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Abstract. The problem of catastrophic forgetting occurs in deep learn-
ing models trained on multiple databases in a sequential manner. Re-
cently, generative replay mechanisms (GRM) have been proposed to re-
produce previously learned knowledge aiming to reduce the forgetting.
However, such approaches lack an appropriate inference model and there-
fore can not provide latent representations of data. In this paper, we pro-
pose a novel lifelong learning approach, namely the Lifelong VAEGAN
(L-VAEGAN), which not only induces a powerful generative replay net-
work but also learns meaningful latent representations, benefiting rep-
resentation learning. L-VAEGAN can allow to automatically embed the
information associated with different domains into several clusters in the
latent space, while also capturing semantically meaningful shared latent
variables, across different data domains. The proposed model supports
many downstream tasks that traditional generative replay methods can
not, including interpolation and inference across different data domains.

Keywords: Lifelong learning, Representation learning, Generative mod-
eling, VAEGAN model.

1 Introduction

The lifelong learning framework describes an intelligent learning process capable
of remembering all previously learned knowledge from multiple sources, such
as different databases [47]. The ability of continuous, or lifelong learning, is an
inherent characteristic of humans and animals, which helps them to adapt to
the environment during their entire life. However, such characteristics remain
an open challenge for deep learning models. The current state-of-the-art deep
learning approaches perform well on many individual databases [18, 55], but
suffer from catastrophic forgetting when attempting to learn data associated
with new tasks [3, 13, 19, 51, 62, 65]. For example when a deep neural network
is trained on a new database, its parameters are updated in order to learn new
information while their previous values are lost. Consequently, their performance
on the previously learnt tasks degenerates.

In order to alleviate the catastrophic forgetting problem, memory-based ap-
proaches use a buffer to store a small subset of previously seen data samples [2,
4, 8]. However, such approaches cannot be seen as lifelong learning models and
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they do not scale well when increasing the number of databases defining differ-
ent tasks. Shin et al. [60] proposed a learning model employing the Generative
Replay Mechanism (GRM). The idea of the GRM is to train a generative replay
network to reproduce previously learnt knowledge by using adversarial learning.
A classifier is then trained using jointly generative replay data and data sampled
from the current database. This approach was only applied on prediction tasks.
Although recent studies, such as the one from [64], have been used to generate
images from new classes without forgetting, generative replay approaches do not
learn the representation of data and therefore can not be extended to be used in
a broad range of tasks. Learning meaningful and disentangled representations of
data was shown to benefit many tasks, but they have not been explored so far
within the lifelong learning methodology [1, 52]. In this paper, we propose a new
lifelong learning model which not only learns a GRM but also induces accurate
inference models, benefiting on representation learning.

This research study brings the following contributions :

1) In order to address the drawbacks of generative replay approaches, we pro-
pose a novel lifelong learning model aiming to learn informative latent vari-
ables over time.

2) We show that the proposed lifelong learning model can be extended for un-
supervised, semi-supervised and supervised learning with few modifications.

3) We propose a two-step optimization algorithm to train the proposed model.
The latent representation learned by the proposed model can capture both
task-specific generative factors and semantic meaningful shared latent vari-
ables across different domains over time.

4) We provide a theoretical insight into how GRM models are used for lifelong
learning in artificial systems.

2 Related works

The lifelong learning was approached in previous research studies from three
different perspectives: by using regularization, dynamic architectures, and by
employing memory replay. Regularization approaches in order to alleviate catas-
trophic forgetting add an auxiliary term that penalizes changes in the weights
when the model is trained on a new task [14, 26, 29, 33, 38, 48, 54, 60]. Dynamic
architectures would increase the number of neurons and network layers in or-
der to adapt to learning new information [58]. Most memory replay approaches
are using generative models, such as either Generative Adversarial Networks
(GANs) [21] or Variational Autoencoders (VAEs) [32]) to replay the previously
learnt knowledge. For instance, Wu et al. [64] proposed a novel lifelong gen-
erative framework, namely Memory Replay GANs (MeRGANs), which mainly
generates images from new categories under the lifelong learning setting. The
Lifelong GAN [67] employs image to image translation. However, both models
from [64, 67] lack an image inference procedure and Lifelong GAN would need
to load all previously learnt data for the generation task. Approaches employing
both generative and inference mechanisms are based on the VAE framework [1,
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50]. However, these approaches have degenerating performance when learning
high-dimensional data, due to lacking a powerful generator.

Hybrid VAE-GAN methods learn an inference model from a GAN model,
which can also capture data representations, which is specific to the VAE. Ad-
versarial learning is performed in order to match either the data distribution
[36], the latent variables distribution [42], or their joint distributions [10, 15, 16,
37, 43, 49, 61]. These methods perform well only when trained on a single dataset
and their performance would degenerate when learning a new task.

This paper is the first research study to propose a novel hybrid lifelong learn-
ing model, which not only addresses the drawback of the existing hybrid meth-
ods but also provides inference mechanisms for the GRM, benefiting on many
downstream tasks across domains under the lifelong learning framework. The ap-
proach proposed in this paper also addresses disentangled representation learning
[35] in the context of lifelong learning. Many recent approaches would aim to
modify the VAE framework in order to learn a meaningful representation of the
data by imposing a large penalty on the Kullback-Leibler (KL) divergence term
[7, 17, 25] or on the total correlation latent variables [12, 20, 28, 30]. These ap-
proaches perform well on independent and identically distributed data samples
from a single domain. However, they are unable to learn the information from
piecewise changing stationary data from multiple databases, because they suffer
from catastrophic forgetting.

3 The Lifelong VAEGAN

In this section, we introduce the optimization algorithm used for training the
proposed model when learning several databases without forgetting.

3.1 Problem formulation

The lifelong learning problem consists of learning a sequence of of K tasks, each
characterized by a distinct database, corresponding to the data distributions
p(x1), p(x2), . . . , p(xK). During the k-th database learning, we only access the
images sampled from p(xk). Most existing lifelong learning approaches focus on
prediction or regression tasks. Meanwhile, in this research study we focus on
modelling the overall data distribution p(x), by learning latent representations
over time:

p(x) :=

∫ K∏
i=1

p(xi|z)p(z)dz (1)

where z represents the latent variables defining the information of all previously
learnt databases. Besides addressing unsupervised learning, we also incorporate
discrete variables into the optimization path in order to capture category dis-
criminating information. Moreover, we also consider the semi-supervised learning
problem where we consider that in each dataset we only have some labelled data
while the rest are unlabeled.
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3.2 Data generation from prior distributions

In the following we aim to learn two separate latent representations for capturing
discrete and continuous variations of data. The discrete data are denoted as
c = {ci|i = 1, . . . , L} where L is the dimension of the discrete variable space,
while the continuous variables z are sampled from a normal distribution N (0, I).
We also consider the domain variable a = {aj |j = 1, . . . ,K}, defining each
database and aiming to capture the information characterizing its task. The
generation process considering the three latent variables c, z and a is defined as:

c ∼ Cat (K = L, p = 1/K) , z ∼ N (0, I),

a ∼ Cat (p1, p2, . . . , pK) ,x ∼ pθ(x|z,a, c),
(2)

where Cat(·) is the Categorical distribution, and pθ(x|z,a, c) is the distribution
characterizing the generator implemented by a neural network with trainable pa-
rameters, θ. By incorporating the domain variables a in the inference model helps
to generate images characteristic to a specific task. We consider the Wasserstein
GAN (WGAN) [5] loss with the gradient penalty [22], which is defined by :

min
G

max
D
LGGAN (θ, ω) =Ez∼p(z),c∼p(c),a∼p(a)[D(G(c, z,a))]−

Ep(x)[D(x)] + λEx̃∼p(x̃)[(‖∇x̃D(x̃)‖2 − 1)2]
(3)

where we introduce a Discriminator D, defined by the trainable parameters
ω, p(x) denotes the true data distribution, and the third term is the gradi-
ent weighted by the penalty λ. The adversarial loss allows the Generator and
Discriminator to be trained alternately such that the Discriminator aims to
distinguish real from generated data, while the Generator tends to fool the Dis-
criminator through aiming to generate realistic data [5, 21].

3.3 Training the inference model

Most GAN-based lifelong methods [60, 64, 66] do not learn an accurate inference
model and therefore can not derive a meaningful data representation. For the
model proposed in this paper, we consider three differentiable non-linear func-
tions fς(·), fε(·), fδ(·), aiming to infer three different types of latent variables
{z, c,a}. We implement fς(·) by using the Gaussian distribution N (µ, σ) where
µ = µς(x) and σ = σς(x) are given by the outputs of a neural network with
trainable parameters ς. We use the reparameterization trick [32, 56] for sam-
pling z = µ+ π ⊗ σ, where π is a random noise vector sampled from N (0, I), in
order to ensure end-to-end training.
Discrete variables. We can not sample the discrete latent variables a and c
from fε(·) and fδ(·), respectively, because the categorical representations are
non-differentiable. In order to mitigate this, we use the Gumbel-Max trick [23,
41] for achieving the differentiable relaxation of discrete random variables. The
Gumbel-softmax trick was also used in [17, 27, 40, 63] and its capability of reduc-
ing the variation of gradients was shown in [63].
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The sampling process of discrete latent variables is defined as:

aj =
exp((log a′j + gj)/T )

K∑
i=1

exp((log a′i + gi)/T )
(4)

where a′i is the i-th entry of the probability defined by the softmax layer char-
acterizing fε(·) and aj is the continuous relaxation of the domain variable, while
gk is sampled from the distribution Gumbel(0, 1) and T is the temperature pa-
rameter that controls the degree of smoothness. We use the Gumbel softmax
trick for sampling both the domain a and the discrete c variables.

The log-likelihood objective function. GANs lack an inference mechanism,
preventing them to capture data representations properly. In this paper we pro-
pose to maximize the sample log-likelihood for learning the inference models,
defined by p(x) =

∫ ∫ ∫
p(x|z,a, c)p(z,a, c) dz da dc, which is intractable in

practice. We therefore derive the following lower bound on the log-likelihood,
which is characteristic to VAEs, by introducing variational distributions:

LVAE(θ, ς, ε, δ) =Eqς,ε,δ(z,a, c|x) log[pθ(x|z,a, c)]−DKL[qς(z|x)||p(z)]

− Eqς(z|x)DKL[qε(a|x)||p(a|z)]−DKL[qδ(c|x)||p(c)]
(5)

where qς(z|x), qε(a|z), qδ(c|x) are variational distributions modelled by fς(·),
fε(·), fδ(·), respectively. For the third term from (5), we sample from the empir-
ical distribution and then sample z from qδ(c|x). p(a|z) is the prior distribution
Cat(p1, . . . , pK), where pi denotes the probability of the sample belonging to the
i-th domain. We consider qε(a|z) as the task-inference model which aims to infer
the task ID for the given data samples.

A
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(a) Generator network (b) Inference network

Fig. 1. The graph structure for the proposed Lifelong VAEGAN (L-VAEGAN) model,
where G and D denote the Generator and Discriminator, respectively.

For the supervised learning setting, the auxiliary information such as the class
labels can be used to guide the inference model. We minimise the cross-entropy
loss η(·, ·) for qδ(c|x) and qε(a|z) as:

La(ε) = E(x,a∗)∼(X,A),z∼qς(z|x)η(qε(a|z),a∗) (6)

Lc(δ) = E(x,y)∼(X,Y)η(qδ(c|x),y) (7)
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where X and Y represent the empirical data and target distributions, respec-
tively. a∗ is the variable drawn from A which represents the Categorical distri-
bution Cat(m1, . . . ,mk), where mi is the probability of seeing i-th task, charac-
terizing the corresponding database. The graph structure of the Generator and
Inference networks of the proposed Lifelong VAEGAN (L-VAEGAN) is shown
in Figs. 1-a and 1-b, respectively, where the variable a is conditioned on z. The
proposed model is flexible to be extended for recognizing new tasks by automat-
ically appending the domain variable a and optimizing the task-inference model
qε(a|z) when faced with learning a new task.

4 Theoretical analysis of the GRM

In this section, we analyze the GRM used in lifelong learning.

Definition 1. We define the distribution modelling the lifelong learned data as
p(x̃t), which is encoded through Gγt(z, c,d). The assumption is that the network
has learnt the information from all given databases t = 1, . . . ,K, and this in-
formation is stored, refined and processed across various tasks, where γt is the
generator parameter updated after the t-th task learning.

Definition 2. Let us define

p(x̃t|x̃t−1,xt) = exp(−Γ (p(x̃t−1,xt), p(x̃t))) (8)

as the probability of generated data x̃t when observing x̃t−1 and xt, where Γ (·)
is a probabilistic measure of comparison between two distributions, which can be
the f-divergence [46], or the Wasserstein distance [5] (Earth-mover distance).

Theorem 1. By marginalizing over x̃t−1 and xt, on p(x̃t|x̃t−1,xt), the resulting
marginal distribution p(x̃t) encodes the statistical correlations from all previously
learnt distributions.

Proof. By using mathematical induction over the lifelong learning of the proba-
bilities associated with various tasks, the marginal distribution is rewritten as:

p(x̃t) =

∫
. . .

∫
p(x̃1)

t−2∏
i=0

p(x̃t−i|x̃t−i−1,xt−i)
t−2∏
i=0

p(xt−i)dx̃1 . . . dx̃t−1dx2 . . . dxt

(9)

Lemma 1. The data probability p(x̃t) approximates the true joint distribution∏t
i=1 p(x

i) when all previously learnt distributions are the exact approximations
to their target distributions while learning every given task.

In the following we extend the theoretical analysis on the domain adaptation
problem from [53] (Theorem 2) in order to analyze how the knowledge learned
by GRMs is lost during the lifelong learning.
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Theorem 2. Let us consider two vector samples, one corresponding to the gen-
erated data {νt′ ∈ Rs|νt′ ∼ p(x̃t)} and another corresponding to the real data
{νt ∈ Rs|νt ∼ p(xt)} of sizes nt and nt′ . Then let ht(·) be a new learned model
trained on νt′ . For any s′ > s and a′ <

√
2, there is a constant n0 depending

on s′ satisfying that for any δ > 0 and min(νt, nt′) ≥ n0 max(δ−(s
′+2), 1). Then

with the probability of at least 1− δ for all ht, we have:

E
(
ht(νt)

)
≤ E

(
ht(νt′)

)
+W (νt, νt′) +

√
2 log

(
1

δ

)
/a′
(√

1

nt
+

√
1

nt′

)
+D

(10)
where E(ht(νt)), E(ht(νt′)) denote the observed risk for νt and νt′ , respectively,
and W (νt, νt′) is the Wassenstein distance between νt and νt′ . D is the combined
error when we find the optimal model ht

′
=: arg minht∈H(E(ht(νt))+E(ht(νt′)).

This theorem demonstrates that the performance of a model ht degenerates
on the empirical data distribution p(xt). From Theorem 2, we conclude that
the lifelong learning becomes a special domain adaptation problem in which the
target and source domain are empirical data distributions from the current task
and the approximation distribution Gγt(z, c,d).

Lemma 2. From Theorem 2 we have a bound on the accumulated errors across
tasks during the lifelong learning.∑K

i=1
E
(
hK(νi)

)
≤
∑K

i=1
E
(
hK(νi(K))

)
+

W (νi, νi(K)) +

√
2 log

(
1

δ

)
/a′

(√
1

ni
+

√
1

ni(K)

)
+D(i(K−1),i(K)),

(11)

where E
(
hK(νi(K))

)
denotes the observed risks on the probability measure νi(K)

formed by samples drawn from p(x̃i), after they have been learned across K tasks.
D(i(K−1),i(K)) is the combined error of an optimal model

h∗ = arg min
h∈H

(E
(
hK(νi(K−1))

)
+ E

(
hK(νi(K))

)
) (12)

Theorem 3. By having a learning system, acquiring the information from the
given databases, we can define log pθ(x

t, x̃t−1) as the joint model log-likelihood
and pθ(z

t, zt−1|xt, x̃t−1) as the posterior. log pθ(x
t, x̃t−1) can be optimized by

maximizing a lower bound.

Proof. In this case, we consider two underlying generative factors (latent vari-
ables) zt, zt−1 for observing the real data xt and generated data x̃t−1, re-
spectively. We then define the latent variable model pθ(x

t, x̃t−1, zt, zt−1) =
pθ(x

t, x̃t|zt, zt−1)p(zt)p(zt−1) and its marginal log-likelihood is approximated
by a lower bound :

log pθ(x
t, x̃t−1) ≥ Eqξ(zt|xt)

[
log

pθ(x
t, zt)

qξ(zt|xt)

]
+ Eqξ(zt−1|x̃t−1)

[
log

pθ(x̃
t−1, zt−1)

qξ(zt−1|x̃t−1)

]
(13)

We define the above equation as L(θ, ξ; xt, x̃t−1).
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Lemma 3. From the Theorems 2 and 3, we can derive a lower bound on the
sample log-likelihood at t-th task learning, as expressed by:

log pθ(x
1, ..,xt) ≥ L(θ, ξ; x1, ..,xt) ≥ L(θ, ξ; xt, x̃t−1)

−W(v,v′)−

√
2 log

(
1

δ

)
/a′

(√
1

n
+

√
1

n′

)
−D∗

(14)

where ν ∈ Rs, ν′ ∈ Rs are formed by n and n′ numbers of samples drawn from
p(xt)p(x̃t−1) and

∏t
i p(x

i), respectively, where n and n′ denote the sample size.

Lemma 2 provides an explicit way to investigate how information is lost
through GRMs during the lifelong learning process. Meanwhile, Lemma 3 de-
rives the evidence lower bound (ELBO) of the sample log-likelihood. All GRM
approaches, based on VAE and GAN architectures, can be explained through
this theoretical analysis. However, GAN based approaches lack inference mech-
anisms, such as the one provided in Lemma 3. This motivates us to develop a
new lifelong learning approach utilizing the advantages of both GANs and VAEs,
enabling the generation of data and the log-likelihood estimation abilities.

5 The two-step latent variables optimization over time

In the following, we introduce a two-step optimization algorithm which combines
a powerful generative replay network with inducing latent representations. Our
algorithm is different from existing hybrid models which train generator and
inference models using a single optimization function [36] or learn an optimal
coupling between generator and inference model by using adversarial learning
[11, 15, 16, 36, 37, 42, 43, 61]. The proposed algorithm contains two independent
optimization paths, namely “wake” and “dreaming” phases.

5.1 Supervised learning

In the “wake” phase, by considering the Definitions 1 and 2, the refined distribu-
tion p(x̃t) is trained to approximate p(x̃t−1,xt) by minimizing the Wasserstein
distance :

min
G

max
D
LGGAN (θt, ωt)

∆
= Ep(z),p(c),p(a)[D(G(c, z,a))]− Ep(x̃t−1)p(xt)[D(x)],

(15)
where we omit the penalty term, weighted by λ, for the sake of simplification.

In the “dreaming” phase, we maximize the sample log-likelihood on the joint
distribution of the generated data and the empirical data, associated with a
given new task, by maximizing the ELBO :

LV AE(θt, ςt, εt, δt)
∆
= Eqς,ε,δ(z,a,c|xt)

[
log

pθ(x
t|z,a, c)

qς,ε,δ(z,a, c|xt)

]
+ Eqς,ε,δ(z,a,c|x̃t−1)

[
log

pθ(x̃
t−1|z,a, c)

qς,ε,δ(z,a, c|x̃t−1)

]
.

(16)
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This loss function is used to train both Generator and Inference models. After
training, the Inference model qδ(c|x) can be used for classification.

5.2 Semi-supervised learning

Let us consider that we only have a small subset of labelled data from each
database, while the rest of data is unlabelled. For the labelled data, we derive
the objective function without the inference model qδ(c|x) in the “dreaming”
phase as :

LSV AE(θt, ςt, εt, δt)
∆
=
∑2

Eqς(z|x),qε(a|x),p(y)[log pθ(x|z,a,y)]

−DKL[qς(z|x)||p(z)]− Eqς(z|x)DKL[qε(a|z)||p(a|z)]−DKL[qδ(c|x)||p(c)],
(17)

where
∑2

denotes the estimation of ELBO on the joint model log-likelihood.
In addition, we model the unlabeled data samples by using LV AE(θt, ςt, εt, δt),
where the discrete variable c is sampled from the Gumbel-softmax distribu-
tion whose probability vector is obtained by the encoder qδ(c|x). The full semi-
supervised loss used to train the hybrid model is defined as:

LSemiV AE
∆
= LSV AE + βLV AE , (18)

where β is used to control the importance of the unsupervised learning when
compared with the component associated with supervised learning. In addition,
the entropy loss Lc(δ) is also performed with the labeled data samples in order
to enhance the prediction ability of qδ(c|x).

5.3 Unsupervised learning

We also employ the proposed hybrid VAE-GAN model for the lifelong unsu-
pervised learning setting, where we do not have the class labels for each task.
Similarly to the supervised learning framework, we minimize the Wasserstein
distance between p(x̃t) and p(x̃t−1,xt) :

min
G

max
D
LUGAN (θt, ωt)

∆
= Ep(z),p(a)[D(G(z,a))]− Ep(x̃t−1)p(xt)[D(x)]. (19)

In the “dreaming” phase, we train the generator and inference models using:

LUV AE(θt, ςt, εt)
∆
=
∑2

Eqς(z|x),qε(a|x)[log pθ(x|z,a)]

−DKL[qς(z|x)||p(z)]− Eqς(z|x)DKL[qε(a|z)||p(a|z)],
(20)

where the Generator is conditioned on only two variables, z and a. For learn-
ing disentangled representations, we employ the Minimum Description Length
(MDL) principle [7, 57] and replace the second term from equation (20) by
γ|DKL[qς(z|x)||p(z)]−C|, where γ and C are a multiplicative and a linear con-
stant used for controling the degree of disentanglement.
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6 Experimental results

6.1 Lifelong unsupervised learning

In this section, we investigate how the proposed Lifelong VAEGAN (L-VAEGAN)
model learns meaningful and interpretable representations considering the un-
supervised lifelong learning of various image databases.
Reconstruction and Interpolation results following lilfeong learning.
We train the L-VAEGAN model using the loss functions LUGAN and LUV AE from
equations (19) and (20), which contain adversarial and VAE learning terms,
respectively, and we consider a learning rate of 0.001. The generation and recon-
struction results are presented in Figs. 2a-c, for the lifelong learning of CelebA
[39] to CACD [9], and in Figs. 2d-f for CelebA to 3DChair [6]. From these results,
the inference model works well for both discrete and continuous latent variables.

(a) Real Images. (b) Generated Images. (c) Reconstructions.

(d) Real Images. (e) Generated Images. (f) Reconstructions.

Fig. 2. Images reconstructed and generated by L-VAEGAN following the lifelong learn-
ing of CelebA to CACD (top row) and CelebA to 3DChair (bottom row).

In the following we perform data interpolation experiments under the lifelong
learning setting in order to evaluate the manifold continuity. We call lifelong in-
terpolation when the interpolation is performed between multiple data domains,
by considering data from different databases, under the lifelong learning setting.
We randomly select two images and then infer their discrete a and continuous
z latent variables by using the inference model. The interpolation results are
shown in Fig. 3-a, left and right, for CelebA to CACD and CelebA to 3D-chair
lifelong learning, respectively. The first two rows show the interpolation results
in images from the same database, while the last two rows show the interpola-
tions of images from two different databases. From the images from the last two
rows of Fig. 3-a, from the right side, we observe that a chair is transformed into
a human face, where its seat and backside are smoothly changed into the eyes
and hair of a person. This shows that L-VAEGAN model can learn the joint
latent space of two completely different data configurations.
Lifelong Disentangled Representations. We train the L-VAEGAN model
under the CelebA to 3D-Chairs lifelong learning by adapting the loss functions
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(a) Interpolation results after lifelong learning

(b) Manipulating latent variables after the CelebA to 3D-chairs lifelong learning. We
change a single latent variable from -3.0 to 3.0 while fixing all the others. From left to
right and top to bottom, we can see changes in skin, gender, narrowing of the face, chair
size, face pose and the style of chairs.

Fig. 3. Interpolation and disentangled results after lifelong learning.

from (19) and (20) in order to achieve unsupervised disentangled representations,
as mentioned in Section 5.3. We consider the multiplicative parameter γ = 4,
while increasing the linear one C from 0.5 to 25.0 during the training. After
the training, we change one dimension of a continuous latent representation z,
inferred by using the inference model, for a given input, and then map it back
in the visual data space by using the generator. The disentangled results are
presented in Fig 3-b which indicates changes in the skin, gender, narrowing of
the face, chair size, face pose and chairs’ style. These results show that the L-
VAEGAN hybrid model can discover different disentangled representations in
both CelebA and 3D chair databases.

In order to evaluate the quality of the generated images we use the Inception
score (IS) [59] when training Cifar10 [34] to MNIST lifelong learning, and then
we consider the Fréchet Inception Distance (FID) [24] score for CelebA to CACD
lifelong learning. Figs. 4-a and 4-b plot the IS and FID results, respectively, where
a lower FID and a higher IS indicate better quality images and where we compare
with four other lifelong learning approaches : LGAN [60], LifelongGAN [67],
VAEGAN [43] and LGM [50]. LifelongGAN [67] requires to load the previously
learnt real data samples in order to prevent forgetting them when is applied
in general generation tasks (no conditional images are available). The results
indicate that GAN-based lifelong approaches achieve better scores than VAE
based methods because VAEs usually generate blurred images. The proposed
approach not only produces higher-quality generative replay images but also
learns data representations which is not possible with other GAN-based lifelong
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approaches. The proposed approach also yields higher-quality reconstructed and
generated images then VAE-based methods.

Table 1. Quantitative evaluation of the
representation learning ability.

The lifelong learning of MNIST and Fashion

Methods Lifelong Dataset Rec Acc

L-VAEGAN M-F MNIST 4.75 92.53
LGM [50] M-F MNIST 7.18 91.26
VAEGAN [43] M-F MNIST 6.54 91.87

L-VAEGAN M-F Fashion 17.44 67.66
LGM [50] M-F Fashion 18.33 66.17
VAEGAN [43] M-F Fashion 17.03 67.23

L-VAEGAN F-M MNIST 4.92 93.29
LGM [50] F-M MNIST 7.18 91.26
VAEGAN [43] F-M MNIST 5.52 92.16

L-VAEGAN F-M Fashion 13.16 66.97
LGM [50] F-M Fashion 18.83 62.53
VAEGAN [43] F-M Fashion 16.57 64.98

(a) IS evaluation.

(b) FID evaluation.

Fig. 4. Quality evaluation.
Quantitative Evaluation. In the following we evaluate numerically the image
representation ability for the proposed approach. We consider the reconstruction
(Rec) as MSE, and the classification accuracy (Acc), as in [67]. The classification
accuracy is calculated by a classifier which was trained on the generated images
and evaluated on unseen testing samples. We provide the results in Table 1, where
L-VAEGAN learns firstly the database MNIST followed by Fashion, denoted as
M-F, while F-M represents the learning of the same databases in reversed order.
For comparison, we consider LGM [50] and VAEGAN [43], which is one of the
best known hybrid models enabled with an inference mechanism. We implement
VAEGAN using GRM in order to prevent forgetting. From Table 1 we can see
that L-VAEGAN achieves the best results.

6.2 Lifelong supervised learning

We compare L-VAEGAN with various other methods under the lifelong super-
vised setting. LGAN [60] typically trains a classifier (called Solver) on both the
images generated by the GAN and the training data samples from the current
task. We also consider an auxiliary classifier for LGM [50] by training it on
the mixed dataset consisting of images generated by the LGM and the training
samples of the current task.

We train the L-VAEGAN model under the MNIST to SVHN [45] and MNIST
to Fashion lifelong learning tasks, respectively. The classification accuracy of
various methods is reported in Table 2. We observe that the replay generative
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Table 2. The classification results for the lifelong learning of MNIST and SVHN.

Dataset Lifelong L-VAEGAN LGAN[60] LGM[50] EWC [33] Transfer MeRGANs [64]

MNIST M-S 96.63 96.59 96.59 32.63 4.70 96.46
MNIST S-M 98.55 98.42 98.30 99.03 98.45 98.38
SVHN M-S 81.97 80.77 80.10 89.71 89.90 79.67
SVHN S-M 80.99 76.76 80.97 37.69 3.60 80.85

images can prevent forgetting and the quality of performing on the previous tasks
is depending on the capability of the Generator. For instance, the classification
accuracy of previous tasks for LGM is a bit lower than for the other GAN-
based methods. The reason for this is that LGM uses VAEs as generators and
therefore can not generate high-quality images when compared to GANs. The
classification results indicate that the proposed approach yields good results in
lifelong supervised learning.

Table 3. Semi-supervised classification error re-
sults on MNIST database, under the MNIST to
Fashion lifelong learning.

Methods Lifelong? Error

L-VAEGAN Yes 4.34
LGAN [60] Yes 5.46
Neural networks (NN) [31] No 10.7
(CNN) [31] No 6.45
TSVM [31] No 5.38
CAE [31] No 4.77
M1+TSVM [31] No 4.24
M2 [31] No 3.60
M1+M2 [31] No 2.40
Semi-VAE [44] No 2.88

Fig. 5. The accuracy during the
semi-supervised training on the test-
ing data samples during the lifelong
learning. The model is trained for 10
epochs for each task.

(a) Forgetting curves
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(c) MNIST-MNIST

Fig. 6. Classification accuracy and observed risks during the lifelong learning.



14 Fei Ye and Adrian G. Bors

6.3 Lifelong semi-supervised learning

For the semi-supervised training of L-VAEGAN, described in Section 5.2, we
consider only a small number of labelled images from each database. We di-
vide MNIST and Fashion datasets into two subsets each, representing labelled
and unlabeled data. We consider a total of 1,000 and 10,000 labelled images for
MNIST and Fashion datasets, respectively, with an equal number of data in each
class for the labelled set. The semi-supervised learning curves are provided in
Fig. 5. We observe that when not using the generative replay samples, the model
under the semi-supervised setting suffers from catastrophic forgetting. The clas-
sification results for lifelong learning when using L-VAEGAN compared to other
semi-supervised learning methods are provided in Table 3. These results show
that the proposed approach outperforms LGAN [60], under the semi-supervised
learning setting, and achieves competitive results when compared to the state-
of-the art models which are not trained using lifelong learning.

6.4 Analysis

The classification accuracy for all testing samples during the MNIST to Fashion
lifelong learning is shown in Fig. 6-a, where the first 10 training epochs corre-
spond to learning the MNIST task and the next 10 epochs are used for learning
the Fashion database. We observe that the performance of previous tasks is
maintained when considering the GRM. However, without replaying the data,
the model learned from the previous tasks quickly forgets the past knowledge
when learning new tasks, as observed in the significant performance drop from
Fig. 6-a. The proposed L-VAEGAN, unlike LGAN [60], is able to provide in-
ference mechanisms, benefiting many downstream tasks, as shown in Fig. 3. In
Fig. 6-b we provide the numerical results for the generalization bounds for GRM,
described in Section 4, where risk1 and risk2 denote E(h1(µ1)) and E(h1(µ1′)),
respectively. We find that E(h1(µ1)) is very close to E(h1(µ1′)) and still a bound
on E(h1(µ1′)) during the training. Fig. 6-c provides the numerical results for
the observed risks under the MNIST-MNIST lifelong learning. We observe that
E(h1(µ1)) is still a bound on E(h1(µ1′)) and this bound is gradually increased
during the training. The reason for this is that the model is gradually adapting
p(x̃1) and the bound depends on the distance between p(x̃1) and p(x1).

7 Conclusion

A novel hybrid model for lifelong representation learning, called Lifelong VAE-
GAN (L-VAEGAN) is proposed in this research study. A two-step optimization
algorithm, which can also induce higher-quality generative replay samples and
learn informative latent representations over time, is used to train L-VAEGAN.
The results indicate that L-VAEGAN model is able to discover disentangled
representations from multiple domains under the lifelong learning setting. More
importantly, L-VAEGAN automatically learns semantic meaningful shared la-
tent variables across different domains, which allows to perform cross-domain
interpolation and inference.
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