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Abstract. Learning predictive models from interaction with the world
allows an agent, such as a robot, to learn about how the world works, and
then use this learned model to plan coordinated sequences of actions to
bring about desired outcomes. However, learning a model that captures
the dynamics of complex skills represents a major challenge: if the agent
needs a good model to perform these skills, it might never be able to
collect the experience on its own that is required to learn these delicate
and complex behaviors. Instead, we can imagine augmenting the training
set with observational data of other agents, such as humans. Such data
is likely more plentiful, but cannot always be combined with data from
the original agent. For example, videos of humans might show a robot
how to use a tool, but (i) are not annotated with suitable robot actions,
and (ii) contain a systematic distributional shift due to the embodiment
differences between humans and robots. We address the first challenge by
formulating the corresponding graphical model and treating the action as
an observed variable for the interaction data and an unobserved variable
for the observation data, and the second challenge by using a domain-
dependent prior. In addition to interaction data, our method is able to
leverage videos of passive observations in a driving dataset and a dataset
of robotic manipulation videos to improve video prediction performance.
In a real-world tabletop robotic manipulation setting, our method is able
to significantly improve control performance by learning a model from
both robot data and observations of humans.
always

Keywords: video prediction, visual planning, action representations,
robotic manipulation

1 Introduction

Humans have the ability to learn skills not just from their own interaction with
the world but also by observing others. Consider an infant learning to use tools.

1 Correspondence to: Karl Schmeckpeper <karls@seas.upenn.edu>.
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In order to use a tool successfully, it needs to learn how the tool can interact with
other objects, as well as how to move the tool to trigger this interaction. Such
intuitive notion of physics can be learned by observing how adults use tools.
More generally, observation is a powerful source of information about the world
and how actions lead to outcomes. However, in the presence of physical differ-
ences (such as between an adult body and infant body), leveraging observation is
challenging, as there is no direct correspondence between the demonstrator’s and
observer’s actions. Evidence from neuroscience suggests that humans can effec-
tively infer such correspondences and use them to learn from observation [45,44].
In this paper, we consider this problem: can agents learn to solve tasks using
both their own interaction and the passive observation of other agents?

Fig. 1: Our system learns from action-
observation sequences collected through
interaction, such as robotic manipula-
tion or autonomous vehicle data, as well
as action-free observations of another
demonstrator agent, such as data from
a human or a dashboard camera. By
combining interaction and observation
data, our model is able to learn to gen-
erate predictions for complex tasks and
new environments without costly expert
demonstrations.

In model-based reinforcement learn-
ing, solving tasks is commonly ad-
dressed via learning action-conditioned
predictive models. However, prior
works have learned such predic-
tive models from interaction data
alone [24,23,28,16,68]. When using
both interaction and observation
data, the setup differs in two impor-
tant ways. First, the actions of the
observed agent are not known, and
therefore directly learning an action-
conditioned predictive model is not
possible. Second, the observation data
might suffer from a domain shift if
the observed agent has a different em-
bodiment, operates at a different skill
level, or exists in a different environ-
ment. Yet, if we can overcome these
differences and effectively leverage ob-
servational data, we may be able to
unlock a substantial source of broad
data containing diverse behaviors and
interactions with the world.

Our main contribution is an ap-
proach for learning predictive mod-
els that can leverage both videos of
an agent annotated with actions and
observational data for which actions
are not available. We formulate a la-
tent variable model for prediction, in
which the actions are observed variables in the first case and unobserved variables
in the second case. We further address the domain shift between the observation
and interaction data by learning a domain-specific prior over the latent variables.
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We instantiate the model with deep neural networks and train it with amortized
variational inference. In two problem settings – driving and object manipula-
tion – we find that our method is able to effectively leverage observational data
from dashboard cameras and humans, respectively, to improve the performance
of action-conditioned prediction. Furthermore, we find that the resulting model
enables a robot to solve pushing and sweeping tool-use tasks, and achieves sig-
nificantly greater success than a model that does not use observational data of
a human using tools. Finally, we release our dataset of human demonstrations
of pushing and sweeping with tools to allow others to study this problem. To
the best of our knowledge, this is the first work to demonstrate a method for
learning predictive models from both observation and interaction data.

2 Related Work

Predictive models Video prediction can be used to learn useful representations
and models in a fully unsupervised manner. These representations can be used
for tasks such as action recognition [50], action prediction [62], classification [14],
and planning [18,19,16,29,6,23,24,30,20]. Many different approaches have been
applied to video prediction, including patch-centric methods [43], compositional
models of content and motion [61,14,58], pixel autoregressive models [31], hierar-
chical models [8,40,39], transformation-based methods [37,42,18,63,34,36,33,3,9,1],
and other techniques [12,67,5,38]. We choose to leverage transformation-based
models, as they have demonstrated good results on robotic control domains
[18,16]. Recent work has also developed stochastic video prediction models for
better handling of uncertainty [13,33,3,69,9,64]. We also use a stochastic latent
variable, and unlike these prior works, use it to model actions.

Learning action-conditioned visual dynamics models was proposed in [41,18,10].
Using model predictive control techniques, flow based action-conditioned predic-
tion models have been applied to robotic manipulation [18,19,16,29,6,73]. Other
works address video games or physical simulation domains [23,24,30,20,66].

The models have been shown to generalize to unseen tasks and objects while
allowing for challenging manipulation of deformable objects, such as rope or
clothing [65,11,70]. Unfortunately, large amounts of robotic interaction data con-
taining complex behavior are required to train these models. These models are
unable to learn from cheap and abundantly available natural videos of humans as
they are trained in action-conditioned way, requiring corresponding control data
for every video. In contrast, our method can learn from videos without actions,
allowing it to leverage videos of agents for which the actions are unknown.

Learning to control without actions Recent work in imitation learning allows
the agent to learn without access to the ground-truth expert actions. One set
of approaches learn to translate the states of the expert into actions the agent
can execute [55,72]. Action-free data can also be used to learn a set of sub-goals
for hierarchical RL [32,48]. Another common approach is to learn a policy in
the agent’s domain that matches the expert trajectories under some similarity
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metric. Adversarial training or other metrics have been used to minimize the
difference between the states generated by the demonstrated policy and the
states generated by the learned policy [56,57,51,53]. Liu et al. transform images
from the expert demonstrations into the robot’s domain to make calculating the
similarity between states generated by different policies in different environments
more tractable [35]. Edwards et al. learn a latent policy on action-free data
and use action-conditioned data to map the latent policy to real actions [17].
Several works learn state representations that can be used to transfer policies
from humans to robots [47,15,2]. Shon et al. learn a mapping between human
and robot degrees of freedom to allow the robot to match the human’s pose [49].
Sun et al. use partially action-conditioned data to train a generative adversarial
network to synthesize the missing action sequences [52]. Unlike these works,
which aim to specify a specific task to be solved through expert demonstrations,
we aim to learn predictive models that can be used for multiple tasks, as we
learn general properties of the real world through model-building.

Recent prior work has considered learning predictive models from an initial
dataset that is entirely action-free [46], learning a mapping from actions to latent
variables post-hoc. However, this approach has been limited to simple simulated
settings with no domain shift. Unlike this prior work, we explicitly handle domain
shift between the interaction and observational data, and consider challenging
real video datasets. Furthermore, our experiments indicate that our approach
substantially outperforms the approach of Rybkin et al. [46] on multiple domains.

Domain adaptation In order to handle both observational and interaction data,
our method must handle the missing actions and bridge the gap between the
two domains (e.g., human arms vs. robot arms). Related domain adaptation
methods have sought to map samples in one domain into equivalent samples in
another domain [75,4,54,26], or learn feature embeddings with domain invariance
losses [60,76,21,22,59]. In our setting, regularizing for invariance across domains
is insufficient. For example, if the observational data of humans involves complex
manipulation (e.g., tool use), while the interaction data involves only simple
manipulation, we do not want the model to be invariant to these differences.
Therefore, instead of regularizing for invariance across domains, we explicitly
model the distributions over (latent) action variables in each of the domains.

Related to our method, DIVA [27] aims to avoid losing this information by
proposing a generative model with a partitioned latent space. The latent space is
composed of both components that are domain invariant and components that
are conditioned on the domain. This allows the model to use domain-specific
information while still remaining robust to domain shifts. We find that using
an approach similar to DIVA in our model for learning from observation and
interaction makes it more robust to the domain shift between interaction and
observation data. However, in contrast to DIVA, our method explicitly handles
sequence data with missing actions in one of the domains.
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3 Learning Predictive Models from Observation and
Interaction

Fig. 2: We learn a predictive
model of visual dynamics (in
solid lines) that predicts the
next frame xt+1 conditioned on
the current frame xt and action
representation zt. We optimize
the likelihood of the interaction
data, for which the actions are
available, and observation data,
for which the actions are miss-
ing. Our model is able to lever-
age joint training on the two
kinds of data by learning a la-
tent representation z that cor-
responds to the true action.

In our problem setting, we assume ac-
cess to observation data of the form
[x1, . . . ,xT ] and interaction data of the form
[x1,a1, . . . ,aT−1,xT ], where xi denotes the
ith frame of a video and ai denotes the ac-
tion taken at the ith time step. Domain shift
may exist between the two datasets: for ex-
ample, when learning object manipulation
from videos of humans and robotic interac-
tion, as considered in our experiments, there
is a shift in the embodiment of the agent.
Within this problem setting, our goal is to
learn an action-conditioned video prediction
model, p(xc+1:T |x1:c,a1:T ), that predicts fu-
ture frames conditioned on a set of c context
frames and sequence of actions.

To approach this problem, we formulate a
probabilistic graphical model underlying the
problem setting where actions are only ob-
served in a subset of the data. In particular, in
Subsection 3.1, we introduce a latent variable
that explains the transition from the current
frame to the next and, in the case of inter-
action data, encodes the action taken by the
agent. We further detail how the latent vari-
able model is learned from both observation
and interaction data by amortized variational
inference. In Subsection 3.2, we discuss how
we handle domain shift by allowing the latent variables from different datasets
to have different prior distributions. Finally, we discuss implementation details
in Subsection 3.3.

3.1 Graphical Model

To leverage both passive observations and active interactions, we formulate the
probabilistic graphical model depicted in Figure 2. To model the action of the
agent at, we introduce a latent variable zt, distributed according to a domain-
dependent distribution. The latent zt generates the action at. We further intro-
duce a forward dynamic model that, at each time step t, generates the frame
xt given the previous frames x1:t−1 and latent variables z1:t−1. The generative
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model can be summarized as:

zt ∼ p(zt|d) (1)

at ∼ p(at|zt) (2)

xt+1 ∼ p(xt+1|x1:t, z1:t). (3)

The domain-dependent distribution over zt is Gaussian with learned mean and
variance, described in more detail in Subsection 3.2, while the action decoder
p(at|zt) and transition model p(xt+1|x1:t, z1:t) are neural networks with Gaussian
distribution outputs, described in Subsection 3.3.

The transition model takes zt as input and thus necessitates the posterior
distributions p(zt|at) and p(zt|xt,xt+1). We require p(zt|at) to generate latent
variables for action-conditioned video prediction, i.e. sampling from

p(xt+1|x1:t,a1:t) = Ep(z1:t|a1:t) [p(xt+1|x1:t, z1:t)] .

We also require p(zt|xt,xt+1) since the actions are not available in some trajec-
tories to obtain the first distribution.

The computation of these two posterior distributions is intractable, since the
model is highly complex and non-linear, so we introduce the variational distribu-
tions qact(zt|at) and qinv(zt|xt,xt+1) to approximate p(zt|at) and p(zt|xt,xt+1).
The distributions are modeled as Gaussian and the variational parameters are
learned by optimizing the evidence lower bound (ELBO), which is constructed
by considering two separate cases. In the first, the actions are observed, and we
optimize an ELBO on the joint probability of the frames and the actions:

log p(x1:T ,a1:T ) ≥
∑
t

Eqact(z1:t|a1:t) [log p(xt+1|x1:t, z1:t) + log p(at|zt)]

−
∑
t

DKL(qact(zt|at)||p(zt)) = −Li(x1:T ,a1:T ).
(4)

In the second case, the actions are not observed, and we optimize an ELBO
on only the probability of the frames:

log p(x1:T ) ≥
∑
t

Eqinv(zt|xt,xt+1) [log p(xt+1|xt, zt)]

−
∑
t

DKL(qinv(zt|xt,xt+1)||p(zt)) = −Lo(x1:T ).
(5)

The full ELBO is the combination of the lower bounds for the interaction
data with actions, Di, and the observation data without actions, Do:

J =
∑

(x1:T ,a1:T )∼Di

Li(x1:T ,a1:T ) +
∑

x1:T∼Do

Lo(x1:T ). (6)

We also add an auxiliary loss to align the distributions of z generated from
the encoders qact(zt|at) and qinv(zt|xt,xt+1), since the encoding z should be



Learning Predictive Models from Observation and Interaction 7

independent of the distribution it was sampled from. We encourage the two
distributions to be similar through the Jensen-Shannon divergence:

LJS =
∑

(x1:T ,a1:T )∼Di

DJS(qact(zt|at)‖qinv(zt|xt,xt+1)). (7)

Our final objective combines the evidence lower bound for the entire dataset
and the Jensen-Shannon divergence, computed for the interaction data:

F = J + αLJS . (8)

We refer to our method as prediction from observation and interaction (POI).

3.2 Domain Shift

Fig. 3: Network architecture. To
optimize the ELBO, we predict
the latent action zt from xt and
xt+1 using the inverse model
qinv. When the true actions are
available, we additionally pre-
dict the latent action from the
true action at using the action
encoder qact, and encourage the
predictions from qact and qinv
to be similar with a Jensen-
Shannon divergence loss. The
next frame is predicted from zt
and xt.

When learning from both observation and in-
teraction, domain shift may exist between the
two datasets. For instance, in the case of a
robot learning by observing people, the two
agents differ both in their physical appear-
ance, as well as their action spaces. To ad-
dress these domain shifts, we take inspiration
from the domain-invariant approach described
in [27]. We divide our latent variable z into
zshared, which captures the parts of the latent
action that are shared between domains, and
zdomain, which captures the parts of the latent
action that are unique to each domain.

We allow the network to learn the differ-
ence between the zdomain for each dataset by
using different prior distributions. The prior
p(zsharedt ) is the same for both domains, how-
ever, the prior for zdomain

t is different for
the interaction dataset, pi(z

domain
t ), and the

observational dataset, po(zdomain
t ). p(zsharedt )

and pa(zdomain
t ) are both multivariate Gaus-

sian distributions with a learned mean and
variance for each dimension. The prior is the
same for all timesteps t.

Unlike the actions for the robot data,
which are sampled from the same distribution
at each time step, the actions of the human are
correlated across time. For the human obser-
vation data, the prior po(zdomain

1:T |x1) models a joint distribution over timesteps,
and is parameterized as a long short-term memory (LSTM) network [25]. The
input to the LSTM at the first timestep is an encoding of the initial observa-
tion, and the LSTM cell produces the parameters of the multivariate Gaussian
distribution for each time step.
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3.3 Deep Neural Network Implementation

A high-level diagram of our network architecture is shown in Figure 3. Our action
encoder qact(zt|at) is a multi-layer perceptron (MLP) with 3 layers of 64 units
to encode the given action at to the means and variances for each dimension of
the encoding. Our action decoder predicts the mean of the distribution p(at|zt)
using an MLP with 3 layers of 64 units each, while using a fixed unit variance.

Our inverse model qinv(zt|xt,xt+1) is a convolutional network that predicts
the distribution over the action encoding. The network is made up of three
convolutional layers with {32, 64, 128} features with a kernel size of 4 and a
stride of 2. Each convolutional layer is followed by instance normalization and a
leaky-ReLU. The output of the final convolutional layer is fed in a fully connected
layer, which predicts the means and variances of the action encoding.

We encourage the action encodings generated by the action encoder qact
and the inverse model qinv to be similar using the Jensen-Shannon divergence
in Equation 7. Since the Jensen-Shannon divergence does not have a closed
form solution, we approximate it by using a mean of the Gaussians instead of a
mixture. Our model uses a modified version of the SAVP architecture [33] as the
transition model which predicts xt+1 from xt and an action encoding z, either
sampled from qact(zt|at) or from qinv(zt|xt,xt+1). In the case where the actions
are observed, we generate two predictions, one from each of qinv and qact, and in
the case where actions are not observed, we only generate a prediction from the
inverse model, qinv. This architecture has been shown to be a useful transition
model for robotic planning in [16,11].

4 Experiments

We aim to answer the following in our experiments:

1. Do passive observations, when utilized effectively, improve an action-conditioned
visual predictive model despite large domain shifts?

2. How does our approach compare to alternative methods for combining pas-
sive and interaction data?

3. Do improvements in the model transfer to downstream tasks, such as robotic
control?

To answer question 1, we compare our method to a strong action-conditioned
prediction method, SAVP [33], which is trained only on interaction data as it
is not able to leverage the observation data. To answer question 2, we further
compare to CLASP [46], a prior method that infers actions in a post-hoc manner
and does not model domain shift. We study questions 1 and 2 in both the driving
domain in Subsection 4.1 and the robotic manipulation domain in Subsection 4.2
and evaluate the methods on action-conditioned prediction. We evaluate question
3 by controlling the robotic manipulator using our learned model.
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Method PSNR (↑) SSIM (↑) LPIPS [74] (↓)
SAVP [33] (Boston w/ actions) 19.74± 0.41 0.5121± 0.0164 0.1951± 0.0075
CLASP [46] (Boston w/ actions, Singapore w/o actions) 20.57± 0.48 0.5431± 0.0161 0.1964± 0.0076
POI (ours) (Boston w/ actions, BDD100K w/o actions) 20.88± 0.24 0.5508± 0.0076 0.2106± 0.0089
POI (ours) (Boston w/ actions, Singapore w/o actions) 20.81± 0.49 0.5486± 0.0164 0.1933± 0.0074

Oracle: SAVP [33] (Boston w/ actions. Singapore w/ actions) 21.17± 0.47 0.5752± 0.0156 0.1738± 0.0076

Table 1: Action-conditioned prediction results on the Singapore portion of the
nuScenes dataset, reporting the mean and standard error of each metric. By
leveraging observational driving data from Singapore or from BDD dashboard
cameras, our method is able to outperform prior models that cannot leverage
such data (i.e. SAVP) and slightly outperform alternative approaches to using
such data.

4.1 Visual Prediction for Driving

We first evaluate our model on video prediction for driving. Imagine that a
self-driving car company has data from a fleet of cars with sensors that record
both video and the driver’s actions in one city, and a second fleet of cars that
only record dashboard video, without actions, in a second city. If the goal is to
train an action-conditioned model that can be utilized to predict the outcomes
of steering actions, our method allows us to train such a model using data from
both cities, even though only one of them has actions.

Fig. 4: Example predictions on the Sin-
gapore portion of the Nuscenes dataset.
This sequence was selected for large
MSE difference between the models.
More examples are available in the sup-
plementary material. We compare our
model to the baseline of the SAVP
model trained on the Boston data with
actions. Our model is able to maintain
the shape of the car in front.

We use the nuScenes [7] and
BDD100K [71] datasets for our exper-
iments. The nuScenes dataset consists
of 1000 driving sequences collected in
either Boston or Singapore, while the
BDD100K dataset contains only video
from dashboard cameras. In nuScenes,
we discard all action and state in-
formation for the data collected in
Singapore, simulating data that could
have been collected by a car equipped
with only a camera. We train our
model with action-conditioned video
from Boston and action-free video
either from the nuScenes Singapore
data or the BDD100K data, and
evaluate on action-conditioned pre-
diction on held-out data from Singa-
pore (from nuScenes). Since the ac-
tion distribution for all datasets is
likely very similar as they all con-
tain human driving, we use the same
learned means and variances for the
Gaussian prior over z for both por-
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tions of the dataset. We additionally
train a our model with the action-
conditioned video from Boston and action-free video taken from the BDD100K
dataset [71].

We compare our predictions to those generated by the SAVP [33] model
trained with only the action-conditioned data from Boston, since SAVP can-
not leverage action-free data for action-conditioned prediction. We additionally
compare our predictions to those generated by CLASP [46] trained with action-
conditioned video from Boston, and action-free video from Singapore. As an
upper-bound, we train the SAVP [33] model with action-conditioned data from
Boston and action-conditioned data from Singapore.

Fig. 5: Frame-by-frame differences in
PSNR relative to SAVP, on the robotic
domain. Our method consistently out-
performs both SAVP and CLASP.

Comparisons between these meth-
ods are shown in Table 1. Qualita-
tive results are shown in Figure 4.
With either form of observational
data, BDD2K or nuScenes Singapore,
our method significantly outperforms
the SAVP model trained with only
action-conditioned data from Boston,
demonstrating that our model can
leverage observation data to improve
the quality of its predictions. Further,
our method slightly outperforms al-
ternative approaches to learning from
observation and interaction.

4.2 Robotic Manipulation:
Prediction

We evaluate our model on the robotic
manipulation domain, which presents
a large distributional shift challenge
between robot and human videos. In
particular, we study a tool-use task
and evaluate whether human videos of tool-use can improve predictions of robotic
tool-use interactions.

Learning predictive models from interaction with the world allows an agent,
such as a robot, to learn about how the world works, and then use this learned
model to plan coordinated sequences of actions to bring about desired outcomes.

For our interaction data, we acquired 20,000 random trajectories of a Sawyer
robot from the open-source datasets from [16] and [68], which consist of both
video and corresponding actions. We then collected 1,000 videos of a human
using different tools to push objects as the observation data. By including the
human videos, we provide the model with examples of tool-use interactions,
which are not available in the random robot data. Our test set is composed of
1,200 kinesthetic demonstrations from [68], in which a human guides the robot
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Fig. 6: Example images from the robot (left) and human (right) datasets.

Fig. 7: Example predictions on the robotic dataset. We compare our model to
the SAVP model trained with random robot data. This sequence was selected to
maximize the MSE difference between the models. More examples are available
in the supplementary material. Our model more accurately predicts both the
tool and the object it pushes.

to use tools to complete pushing tasks similar to those in the human videos.
Kinesthetic demonstrations are time-consuming to collect, encouraging us to
build a system that can be trained without them, but they serve as a good
proxy for evaluating robot tool-use behavior. Example images from the datasets
are shown in Figure 6.4 This dataset is especially challenging because of the
large domain shift between the robot and human data. The human arm has a
different appearance from the robot and moves in a different action space.

Method PSNR (↑) SSIM (↑) LPIPS [74] (↓)
CLASP [46] (random robot, expert human) 22.14± 0.11 0.763± 0.004 0.0998± 0.0023
SAVP [33] (random robot) 23.31± 0.10 0.803± 0.004 0.0757± 0.0022
POI (ours) (random robot, expert human) 23.79± 0.12 0.813± 0.005 0.0722± 0.0024

Oracle: SAVP [33] (random robot, expert kinesthetic) 24.99± 0.11 0.858± 0.003 0.0486± 0.0017

Table 2: Means and standard errors for action-conditioned prediction on the
manipulation dataset. By leveraging observational data of human tool use, our
model was able to outperform prior models that cannot leverage such data (i.e.
SAVP) and slightly outperform alternative approaches to using such data.

4 Data will be made available at https://sites.google.com/view/lpmfoai

https://sites.google.com/view/lpmfoai


12 K. Schmeckpeper et al.

We compare to the CLASP model [46] trained with the same data as our
model. We also evaluate the SAVP model [33], trained the same robot data, but
without the human data, since the SAVP model is unable to leverage action-free
data for action-conditioned prediction. For an oracle, we trained the SAVP model
[33] on both the random robot trajectories and the kinesthetic demonstrations.

As shown in Table 2, our model is able to leverage information from the
human videos to outperform the other models. Our model outperforms the
SAVP model trained on only the random robot data, showing that it is possible
to leverage passive observation data to improve action-conditioned prediction,
even in the presence of the large domain shift between human and robot arms.
Figure 5 shows the frame-by-frame differences in PSNR relative to SAVP.

Fig. 8: Action predictions on human and robot data. The sequences of images show
the ground truth observations, while the arrows show the action in the (x, y) plane
between each pair of frames. The blue arrow is the ground truth action, the green arrow
is the action generated from decoding the output of the action encoder, and the red
is the action generated by decoding the output of the inverse model. The human data
only has actions generated by the inverse model. Our model is able to infer plausible
actions for both domains, despite never seeing ground truth human actions.

Qualitative results are shown in Figure 7. Our model is able to generate
more accurate predictions than the baseline SAVP model that was trained with
only the robotic interaction data. In addition to predicting future states, our
model is able to predict the action that occurred between two states. Examples
for both robot and human demonstrations are shown in Figure 8. Our inverse
model is able to generate reasonable actions for both the robot and the human
data despite having never been trained on human data with actions. Our model
can reconstruct the actions with an average percent error of 14.3, while CLASP
reconstructs the actions with an average percent error of 70.4. Our model maps
human and robot actions to a similar space, allowing it to exploit their similar-
ities to improve prediction performance on robotic tasks.

4.3 Robotic Manipulation: Planning and Control

To study the third and final research question, we evaluate the efficacy of our
visual dynamics model in a set of robotic control experiments. We evaluate
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Fig. 9: Examples of a robot using our model to successfully complete tool use
tasks. The robot must move the objects specified by the red symbols to the loca-
tions of the corresponding green symbols. The robot uses a tool to simultaneously
move several objects to their goal locations.

each predictive model’s ability to control the robot on a baseline task [68] by
integrating the model with an existing visual model predictive control pipeline,
which optimizes actions with respect to a user-provided task [19,16].

To evaluate the importance of the human data, we focus on control tasks that
involve moving multiple objects, which would be difficult to complete without
using a tool. While [19,16] only evaluated on simple one-step planning tasks, we
want to see whether our model can be used to successfully solve more complex
tasks by incorporating observational data of humans. Therefore, for testing our
model, we position the objects such that it is not possible to solve the task
greedily by moving directly towards the goal, following the evaluation setup for
pushing and sweeping tool use tasks from Xie et al. [68]. In each task setting,
several objects, as well as a tool that the robot could potentially use to complete
the task, are placed in the scene. Tasks are specified by designating a pixel corre-
sponding to an object and the goal position for the object, following [19,16,68].
We specify moving multiple objects by selecting multiple pairs of pixels. We
quantitatively evaluate each model on 15 tasks with tools seen during train-
ing and 15 tasks with previously unseen tools. In Figure 9, we show qualitative
examples of the robot completing tool-use tasks.

Method Success Rate

SAVP [33] (random) 23.3± 7.7%
POI (ours) (random, human) 40.0± 8.9%

Oracle (random, kinesthetic) 36.7± 8.8%

Table 3: Robotic control results, measuring the success rate and standard error for
three object manipulation tasks. ”random” denotes random robot data, ”human” de-
notes human interaction data, and ”kinesthetic” is an oracle dataset of expert robot
trajectories. POI performs comparably to the oracle, and successfully leverages the
observational videos to improve over SAVP.
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The quantitative results, in Table 3, indicate that the planner can leverage
our model to execute more successful plans relative to the baseline SAVP model,
which was trained only using random robot trajectories. In our evaluation, a trial
is successful if the average distance between the objects and their respective goal
positions at the final time step is less than or equal to 10 centimeters. Using our
model, the robot achieves similar performance to the oracle model trained on
kinesthetic demonstrations with action labels. This suggests that our model’s
improvements on prediction leads to a corresponding improvements on control.

5 Conclusion

We present a method for learning predictive models from both passive observa-
tion and active interactions. Active interactions are usually more expensive and
less readily-available than passive observation: for example, consider the amount
of observational data of human activities on the internet. Active interaction, on
the other hand, is especially difficult when the agent is trying to collect infor-
mation about regions of the state-space which are difficult to reach. Without an
existing policy that can guide the agent to those regions, time consuming on-
policy exploration, expert teleoperated or kinesthetic demonstrations are often
required, bringing additional costs.

By learning a latent variable over the semi-observed actions, our approach is
able to leverage passive observational data to improve action-conditioned pre-
dictive models, even in the presence of domain shift between observation and
interaction data. Our experiments illustrate these benefits in two problem set-
tings: driving and object manipulation, and find improvements both in prediction
quality and in control performance when using these models for planning.

Overall, we hope that this work represents a first step towards enabling the
use of broad, large-scale observational data when learning about the world. How-
ever, limitations and open questions remain. Our experiments studied a limited
aspect of this broader problem where the observational data was either a dif-
ferent embodiment in the same environment (i.e. humans manipulating objects)
or a different environment within the same underlying dataset (i.e. driving in
Boston and Singapore). In practice, many source of passive observations will ex-
hibit more substantial domain shift than those considered in this work. Hence,
an important consideration for future work is to increase robustness to domain
shift to realize greater benefits from using more large and diverse observational
datasets. Finally, we focused our study on learning predictive models; an ex-
citing direction for future work is to study how to incorporate similar forms of
observational data in representation learning and reinforcement learning.
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