
Incorporating Reinforced Adversarial Learning in Autoregressive
Image Generation

-Supplementary Material-

1. Additional Image Samples

We provide additional image samples in Figure 1 and Figure 2 with the same models used in Figure 5 and
Figure 6 of the main paper. The images have resolution of 128 × 128, decoded from latent code sizes of 16 × 16
and 32 × 32.

We further provide quantitative results in Table 1 for CelebA [2] and in Table 2 for LSUN-bedroom [5] datasets
with different settings. Lastly, we also share an experiment on CelebA-HQ [1] dataset for image resolution of
512 × 512 in Table 3 using latent code sizes of 32 × 32 and 64 × 64. For all experiments, we finetune the pixelcnn
model with the MLE loss with the same number of iterations as our RL trained model, then compare which one
is better.

2. Architecture Details

We provide the details of PixelCNN [4] and VQVAE [3] architectures we used in our experiments in Tables 4,
5, 6, 7. 8, 9 and 10.

M
LE

Pr
op
os
ed

Figure 1: Additional image samples generated by MLE-trained model and our proposed reinforced adversarial learning on
the CelebA dataset. The generated images have resolution of 128 × 128, and they are decoded from 16 × 16 and 32 × 32
latent codes.

1



M
LE

Pr
op
os
ed

Figure 2: Additional image samples generated by MLE-trained model and our proposed reinforced adversarial learning on
the LSUN-bedroom dataset. The generated images have resolution of 128 × 128, and they are decoded from 16 × 16 and
32× 32 latent codes.

3. Sampling Speed

We report FID for a partial generation and full generation under the same training time in the main paper,
Table 3(a). More detailed training durations are reported in Table 11, computed with a single GPU. For 128×128
res., partial generation can sample a batch of 16 images in 61 seconds on average compared to 102 seconds with
full generation. For 256 × 256 res., partial generation can sample a batch of 16 images in 123 seconds on average
compared to 170 seconds with full generation. As can be seen, the partial generation significantly improves the
training time. Due to smaller code sizes, the model is also less exhaustive to train as lesser GPU memory is
allocated.

4. Scaling to Higher Resolutions

The main reason we do not have such successful results is due to computational limitations as discussed in the
paper. Another reason is the VQ-VAE reconstruction and even calculating FIDs for real images vs. reconstructed
real images, FIDs are very high as can be seen in Table 12. As we limit the encoded code size to effectively use
PixelCNNs, FIDs reduce due to the increased compression. It is noteworthy that the ImageNet classifier is also
very sensitive to small distortions caused by vector quantization as also discussed in VQ-VAE-2.

The superior performance of VQ-VAE-2 is also enabled by rejection sampling. Rejection sampling is an external
method to filter out bad quality samples by using a classifier network that is trained on ImageNet and can be
applied to ANY generative network. However, the rejection sampling method is a temporary solution, which makes
it hard to use for real-world cases. By introducing Reinforced Adversarial Learning, our aim is to penalize bad
quality samples and permanently improve PixenCNNs sample generation quality.

Another issue with rejection sampling is sampling costs. The sampling time for autoregressive models is already a
problem and including rejection sampling would make this process even slower. For 256×256 resolution, as reported
in VQ-VAE-2 supplementary materials, the sampling speed per image is 3 minutes even with caching and use of
large batches. Therefore, VQ-VAE-2 requires many GPU hours, which is very costly. In the paper, we mention
the disadvantages of rejection sampling such as increased sampling time, reduced diversity and unavailability of
class scores.



Table 1: Additional experiment for CelebA dataset. FID calculations are made compared to reconstructed real images.

Image Size — Latent Code Size 128 × 128 — 16 × 16
MLE 18.01

Single Reward 16.91

Table 2: Additional experiments for LSUN-bedroom dataset. FID calculations are made compared to reconstructed real
images.

Image Size — Latent Code Size 64 × 64 — 8 × 8 64 × 64 — 16 × 16 128 × 128 — 16 × 16
MLE 19.95 15.90 23.53

Single Reward 19.07 11.47 18.96

Table 3: Additional experiment for CelebA-HQ dataset. FID calculations are made compared to reconstructed real images.

Image Size — Latent Code Size 512 × 512 — top: 32 × 32, bottom: 64 × 64
MLE 34.93

Single Reward 32.14
Intermediate Reward 31.84

Table 4: Architecture details for CelebA, 64× 64 image resolution experiments.

(a) PixelCNN Prior - Oracle Network

Input size 8 × 8
Batch size 1024

Hidden units 256
Residual units 256

Layers 5
Attention layers 0
Conv Filter size 5

Dropout 0.1
Output stack layers 5

Training steps 90039

(b) PixelCNN Prior - Generator Network

Input size 8 × 8
Batch size 1024

Hidden units 128
Residual units 128

Layers 5
Attention layers 0
Conv Filter size 5

Dropout 0.1
Output stack layers 5

Training steps 19531

(c) VQ-VAE: Encoder, Decoder

Input size 64 × 64
Latent Layers 8 × 8

β 0.25
Batch size 128

Hidden units 128
Residual units 64

Layers 3
Codebook size 128

Codebook dimension 64
Encoder filter size 3
Decoder filter size 4

Training steps 156250

Table 5: Architecture details for LSUN-bedroom, 64× 64 image resolution experiments with latent size of 8× 8.

(a) PixelCNN Prior

Input size 8 × 8
Batch size 1536

Hidden units 512
Residual units 512

Layers 20
Attention layers 0
Conv Filter size 5

Dropout 0.1
Output stack layers 5

Training steps 97656

(b) VQ-VAE: Encoder, Decoder

Input size 64 × 64
Latent Layers 8 × 8

β 0.25
Batch size 128

Hidden units 128
Residual units 64

Layers 3
Codebook size 512

Codebook dimension 64
Encoder filter size 3
Decoder filter size 4

Training steps 234375



Table 6: Architecture details for LSUN-bedroom, 64× 64 image resolution experiments with latent size of 16× 16.

(a) PixelCNN Prior

Input size 16 × 16
Batch size 480

Hidden units 512
Residual units 512

Layers 20
Attention layers 8
Conv Filter size 5

Dropout 0.1
Output stack layers 20

Training steps 31250

(b) VQ-VAE: Encoder, Decoder

Input size 64 × 64
Latent Layers 16 × 16

β 0.25
Batch size 128

Hidden units 128
Residual units 64

Layers 2
Codebook size 512

Codebook dimension 64
Encoder filter size 3
Decoder filter size 4

Training steps 234375

Table 7: Architecture details for CelebA and LSUN-bedroom with 128× 128 resolution with a single prior PixelCNNs.

(a) PixelCNN Prior

Input size 16 × 16
Batch size 480

Hidden units 512
Residual units 512

Layers 20
Attention layers 8
Conv Filter size 5

Dropout 0.1
Output stack layers 20

Training steps 41666

(b) VQ-VAE: Encoder, Decoder

Input size 128 × 128
Latent Layers 16 × 16

β 0.25
Batch size 128

Hidden units 128
Residual units 64

Layers 3
Codebook size 512

Codebook dimension 64
Encoder filter size 3
Decoder filter size 4

Training steps 156250



Table 8: Architecture details for CelebA, LSUN-bedroom, 128× 128 experiments with two PixelCNN priors.

(a) PixelCNN Top-Prior Network

Input size 16 × 16
Batch size 480

Hidden units 512
Residual units 512

Layers 20
Attention layers 8
Conv Filter size 5

Dropout 0.1
Output stack layers 20

Training steps 166664

(b) PixelCNN Bottom-Prior Network

Input size 32 × 32
Batch size 128
Hidden units 512
Residual units 512
Layers 20
Attention layers 0
Conv Filter size 5
Dropout 0.1
Conditioning Output stack layers 20
Training steps 156250

(c) VQ-VAE: Encoder, Decoder

Input size 128 × 128
Latent Layers 16 × 16, 32 × 32

β 0.25
Batch size 128

Hidden units 128
Residual units 64

Layers 2
Codebook size 512

Codebook dimension 64
Encoder filter size 3
Decoder filter size 4

Training steps 156250



Table 9: Architecture details for CelebA, 256× 256 experiments with two PixelCNN priors.

(a) PixelCNN Top-Prior Network

Input size 32 × 32
Batch size 128

Hidden units 512
Residual units 512

Layers 20
Attention layers 0
Conv Filter size 5

Dropout 0.1
Output stack layers 20

Training steps 187500

(b) PixelCNN Bottom-Prior Network

Input size 64 × 64
Batch size 128
Hidden units 128
Residual units 128
Layers 16
Attention layers 0
Conv Filter size 5
Dropout 0.1
Conditioning Output stack layers 20
Training steps 125000

(c) VQ-VAE: Encoder, Decoder

Input size 256 × 256
Latent Layers 32 × 32, 64 × 64

β 0.25
Batch size 128

Hidden units 128
Residual units 64

Layers 2
Codebook size 512

Codebook dimension 64
Encoder filter size 3
Decoder filter size 4

Training steps 156250



Table 10: Architecture details for CelebA-HQ, 512× 512 experiments with two PixelCNN priors.

(a) PixelCNN Top-Prior Network

Input size 32 × 32
Batch size 128

Hidden units 512
Residual units 512

Layers 20
Attention layers 0
Conv Filter size 5

Dropout 0.1
Output stack layers 20

Training steps 20625

(b) PixelCNN Bottom-Prior Network

Input size 64 × 64
Batch size 128
Hidden units 128
Residual units 128
Layers 16
Attention layers 0
Conv Filter size 5
Dropout 0.1
Conditioning Output stack layers 20
Training steps 42187

(c) VQ-VAE: Encoder, Decoder

Input size 512 × 512
Latent Layers 32 × 32, 64 × 64

β 0.25
Batch size 128

Hidden units 128
Residual units 64

Layers 3
Codebook size 512

Codebook dimension 64
Encoder filter size 3
Decoder filter size 4

Training steps 23437

Table 11: Sampling speed comparisons for full generation vs. partial generation with a batch size of 16.

Image Size — Latent Code Size 128 × 128 — 16 × 16 + 32 × 32 256 × 256 — 32 × 32 + 64 × 64
Full Generation 102 s 170 s

Partial Generation 61 s 123 s

Table 12: FIDs for real images vs. reconstructed real images.

Dataset
Image Size

Latent Code Size

Celeba
128 x 128

16 x 16 + 32 x 32

Celeba
256 x 256

32 x 32 + 64 x 64

LSUN-bedroom
128 x 128

16 x 16 + 32 x 32
FID: Real image vs. Reconstructed Real Image 24.52 7.47 28.54



References

[1] Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196 (2017) 1

[2] Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (December 2015) 1

[3] van den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Informa-
tion Processing Systems. pp. 6306–6315 (2017) 1

[4] Oord, A.v.d., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., Kavukcuoglu, K.: Conditional image
generation with pixelcnn decoders. In: NeurIPS. pp. 4797–4805 (2016) 1

[5] Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: Lsun: Construction of a large-scale image dataset using deep
learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015) 1


