Incorporating Reinforced Adversarial Learning in Autoregressive Image Generation -Supplementary Material-

1. Additional Image Samples

We provide additional image samples in Figure 1 and Figure 2 with the same models used in Figure 5 and Figure 6 of the main paper. The images have resolution of 128×128 , decoded from latent code sizes of 16×16 and 32×32 .

We further provide quantitative results in Table 1 for CelebA [2] and in Table 2 for LSUN-bedroom [5] datasets with different settings. Lastly, we also share an experiment on CelebA-HQ [1] dataset for image resolution of 512×512 in Table 3 using latent code sizes of 32×32 and 64×64 . For all experiments, we finetune the pixelcnn model with the MLE loss with the same number of iterations as our RL trained model, then compare which one is better.

2. Architecture Details

We provide the details of PixelCNN [4] and VQVAE [3] architectures we used in our experiments in Tables 4, 5, 6, 7. 8, 9 and 10.

Figure 1: Additional image samples generated by MLE-trained model and our proposed reinforced adversarial learning on the CelebA dataset. The generated images have resolution of 128×128 , and they are decoded from 16×16 and 32×32 latent codes.

Figure 2: Additional image samples generated by MLE-trained model and our proposed reinforced adversarial learning on the LSUN-bedroom dataset. The generated images have resolution of 128×128 , and they are decoded from 16×16 and 32×32 latent codes.

3. Sampling Speed

We report FID for a partial generation and full generation under the same training time in the main paper, Table 3(a). More detailed training durations are reported in Table 11, computed with a single GPU. For 128×128 res., partial generation can sample a batch of 16 images in 61 seconds on average compared to 102 seconds with full generation. For 256×256 res., partial generation can sample a batch of 16 images in 123 seconds on average compared to 170 seconds with full generation. As can be seen, the partial generation significantly improves the training time. Due to smaller code sizes, the model is also less exhaustive to train as lesser GPU memory is allocated.

4. Scaling to Higher Resolutions

The main reason we do not have such successful results is due to computational limitations as discussed in the paper. Another reason is the VQ-VAE reconstruction and even calculating FIDs for real images vs. reconstructed real images, FIDs are very high as can be seen in Table 12. As we limit the encoded code size to effectively use PixelCNNs, FIDs reduce due to the increased compression. It is noteworthy that the ImageNet classifier is also very sensitive to small distortions caused by vector quantization as also discussed in VQ-VAE-2.

The superior performance of VQ-VAE-2 is also enabled by rejection sampling. Rejection sampling is an external method to filter out bad quality samples by using a classifier network that is trained on ImageNet and can be applied to ANY generative network. However, the rejection sampling method is a temporary solution, which makes it hard to use for real-world cases. By introducing Reinforced Adversarial Learning, our aim is to penalize bad quality samples and permanently improve PixenCNNs sample generation quality.

Another issue with rejection sampling is sampling costs. The sampling time for autoregressive models is already a problem and including rejection sampling would make this process even slower. For 256×256 resolution, as reported in VQ-VAE-2 supplementary materials, the sampling speed per image is 3 minutes even with caching and use of large batches. Therefore, VQ-VAE-2 requires many GPU hours, which is very costly. In the paper, we mention the disadvantages of rejection sampling such as increased sampling time, reduced diversity and unavailability of class scores.

Table 1: Additional experiment for CelebA dataset. FID calculations are made compared to reconstructed real images.

Image Size — Latent Code Size	$128\times 128 - 16\times 16$
MLE	18.01
Single Reward	16.91

Table 2: Additional experiments for LSUN-bedroom dataset. FID calculations are made compared to reconstructed real images.

Image Size — Latent Code Size	$64 \times 64 - 8 \times 8$	$64 \times 64 - 16 \times 16$	$128\times 128 - 16\times 16$
MLE	19.95	15.90	23.53
Single Reward	19.07	11.47	18.96

Table 3: Additional experiment for CelebA-HQ dataset. FID calculations are made compared to reconstructed real images.

Image Size — Latent Code Size	512×512 — top: 32×32 , bottom: 64×64
MLE	34.93
Single Reward	32.14
Intermediate Reward	31.84

Table 4: Architecture details for CelebA, 64×64 image resolution experiments.

(a) PixelCNN Prior - Oracle Network

Input size	8×8
Batch size	1024
Hidden units	256
Residual units	256
Layers	5
Attention layers	0
Conv Filter size	5
Dropout	0.1
Output stack layers	5
Training steps	90039

b) PixelCNN Prior - Genera	ator Netwo
Input size	8×8
Batch size	1024
Hidden units	128
Residual units	128
Layers	5
Attention layers	0
Conv Filter size	5
Dropout	0.1
Output stack layers	5
Training steps	19531

Input size	64×64
Latent Layers	8×8
eta	0.25
Batch size	128
Hidden units	128
Residual units	64
Layers	3
Codebook size	128
Codebook dimension	64
Encoder filter size	3
Decoder filter size	4
Training steps	156250

Table 5: Architecture details for LSUN-bedroom, 64×64 image resolution experiments with latent size of 8×8 .

(a) PixelCNN Prior		
Input size	8×8	
Batch size	1536	
Hidden units	512	
Residual units	512	
Layers	20	
Attention layers	0	
Conv Filter size	5	
Dropout	0.1	
Output stack layers	5	
Training steps	97656	

(b) VQ-VAE: Encoder, Decoder

Input size	64×64
Latent Layers	8×8
β	0.25
Batch size	128
Hidden units	128
Residual units	64
Layers	3
Codebook size	512
Codebook dimension	64
Encoder filter size	3
Decoder filter size	4
Training steps	234375

(a) PixelCNN Prior		
Input size	16×16	
Batch size	480	
Hidden units	512	
Residual units	512	
Layers	20	
Attention layers	8	
Conv Filter size	5	
Dropout	0.1	
Output stack layers	20	
Training steps	31250	

(b) VQ-VAE: Encoder, Decoder

Input size	64×64
Latent Layers	16×16
β	0.25
Batch size	128
Hidden units	128
Residual units	64
Layers	2
Codebook size	512
Codebook dimension	64
Encoder filter size	3
Decoder filter size	4
Training steps	234375

Table 7: Architecture details for CelebA and LSUN-bedroom with 128×128 resolution with a single prior PixelCNNs.

Table 6: Architecture details for LSUN-bedroom, 64×64 image resolution experiments with latent size of 16×16 .

(a) PixelCNN Prior		
Input size	16×16	
Batch size	480	
Hidden units	512	
Residual units	512	
Layers	20	
Attention layers	8	
Conv Filter size	5	
Dropout	0.1	
Output stack layers	20	
Training steps	41666	

(b) VQ-VAE: Encoder, Decoder			
Input size	128×128		
Latent Layers	16×16		
β	0.25		
Batch size	128		
Hidden units	128		
Residual units	64		
Layers	3		
Codebook size	512		
Codebook dimension	64		
Encoder filter size	3		
Decoder filter size	4		
Training steps	156250		

(a) PixelCNN Top-Prior Network (b) PixelCNN Bottom-Prior Network 16×16 Input size 32×32 Input size Batch size 480 Batch size 128 512 Hidden units Hidden units 512Residual units 512Residual units 512Layers 20 Layers 20 Attention layers 8 Attention layers 0 Conv Filter size 5Conv Filter size 5Dropout 0.1 Dropout 0.1 Output stack layers 20 Conditioning Output stack layers 20 Training steps 166664 156250 Training steps (c) VQ-VAE: Encoder, Decoder 128×128 Input size Latent Layers $16 \times 16, 32 \times 32$ β 0.25Batch size 128 Hidden units 128Residual units 64 2 Layers Codebook size 512 Codebook dimension 64Encoder filter size 3 Decoder filter size 4 156250 Training steps

Table 8: Architecture details for CelebA, LSUN-bedroom, 128×128 experiments with two PixelCNN priors.

(a) PixelCNN Top-Prior	Network		(b) PixelCNN Bottom-Prior Netw	vork	
Input size	32×32		Input size	64×64	
Batch size	128		Batch size	128	
Hidden units	512		Hidden units	128	
Residual units	512	Residual units		128	
Layers	20		Layers	16	
Attention layers	0		Attention layers	0	
Conv Filter size	5		Conv Filter size	5	
Dropout	0.1		Dropout	0.1	
Output stack layers	20		Conditioning Output stack layers	20	
Training steps	187500		Training steps		
(c) VQ-VAE: Encoder, Decoder					
	Input size		256×256		
	Latent Layers		$32 \times 32, 64 \times 64$		
		β	0.25		
	Ba	tch size	128		
	Hide	den units	128		
	Residual units		64		
	Layers		2		
	Code	ebook size	512		
	Codebo	ok dimension	64		
	Encod	er filter size	3		
	Decod	er filter size	4		
	Trair	ning steps	156250		

Table 9: Architecture details for CelebA, 256×256 experiments with two PixelCNN priors.

(a) PixelCNN Top-Prior Network			(b) PixelCNN Bottom-Prior Network		
Input size	32×32	Input size		64×64	
Batch size	128		Batch size	128	
Hidden units	512		Hidden units	128	
Residual units	512		Residual units	128	
Layers	20		Layers	16	
Attention layers	0		Attention layers	0	
Conv Filter size	5		Conv Filter size	5	
Dropout	0.1		Dropout	0.1	
Output stack layers	20		Conditioning Output stack layers		
Training steps	20625		Training steps	42187	
(c) VQ-VAE: Encoder					
	Input size		512×512		
	Latent Layers		$32 \times 32, 64 \times 64$		
	β		0.25		
	Batch size		128		
	Hidden units		128		
	Residual units		64		
	I	Layers	3		
	Code	ebook size	512		
	Codebo	ok dimension	64		
	Encod	er filter size	3		
	Decod	er filter size	4		
	Train	ning steps	23437		

Table 10: Architecture details for CelebA-HQ, 512×512 experiments with two PixelCNN priors.

Table 11: Sampling speed comparisons for full generation vs. partial generation with a batch size of 16.

Image Size — Latent Code Size	$128 \times 128 - 16 \times 16 + 32 \times 32$	$256 \times 256 - 32 \times 32 + 64 \times 64$
Full Generation	102 s	170 s
Partial Generation	61 s	123 s

Table 12:	FIDs for real	images vs.	reconstructed	real images.
-----------	---------------	------------	---------------	--------------

Dataset	Celeba	Celeba	LSUN-bedroom
Image Size	$128 \ge 128$	$256 \ge 256$	128 x 128
Latent Code Size	$16 \ge 16 + 32 \ge 32$	$32 \ge 32 + 64 \ge 64$	$16 \ge 16 + 32 \ge 32$
FID: Real image vs. Reconstructed Real Image	24.52	7.47	28.54

References

- Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017) 1
- [2] Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (December 2015) 1
- [3] van den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems. pp. 6306–6315 (2017) 1
- [4] Oord, A.v.d., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., Kavukcuoglu, K.: Conditional image generation with pixelcnn decoders. In: NeurIPS. pp. 4797–4805 (2016) 1
- [5] Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015) 1