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1 Ablation Studies

We first analyze the sparse triangulated points output from our network and
perform ablation studies on our critical hyper-parameters and its influence on
the depth estimation performance of our trained model, i.e., we only investigate
the parameter values at inference time.

Sparse Depth Analysis: We first validate the need to triangulate points in
a differentiable manner as opposed to directly using sparse points output by a
standard SLAM systems for the task of dense depth estimation. Table 1 lists
the performance of sparse and dense depth estimations using COLMAP. We see
that the sparse depth is of very poor quality, and the dense depth calculated
by COLMAP is able to reduce the performance gap due to additional post
processing steps like block matching etc. However, the best performance is that
of using sparse map predicted by COLMAP as input to a sparse-to-dense depth
estimation network, illustrating the power of deep networks. The sparse-to-dense
network is identical to the network structure described in the main manuscript
minus the triangulation module, and the descriptor and detector heads. Note
that the performance of sparse-to-dense network is significantly worse than that
of our approach end-to-end approach described in the main manuscript. Table 2
shows the performance of the sparse depth output by the triangulation module.
We see that the performance is significantly better than that of sparse points
output by COLMAP, and robust accross different ratios of interest points and
random points. This indicates that the network learns context around a point
to circumvent the hardness of triangulating non-interest points.

Number of Points: We first study the influence of the number of sampled
points in the target image on the final depth estimation. In Table 3 we see that
the performance of our approach is fairly robust in the range of 256 to 512 points.
Performance slightly degrades for more than 512 points. Unsurprisingly, the
performance significantly degrades when no triangulated points are considered
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for depth estimation which would be equivalent to monocular depth estimation.
However,even as few as 32 points greatly improves the performance of depth
estimation. If we were to swap the depth of triangulated points with ground
truth depth, we see that the performance is significantly better. Consequently,
our method can be used in conjunction with an active sensor when available
without requiring any retraining of the networks. A hybrid system consisting of
an active sensor and our passive sensing approach is useful towards reducing the
frame rate of the active sensor, and hence, reducing the power consumption.

Ratio of points: We investigated the influence of the ratio of the number of
interest points from the interest point detector to the total number of points
which are a combination of those detected by the detector and points sampled
randomly from the image. For e.g., 0.75 indicates 3/4th points sampled from the
detector and the rest chosen randomly. We see in Table 4 that the performance
of our approach is robust across all ratios. This indicates that the network is not
biased towards corner points, but can robustly match points across the image.

NMS Radius: Next we investigate the influence of the non-maximum suppres-
sion (NMS) radius value for the interest point detector on the performance. Note
that small values of NMS result in interest points being sampled predominantly
from high texture regions and being clustered together, whereas high values of
NMS encourage the points to be well distributed. In Table 5 we see that small
values of NMS hurt performance, with the performance improving till NMS value
of 9 and then again degrading for value of 11. This indicates that the network
prefers well separated, uniformly sampled points across the image.

Threshold: We also investigated the performance of depth estimation for dif-
ferent thresholds on the interest point detector. In Table 6 we see that threshold
values of 0.0001 and 0.0005 result in similar performance. The performance de-
grades for higher values of 0.001 and 0.005. This suggests that the network does
not particularly favour high quality interest points, but a large number of them,
which are made available when the threshold is low.

Epipolar Length: In Table 7 we investigate the influence of the length of the
sampled descriptors along the epipolar line on depth estimation. We see that the
performance is robust across all values of length ranging from 25 pixels to 150
pixels. This observation can further reduce the training time and inference time
for depth estimation.

Offset value: We investigated the performance of our trained network for 1
pixel and 2 pixel offsets to compensate for pose error. We see in Table 8 that 2
pixel offset does not improve performance, suggesting that the pose in ScanNet
is sufficiently reliable. This parameter however might be of greater influence in
cases wherein pose estimation is unreliable.
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Table 1. Performance of depth estimation on ScanNet using COLMAP. Sparse refers to
the sparse map predicted by COLMAP, Dense refers to the dense depth map predicted
by COLMAP, and Sparse +DNN refers to densification of the sparse map predicted
by COLMAP using a deep neural network.

Approach Abs Rel Abs Sq Rel δ < 1.25 δ < 1.252 δ < 1.253

Sparse 0.2629 0.4618 0.3882 0.5713 0.7498 0.8322

Dense 0.1371 0.2643 0.1379 0.8344 0.9080 0.9383
Sparse + DNN 0.1242 0.1990 0.0658 0.8756 0.9649 0.9878

Table 2. Performance of sparse depth estimation on ScanNet for different ratios of
interest points and random points. We use sequences of length 3 and sample every 20
frames.

Ratio Abs Rel Abs Sq Rel δ < 1.25 δ < 1.252 δ < 1.253

0.0 0.0993 0.1899 0.0503 0.8856 0.9701 0.9906
0.25 0.0986 0.1891 0.0502 0.8869 0.9703 0.9906
0.5 0.0988 0.1893 0.0503 0.8866 0.9702 0.9905
0.75 0.0988 0.1893 0.0503 0.8866 0.9702 0.9905
1.0 0.0988 0.1893 0.0503 0.8866 0.9702 0.9905

Model Architecture: Finally, we explore the performance of our approach on
model architecture. We swap our ResNet-50 backbone with a VGG-9 backbone
similar to that of SuperPoint. We use the same training procedure as that of
the ResNet-50 architecture mentioned in the main manuscript. In Table 9 we
that the extremely light-weight VGG-9 architecture performs much better than
MVDepthNet and some values are comparable or even better than those of DP-
SNet. Furthermore, the total number of GMACs is only 16.9, which is ≈ 18x
more efficient that DPSNet and 8x more efficient that real-time MVDepthNet.
In Table 10 we see that we observe only a slight degradation in pose perfor-
mance (rotation and translation) compared to SuperPoint. This reinforces our
conclusion in the main manuscript that our supervision can complement that of
SuperPoint. Overall, the robust performance of our network with extremely low
compute is a promising first step to derive scaling laws as done in EfficientNet.

Qualitative results: In Figure 1 we see that our depth maps are more consistent
with respect to ground truth, and respect the geometry of the scene better. For
e.g., the lamp in the second row, the chair at the back in the fourth row, the
phone in the seventh row and the cabinet in the eight row are qualitatively better
than all other methods. Furthermore, we are also able to coherently reconstruct
depth where the active depth sensor fails, for e.g. the windows in the second and
seventh row and the transparent glass side-table in the sixth row.
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Fig. 1. Qualitative Performance of our networks on sampled images from ScanNet.
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Table 3. Performance of depth estimation on ScanNet for different number of sparse
points. We use sequences of length 3 and sample every 20 frames.

Num Points Abs Rel Abs Sq Rel δ < 1.25 δ < 1.252 δ < 1.253

0 0.2203 0.3049 0.1375 0.7198 0.9022 0.9650
32 0.1105 0.1793 0.0582 0.9002 0.9722 0.9886
128 0.0960 0.1591 0.0514 0.9232 0.9760 0.9895
256 0.0934 0.1550 0.0505 0.9276 0.9766 0.9895
384 0.0931 0.1541 0.0505 0.9285 0.9767 0.9894
512 0.0932 0.1540 0.0506 0.9287 0.9767 0.9893
640 0.0936 0.1543 0.0509 0.9285 0.9766 0.9892
768 0.0942 0.1549 0.0512 0.9282 0.9766 0.9891

512 (GT) 0.0680 0.1111 0.0406 0.9562 0.9800 0.9903

Table 4. Performance of depth estimation on ScanNet for different ratios of interest
points and random points. We use sequences of length 3 and sample every 20 frames.

Ratio Abs Rel Abs Sq Rel δ < 1.25 δ < 1.252 δ < 1.253

0.0 0.0935 0.1544 0.0508 0.9283 0.9766 0.9893
0.25 0.0933 0.1540 0.0507 0.9286 0.9766 0.9893
0.5 0.0932 0.1540 0.0506 0.9287 0.9767 0.9893
0.75 0.0933 0.1540 0.0507 0.9286 0.9766 0.9893
1.0 0.0933 0.1540 0.0507 0.9286 0.9766 0.9893

Table 5. Performance of depth estimation on ScanNet for different radius for non-
maximum suppression (NMS Rad). We use sequences of length 3 and sample every 20
frames.

NMS Rad Abs Rel Abs Sq Rel δ < 1.25 δ < 1.252 δ < 1.253

3 0.0942 0.1554 0.0512 0.9278 0.9765 0.9892
5 0.0937 0.1545 0.0508 0.9283 0.9766 0.9892
7 0.0937 0.1545 0.0510 0.9284 0.9766 0.9892
9 0.0932 0.1540 0.0506 0.9287 0.9767 0.9893
11 0.0938 0.1546 0.0511 0.9285 0.9766 0.9891

Table 6. Performance of depth estimation on ScanNet for different thresholds for the
detector. We use sequences of length 3 and sample every 20 frames.

Thresh Abs Rel Abs Sq Rel δ < 1.25 δ < 1.252 δ < 1.253

0.0001 0.0932 0.1539 0.0506 0.9287 0.9767 0.9893
0.0005 0.0932 0.1540 0.0506 0.9287 0.9767 0.9893
0.001 0.0933 0.1540 0.0507 0.9286 0.9767 0.9893
0.005 0.0934 0.1544 0.0507 0.9283 0.9766 0.9893
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Table 7. Performance of depth estimation on ScanNet for different lengths of the
sampled descriptors. We use sequences of length 3 and sample every 20 frames.

Length Abs Rel Abs Sq Rel δ < 1.25 δ < 1.252 δ < 1.253

25 0.0934 0.1542 0.0508 0.9287 0.9767 0.9893
50 0.0933 0.1540 0.0507 0.9287 0.9767 0.9893
100 0.0932 0.1540 0.0506 0.9287 0.9767 0.9893
150 0.0932 0.1540 0.0506 0.9286 0.9767 0.9893

Table 8. Performance of depth estimation on ScanNet for different sampling offsets.
We use sequences of length 3 and sample every 20 frames.

Offsets Abs Rel Abs Sq Rel δ < 1.25 δ < 1.252 δ < 1.253

1 pix 0.0932 0.1540 0.0506 0.9287 0.9767 0.9893
2 pix 0.0933 0.1541 0.0507 0.9285 0.9766 0.9893

Table 9. Performance of depth estimation on ScanNet for different architectures. We
use sequences of length 3 and sample every 20 frames.

Arch Abs Rel Abs Sq Rel δ < 1.25 δ < 1.252 δ < 1.253 GMACs

MVDepth 0.1054 0.1911 0.0970 0.8952 0.9707 0.9895 134.8
DPS 0.1025 0.1675 0.0574 0.9102 0.9708 0.9872 295.6

VGG-9 0.1073 0.1815 0.0581 0.9023 0.9719 0.9890 16.9
ResNet-50 0.0932 0.1540 0.0506 0.9287 0.9767 0.9893 84.4

Table 10. Performance of different descriptors on ScanNet.

MLE MScore Num Rep rot@5◦ trans@5cm

SuperPoint 2.545 0.375 129 0.519 0.489 0.244
VGG-9 3.057 0.325 1619 0.751 0.472 0.228

ResNet-50 3.101 0.329 1511 0.738 0.518 0.254


