 6]. Specifically, we first sort the pixels in an ascending manner according to the
attribution map, and then obtain the MoRF curve by incrementally computing
the correlation between the different ratios of the activation and the ratios of
masked pixels. We also adopt least important relevant features (LeRF) curve as
one objective evaluation metric. LeRF is of the same setting as MoRF except
it first sorts the pixels in a descending manner. For all objective evaluations,
we set the upper limit of the number of masked pixels to be 5% of the entire
input image. We derive the MoRF curve by averaging 1,000 random samples for
stability.

ROAR [15] is another metric to evaluate the performance of attribution map.
ROAR first replaces fraction of the pixels that are estimated by the attribution
map as the most important ones with uninformative value. Then, the modified
data are used to retrain the same model from scratch and test it on the modified
test set. It claims that a good attribution map should lead to a sharp degradation
of the performance on the modified dataset.

4.2 Implementation Details

Attribution-map framework. We build a PyTorch-based attribution-map
toolbox, which implements the proposed optimization scheme and some of the
compared methods. In our toolbox, the gradient-based methods are unified by
sharing the forward and backward hook functions. In the objective experiments,
since our only concern is about the model interpretation, the class with the
highest prediction possibility is set as the ground truth. We then adopt the
negative log likelihood function as the loss function. The running time of our
method for an ImageNet-like input with a VGG-16 model is about 3s using an
Nvidia 1080Ti GPU.

Learnable plugin module. For the objective experiments, we use the second
architecture of learnable plugin module. Specifically, we set the parameter ma-
trices of learnable plugin module to be of the same size as the input feature
map. For every non-linear layers in the model, learnable plugin module first
computes the Hadamard product between its parameter matrix and the input
feature map, then follows a tanh activation function, We also conduct some ex-
periments of the first archtecture of the learnable plugin module which is similar
as the convolution without summation and shares parameters within one layer.
Although the structure is concise, it leads to a significant improvement of the
performance. The learnable plugin module is optimized with Adam [17]. Similar
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to sMask [10], we train the plugin module separately for each sample. The plugin
modules within different layers do not share parameters and are placed in every
nonlinear layer within two convolution layers.

Reference baseline. In order to improve the flexibility of learnable plugin
module, we adopt the reference baseline from DeepLIFT [26]. Specifically, an
additional all-zero input is added in the forward pass to obtain the reference
feature maps. Then, all the original features are modified by subtracting their
corresponding reference feature map.

Hyper-parameters settings. We adopt same hyper-parameters to all experi-
ments, with A set to be 0.1, « set to be 0.75, 5 set to be 0.25, and v set to be 10.
For the Adam optimizer, we set the learning rate to be 0.2. No weight decay is
used. The performance with respect to these hyper-parameters are stable within
a large value range, and the analysis will be presented in the sensitivity analysis
section.

4.3 Compared Methods
Here, we give a brief description of the compared methods.

— Gradient-based methods. GradientXInput (GradXlIn) [27] and DeepSaliency
(Saliency) [28] generate attribution maps from the gradients of the input.
Specifically, DeepSaliency ultilizes the gradients only, while GradXIn uses
both the input and its gradients. e-LRP [5], and DeepLIFT [26], on the other
hand, focus on designing hand-crafted fixed propagation rules to enhance
performances. SQ-SG [15] is an improvement over smooth grad method by
averaging the squared gradients. Integrated Gradients (IG) [34] and Smooth
Gradients (SG) [30] compute the average gradients of multiple inputs by
introducing integration paths and adding noises, respectively.

— Perturbation-based methods. Mask [11] treats the attribution map as
a mask and learns it from a designed framework. sMask [10] adds more
constraints to the mask. RISE [20] generates random masks and obtains the
attribution map by linear combining these masks according to outputs of
masked images.

The Mask method is tested on ImageNet dataset only, because it is designed
for ImageNet-similar images. The hyper-parameters of Mask are set according
to their published work. For the SmoothGrad method, the number of random
noised images is set to 50. As for the IntegratedGrad method, the number of
integrated images along the integral path from zero baseline to the original input
is set to 50. The tolerance of pointing game is set to 15 for all compared methods.

4.4 Experimental Results

In this section, we first analyze the comparison results between our proposed
method and the compared methods in the aspects of MoRF, LeRF, and ROAR.
Then, we present the case study, the sensitivity analysis of hyper-parameters,
and the ablation study to completely evaluate our proposed method.
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Fig.5: MoRF (left) and LeRF (right) curves. The x-axis represents the masked ratio
of the entire image and the y-axis represents the difference ratio of the activation after
masking the input. Our method produces consistently steeper curves, especially for
complex models and samples. Note that for the LeRF metric, our method provides the
correct negative attributions, which will lead to an increase of the prediction accuracy
when removing them. All other methods, as a comparison, fail and still generate positive
attributions.
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Fig. 6: Visualization of the attribution maps generated by different methods on Ima-
geNet dataset. The attribution maps generated by our method are cleaner and more
visually plausible. For gradient-based methods, some of them are too sensitive to ignore
the non-relevant high-frequency components while others are not responsive enough to
the target class (e.g. the last line). More visualization results will be presented in the
supplemental material.

MoRF /LeRF result analysis. Fig. 5 compares the MoRF and LeRF curves
of our proposed method and the compared methods. We conduct the objective
experiments on three widely used datasets, MNIST, CIFAR-10, and ImageNet.
* means the plugin module with the first architecture which shares parameters
across different positions. The analysis of the results on the three datasets is as
follows:

— MNIST is a relative small and simple dataset, in which the images contain
only unit digits with clean background. We test on it using a customized
CNN model with two convolutional layers. It can be seen that all methods
lead to similar performances on both the MoRF and LeRF curves. This can
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be in part explained by the fact that, simple images cannot distinguish the
potentials of these methods.

— CIFAR-10 is a larger dataset, in which the images contain common objects
but with low resolution. We test two CNN models on this dataset, a custom
CNN model with four convolutional layers and a VGG-16 model [29]. It can
be seen that our proposed method performs the best on both the MoRF and
LeRF curves.

— ImageNet is one of the largest and most complex datasets, in which the
images come from the real-world scenes. We test all methods with three state-
of-the-art models on this dataset, a VGG-16 model, a ResNet18 model [14],
and a Inception-V3 model [35]. It can be seen that our method performs the
best on the MoRF curve consistently by a large margin. As for the LeRF
cure, thanks to the sign-aware loss, our method gives the correct negative
attributions while all compared methods fail.

Table 1: Evaluation of ROAR on the CI-  Fraction|Original Random SQ_SG Ours

FAR10 dataset with the custom CNN 40% |80.73% 73.65% 74.90% 71.83%
model. Our method consistantly performs 50% |80.73% 72.46% 72.97% 69.81%

better that others especially when the frac- 60% |80.73% 70.89% 70.79% 67.32%
tion of removed pixels are large. We re- 70% |80.73% 68.98% 68.33% 63.80%
port the test accuracy on the modifed 80% |80.73% 65.85% 65.19% 59.08%
dataset (lower is better). 90% |80.73% 59.58% 57.47% 50.72%

train train chair

Fig. 7: Illustration of some misclassified images and their corresponding attribution
maps. The predictions of these images are train, train, chair, horse, tv monitor and tv
monitor respectively. Red color highlights the supports of the predictions. Note that
although the attribution map does not align well with the human perception, masking
the image according to the attribution map still lead to a significant drop of the wrong
prediction.

We visualize the attribution maps on ImageNet dataset with a trained VGG-
16 model in Fig. 6. It can be seen that some compared methods are too sensitive
to ignore the non-relevant high-frequency components (e.g. the grass and the
boundary of trees). Other methods, unfortunately, fail to localize the most con-
tributed areas to the prediction (e.g. the results in the last line). As a comparison,
our method provides consistently cleaner and more focused attribution maps.
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ROAR result analysis. Tab. 1 shows the ROAR result. We change the frac-
tion of removed pixels from 40% to 90% and retrain the model on the modified
dataset. The test accuracy is reported and lower is better. Our method consis-
tantly leads to a lower accuracy on the modified test set.

Case study. We first conduct a case study of some miscalssfied images shown in
Fig. 7. It can be seen that even the generated attribution map does not align well
with the human perception, masking the input according to the attribution map
stills lead to a significant drop of the wrong prediction. We also conduct a case
study on a composite image. It contains two objects from different classes. Our
method is truly responsive to the target class, as can be seen from Fig. 8, and
focuses on the most informative areas while many gradient-based methods are
not sensitive to the target class or even give the opposite signs (like DeepLIFT).

Original |DeepLIFT [26] GradXIn [27] Mask [11] GuidedBP [33]  IG [34]  Saliency [28]  SG [30] Ours
# £y % 3 e
¥ o : 4 - g, o ' ' F
§ o H P oF 8 # A
- ! ¥
oy 3 net ® p e
: & % : : s

Fig. 8: Visualization of a composite image with two different objects. The target name of
the first line is Rhinoceros beetle while the target name of the second line is Landrover.
Many gradient-based methods are not sensitive to the target class.

Sensitivity analysis. Here, we conduct experiments for analyzing the sensitiv-
ity of the four hyper-parameters in our method including the scale factor -, two
fixed centers o and 3, and A for loss balancing. All results are obtained using a
trained VGG-16 model performing on the ImageNet dataset. In order to conduct
a more comprehensive analysis, we also evaluate the sensitivity of learning rates
and optimization iterations. The performance is measured by Area Under The
Curve (AUC) of the MoRF curve, for which a lower value indicates a better
result. We present all the results in Tab. 2, where intensities of the color are
associated with the AUC values. It can be seen that the performance of our
method is not sensitive to A. For other hyper-parameters, the performance stays
stable when they are set in a reasonable range.

Ablation Studies. We conduct ablation studies to analyze the effect of two
terms, including the sign-aware loss and the reference baseline. The compari-
son results between the full model and models without one of two terms are
presented in Fig. 9. It can be seen that the sign-aware loss improves the perfor-
mance on LeRF curve by a significant margin with cost of a little affect on the
performance of MoRF. The intuition behind is that the sign-aware loss, which
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75 14 21 27 34 40 47 53.5 60
0.27 0.16 0.13 0.14 0.15 0.17 0.18 0.20 0.22
8 14 21 27 34 40 47 54 60
0.29 0.27 0.27 0.26 0.24 0.23 0.23 0.22 0.23
1

Table 2: Results of sensitivity analysis
for the hyper-parameters. AUC is the
area under MoRF curve and lower is
better. The performance is not sensi-
tive to A and stays stable when choos-
ing reasonable values for other hyper-
parameters.

Fig. 9: Ablation studies of the sign-
aware loss and the reference baseline.
The sign-aware loss dramatically im-
proves the performance on LeRF curve
while the baseline reference has a little
influence on the performance.

Different ratios of outputs after softmax
!

contains two branches, will generate the guided supervisions for two types of
mask separately. As for the reference baseline, it influences the performance of
the proposed method on both LeRF and MoRF curves slightly, implying that
the learnable plugin module is already flexible enough even without the cues
provided by the added reference features. We also tried to use the standard con-
volution as the plugin module but fail to generate a meaningful attribution map.
This can be partially explained by that, the standard convolution operation does
a substantial change to the gradients, leading to a pointless attribution map that
is unrelated to the model anymore.

5 Conclusion

In this paper, we propose a dedicated attribution-map method that enables the
propagation rules learnable for the non-linear layers, so as to overcome the draw-
backs of existing gradient-base methods. The propagation rules are controlled by
the plugin module and can be optimized by the proposed optimization scheme
under any auto-grad framework with higher-order differential support. The learn-
able rules are adaptive, thanks to the supervision from the model and the input
themselves. As demonstrated on several datasets and models, our method yields
state-of-the-art results and produces cleaner and more focused attribution maps.
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