
1

Extraction Memory (GB)
Method latency (ms) ROxf+1M RPar+1M

(A) Local feature aggregation
DELF-R-ASMK? [10] 2260 27.6 –

(B) Global features
R50-GeM [8] 100 7.7 7.7
R101-GeM [8] 175 7.7 7.7

(C) Unified global + local features
R50-DELG (3 scales global & local) [ours] 118 439.4 440.0
R50-DELG [ours] 244 485.5 486.2
R101-DELG (3 scales global & local) [ours] 193 437.1 437.8
R101-DELG? (3 scales global & local) [ours] 193 21.1 21.1
R101-DELG [ours] 416 485.9 486.6
R101-DELG? [ours] 416 22.6 22.7

Local features
DELF (3 scales) [5] 98 434.2 434.8
DELF (7 scales) [5] 201 477.9 478.5

Table 1: Feature extraction latency and database memory requirements for different image
retrieval models. Latency is measured on an NVIDIA Tesla P100 GPU, for square images of side
1024. (A) DELF-R-ASMK? measurements use the code and default configuration from [10]; (B)
ResNet-GeM variants use 3 image scales; (C) DELG and DELG? are compared with different
configurations. As a reference, we also provide numbers for DELF in the last rows.

Appendix A. Additional experiment results

Latency and memory. Tab. 1 reports feature extraction latency and index memory
footprint for state-of-the-art methods; as a reference, we also present numbers for DELF
(which uses an R50 backbone). Joint extraction with DELG allows for substantial speed-
up, compared to running two separate local and global models: when using 3 local
feature scales, separately running R50-GeM and DELF would lead to 198ms, while
the unified model runs with latency of 118ms (40% faster). For the R50 case with 7
local scales, the unified model is 19% faster. The binarization technique adds negligible
overhead, having roughly the same latency.

Storing unquantized DELG local features requires excessive index memory require-
ments; using binarization, this can be reduced significantly: R101-DELG? requires
23GB. This is lower than the memory footprint of DELF-R-ASMK?. Note also that
feature extraction for DELG? is much faster than for DELF-R-ASMK?, by more than 5×.
R50-DELG with 3 scales is also faster than using a heavier global feature (R101-GeM
[8]), besides being more accurate. As a matter of fact, several of the recently-proposed
global features [8,2] use image pyramids with 3 scales; our results indicate that their
performance can be improved substantially by adding a local feature head, with small
increase in extraction latency, and without degrading the global feature.

Qualitative results. We give examples of retrieval results, to showcase the DELG
model. Fig. 1a illustrates difficult cases, where the database image shows a very different
viewpoint, or significant lighting changes; these images can still achieve relatively high
ranks due to effective global features, which capture well the similarity even in such
challenging scenarios. In these cases, local features do not produce sufficient matches.



2

Query Retrieved

23rd

28th

28th

29th

29th

Query Retrieved

25th

29th

29th

30th

30th

(a) Global feature retrieval: high recall.

Query
1st 2nd 3rd

Global 
feature 
results

After 
re-ranking

Query Global 
feature 
results

After 
re-ranking

1st 2nd 3rd

1st 2nd 3rd

1st 2nd 3rd

Query Global 
feature 
results

After 
re-ranking

2nd 3rd 4th

2nd 3rd 4th

(b) Local feature re-ranking: high precision.

Fig. 1: Sample DELG results on ROxf-Hard and RPar-Hard. (a) Examples of difficult, high-
ranked relevant retrieved images for 10 different queries. These retrieved database images have
a low number of inliers after geometric verification (if any), which means that their similarity
is mainly captured by the global feature. (b) Examples illustrating performance improvements
from the re-ranking stage using local features. For each query (left), two rows are presented on the
right, the top one showing results based on global feature similarity and the bottom one showing
results after re-ranking the top 100 images with local features. Correct results are marked with
green borders, and incorrect ones in red. While top retrieved global feature results are often ranked
incorrectly, local feature matching can effectively re-rank them to improve precision.

Fig. 1b shows the effect of local feature re-ranking for selected queries, for which
substantial gains are obtained. Global features tend to retrieve images that have generally
similar appearance, but which sometimes do not depict the same object of interest;
this can be improved substantially with local feature re-ranking, which enables stricter
matching selectivity. As can be observed in these two figures, global features are crucial
for high recall, while local features are key to high precision.

Appendix B. Training cost

One of the advantages of DELG is that local and global features can be jointly trained
in one shot, without the need of additional steps. In practice, we have observed that the
training time for DELG is roughly the same as for the associated global feature, both
taking approximately 1.5 day.

This is because the additional cost of learning the attention and autoencoder layers
is small: there are only 5 extra trainable layers (2 in the attention module, 2 in the
autoencoder, plus the attention loss classifier), and their gradients are not backpropagated
to the network backbone. Other factors play a much more significant role in the training
speed, e.g.: reading data from disk, transferring batch to GPU memory, applying image
pre-processing operations such as resizing/cropping/augmentation, etc.

In short, training our local image features comes at a very small cost on top of
global feature learning. Let us clarify, though, that while the training cost is roughly the
same between the global and joint models, the inference cost for the joint model has an



3

overhead for local feature detection (e.g., selecting the top local features across different
scales in the image pyramid).

We can also compare DELG’s training cost to DELF’s: DELF would require one
additional run for attention learning (6 hours), followed by a PCA computation step (3
hours). The advantage of DELG, compared to DELF, is that the attention and autoencoder
layers are already adapting to the network backbone while it is training; for DELF, this
process only happens after the backbone is fully trained.

Appendix C. Model selection and tuning

We provide more detail on how our models were selected/tuned, and specify chosen
parameters which were not mentioned in the main text. For more information, please
refer to our released code/models.

Model selection. Our models are trained for 1.5M steps, corresponding to approxi-
mately 25 epochs of an 80% split of the GLD training set. We attempt three different
initial learning rates for each configuration, and select the best one based on the per-
formance on ROxf/RPar (it is a convention in recent work [9,10,4] to perform abla-
tions/tuning on these datasets). In all cases, we pick the model at the end of training
and do not hand-pick earlier checkpoints which may have higher performance. These
selected models are then used in all large-scale experiments, onROxf+1M,RPar+1M,
GLDv2-retrieval and GLDv2-recognition.

Tuning image matching. For local feature-based matching with DELG, we used a
simple distance criterion for proposing putative feature correspondences, before feeding
them to RANSAC. RANSAC is used with 1k iterations, and any returned match is used
for re-ranking (minimum number of inliers is zero). We tuned two thresholds: local
descriptor distance threshold and the RANSAC residual threshold. These thresholds
are tuned onROxf/RPar, and then fixed forROxf+1M andRPar+1M; similarly, they
are tuned on the validation set of GLDv2-retrieval/GLDv2-recognition, then fixed for
experiments on the testing set of GLDv2-retrieval/GLDv2-recognition. For DELG on
ROxf/RPar/GLDv2-retrieval, the local descriptor distance threshold is set to 1.0, and the
RANSAC residual threshold is set to 20.0; for DELG?, we adjust the former threshold
to 1.1 due to quantization errors. For DELG on GLDv2-recognition, the local descriptor
distance threshold is set to 0.9, and the RANSAC residual threshold is set to 10.0 (since
the recognition task has a stronger focus on precision, we find that these tighter matching
parameters perform better).

Appendix D. Memory footprint

For reporting the memory footprint of DELG/DELG?, we follow a similar convention to
previous work [7,10] and report total storage required for local and global descriptors.
Note that local feature geometry information is not counted in the reported numbers, and
would add some overhead.

Our main focus in this paper is to propose a new model for unified local and global
feature extraction, so we did not thoroughly explore techniques for efficient quantization.
As the DELG? results show, there is great promise in aggressively quantizing local



4

descriptors, leading to reasonable storage requirements – which can likely be improved
with more effective quantizers. Similarly, global descriptors and local feature geometry
could be quantized to improve the total memory cost substantially.

Appendix E. Local feature matching visualizations

We present more qualitative results, to illustrate local feature matching with DELG:
Fig. 2 presents examples of correct matches, and Fig. 3 presents examples of incorrect
matches. For these examples, we use the R50-DELG model and theROxf/RPar datasets.
These visualizations depict the final obtained correspondences, post-RANSAC.

For each row, one query and two index images are shown, and on the right their
local feature matches are shown, with lines connecting the corresponding keypoints.
Fig. 2 showcases DELG’s robustness against strong viewpoint and illumination changes:
for example, matches can be obtained across different scales and day-vs-night cases.
Fig. 3 presents overtriggering cases, where a match is found even though different
objects/scenes are presented: these tend to occur for similar patterns between query and
index images (ie, similar windows, arches or roofs) which appear in similar geometric
configurations. Generally, these do not affect retrieval results much because the number
of inliers is low.

Query Local Features MatchingIndex

Fig. 2: Examples of correct local feature matches, for image pairs depicting the same object/scene.



5

Query Local Features MatchingIndex

Fig. 3: Examples of incorrect local feature matches, for image pairs depicting different ob-
jects/scenes.

Appendix F. Feature visualization

We provide visualizations of the features learned by the DELG model. This is useful to
understand the hierarchical representation which we rely on for extraction of local and
global features. We explore two types of visualizations, based on dataset examples with
high activations and by optimizing input images with respect to a given layer/channel.

F.1 Feature visualization by dataset examples

For this experiment, we run our R50-DELG model over 200k images from the Google
Landmarks dataset [5], and collect the images and feature positions with largest value in
each channel of several activation maps. We specifically consider the activation maps at
the outputs of the conv2, conv3, conv4 and conv5 blocks of layers in our model’s ResNet
architecture [3]. The feature positions with maximum activations can be mapped back to
the relevant input image regions by computing the model’s receptive field parameters
[1]. Note that the region may partly fall outside the image, in which case we apply
zero-padding for the visualization.

Fig. 4 presents image patches that produce the highest activations for selected chan-
nels of the above-mentioned layers. The activation values are noted in each subfigure’s
title and can be read by zooming in. For each selected channel of a specific layer, the 9
patches with largest activations are shown. The receptive field sizes (both horizontally
and vertically) for each of these layers are: 35 (conv2), 99 (conv3), 291 (conv4) and 483
(conv5); these correspond to the sizes of image patches. One can notice that the types
of patterns which maximally activate specific layers grow in complexity with network
depth. This agrees with observations from previous work, where the hierarchical nature
of CNN features is discussed [11,6]. Shallower layers such as conv2 tend to focus on
edges and simple textures; conv3 responds highly to more complex shapes, such as
edges resembling palm trees (channel 15) and arches (channel 48); conv4 focuses on
object parts, such as green dome-like shapes (channel 2), or arches (channel 30); conv5
shows strong activations for entire objects, with substantial invariances to viewpoint and
lighting: entire buildings (channel 3), islands (channel 23) or towers (channel 52) are
captured.



6

These visualizations help with intuitive understanding of our proposed method,
which composes local features from a shallower layer (conv4) and global features from a
deeper layer (conv5). Features from conv5 present high degree of viewpoint invariance,
being suboptimal for localized matching and more suitable to global representations. In
contrast, conv4 features seem more grounded to localizable object parts and thus can be
effectively used as local feature representations.

F.2 Feature visualization by optimization

In this experiment, we consider the same layers and channels as above, but now adopt
a visualization technique by optimizing the input image to maximally activate the
desired feature. First, the input image is initialized with random noise. Given the desired
layer/channel, we backpropagate gradients in order to maximally activate it. Regularizers
can be useful to restrict the optimization space, otherwise the network may find ways to
activate neurons that don’t occur in natural images.

We reuse the technique from Olah et al.[6], with default parameters, and the results
are presented in Fig. 5. Again, we notice that a hierarchical representation structure
forms, with more complex patterns being produced as the network goes deeper from
conv2 to conv5. As expected, the produced images agree very well with the patches
from Fig. 4, in terms of the types of visual contents. For example, for conv3 channel 48,
the optimized image shows arch-like edges while the dataset examples present image
patches where those types of patterns occur.

Note also how deeper layers tend to specialize for the target task, by detecting
image patches with parts and texture that are common to landmarks. For example, conv4
shows detection of green dome-like shapes (channel 2) and arches (channel 30), which
are common in these types of objects; conv5, on the other hand, shows building walls
(channel 3) and rocky patterns that are common in ancient buildings or islands (channel
23).

References

1. Araujo, A., Norris, W., Sim, J.: Computing Receptive Fields of Convolu-
tional Neural Networks. Distill (2019), https://distill.pub/2019/
computing-receptive-fields

2. Gordo, A., Almazan, J., Revaud, J., Larlus, D.: End-to-end Learning of Deep Visual Repre-
sentations for Image Retrieval. IJCV (2017)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: Proc.
CVPR (2016)

4. Ng, T., Balntas, V., Tian, Y., Mikolajczyk, K.: SOLAR: Second-Order Loss and Attention for
Image Retrieval. In: Proc. ECCV (2020)

5. Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-Scale Image Retrieval with Attentive
Deep Local Features. In: Proc. ICCV (2017)

6. Olah, C., Mordvintsev, A., Schubert, L.: Feature Visualization. Distill (2017), https://
distill.pub/2017/feature-visualization

7. Radenović, F., Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Revisiting Oxford and Paris:
Large-Scale Image Retrieval Benchmarking. In: Proc. CVPR (2018)

https://distill.pub/2019/computing-receptive-fields
https://distill.pub/2019/computing-receptive-fields
https://distill.pub/2017/feature-visualization
https://distill.pub/2017/feature-visualization


7

conv2, channel 0 conv2, channel 12 conv2, channel 49

conv3, channel 15 conv3, channel 29 conv3, channel 48

conv4, channel 1 conv4, channel 2 conv4, channel 30

conv5, channel 3 conv5, channel 23 conv5, channel 52

Fig. 4: Visualization of patterns detected by specific feature maps / channels, by presenting image
patches that produce high activations.



8

conv2, channel 0 conv2, channel 12 conv2, channel 49

conv3, channel 15 conv3, channel 29 conv3, channel 48

conv4, channel 1 conv4, channel 2 conv4, channel 30

conv5, channel 3 conv5, channel 23 conv5, channel 52

Fig. 5: Visualization of patterns detected by specific feature maps / channels, by optimizing the
input image to produce high activations.



9

8. Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN Image Retrieval with No Human
Annotation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2018)

9. Revaud, J., Almazan, J., de Rezende, R.S., de Souza, C.R.: Learning with Average Precision:
Training Image Retrieval with a Listwise Loss. In: Proc. ICCV (2019)

10. Teichmann, M., Araujo, A., Zhu, M., Sim, J.: Detect-to-Retrieve: Efficient Regional Aggrega-
tion for Image Search. In: Proc. CVPR (2019)

11. Zeiler, M.D., Fergus, R.: Visualizing and Understanding Convolutional Networks. In: Proc.
ECCV (2014)


