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Abstract. Monocular depth estimation algorithms successfully predict
the relative depth order of objects in a scene. However, because of the
fundamental scale ambiguity associated with monocular images, these
algorithms fail at correctly predicting true metric depth. In this work,
we demonstrate how a depth histogram of the scene, which can be readily
captured using a single-pixel time-resolved detector, can be fused with
the output of existing monocular depth estimation algorithms to resolve
the depth ambiguity problem. We validate this novel sensor fusion tech-
nique experimentally and in extensive simulation. We show that it signif-
icantly improves the performance of several state-of-the-art monocular
depth estimation algorithms.
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1 Introduction

Estimating dense 3D geometry from 2D images is an important problem with
applications to robotics, autonomous driving, and medical imaging. Depth maps
are a common representation of scene geometry and are useful precursors to
higher-level scene understanding tasks such as pose estimation and object detec-
tion. Additionally, many computer vision tasks rely on depth sensing, including
navigation [11], semantic segmentation [16, 43, 49], 3D object detection [17, 27,
48, 50, 51], and 3D object classification [32, 41, 58].

Traditional depth sensing techniques include those based on stereo or mul-
tiview, active illumination, camera motion, or focus cues [55]. However, each
of these techniques has aspects that may make their deployment challenging in
certain scenarios. For example, stereo or multiview techniques require multiple
cameras, active illumination techniques may have limited resolution or require
time-consuming scanning procedures, and other techniques require camera mo-
tion or multiple exposures at different focus distances.

One of the most promising approaches to overcoming these challenges is
monocular depth estimation (MDE), which requires only a single RGB image
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Fig. 1: Monocular depth estimation predicts a depth map (second from right)
from a single RGB image (second from left). The ill-posedness of the problem
prevents reliable absolute depth estimation, resulting in large errors (inset im-
ages). The proposed method uses a single transient measurement aggregating
the time-of-flight information of the entire scene (leftmost) to correct the output
of the depth estimation and optimize the quality of the estimated absolute depth
(rightmost).

from a conventional camera to recover a dense depth map [2, 7, 9, 23, 45]. Re-
cent approaches to MDE employ neural networks that learn to predict depth
by exploiting pictorial depth cues such as perspective, occlusion, shading, and
relative object size. While such models have significantly improved over recent
years, MDE approaches to date are incapable of reliably estimating absolute
distances in a scene due to the inherent scale ambiguities of monocular image
cues. Instead, these models excel in predicting ordinal depth, or the relative or-
dering of objects in a scene [7, 9]. Interestingly, Alhashim and Wonka [2] recently
showed that if the median ground truth depth of the scene is known, the initial
output of a MDE network can be corrected to produce accurate absolute depth.

Although access to the median ground truth depth is impossible in a realistic
scenario, low-cost sensors capable of capturing aggregated depth information
from a scene are readily available. For example, the proximity sensor on recent
generation Apple iPhones uses a low-power pulsed light source and a single-
pixel time-resolved detector to sense distance to an object directly in front of
the phone. Time-resolved detectors, such as avalanche photon diodes (APDs)
or single-photon avalanche diodes (SPADs), can measure the full waveform of
time-resolved incident radiance at each pixel (Fig. 1). These detectors form the
backbone of modern LiDAR systems [22, 26, 40]. However, single-photon sensor
arrays have not yet been used for 3D imaging on consumer electronics, primarily
because the requirement for ultra-fast timing electronics makes it difficult to
produce high-resolution arrays at low cost and because the scanning requirement
for single-pixel systems introduces a point of mechanical failure and complicates
high-resolution, high-framerate imaging.

Here, we propose to use a single-pixel time-resolved detector and pulsed light
source in an unconventional way: rather than optically focusing them to record
the distance to a single scene point, we diffuse the emitted light and aggregate the
reflected light over the entire scene with the detector. The resulting transient



Disambiguating Monocular Depth Estimation with a Single Transient 3

measurement resembles a histogram of the scene’s depth and can be used to
achieve accurate absolute depth in conjunction with a monocular depth estimate
(Fig. 1).

To this end, we develop a sensor fusion strategy that processes the ordinal
depth computed by a monocular depth estimator to be consistent with the mea-
surements captured by the aggregated time-resolved detector. We demonstrate
in extensive simulations that our approach achieves substantial improvements
in the quality of the estimated depth maps, regardless of which specific depth
estimator is used. Moreover, we build a camera prototype that combines an
RGB camera and a single-pixel time-resolved detector and use it to validate the
proposed depth estimation technique.

In summary, we make the following contributions:

– We propose augmenting an RGB camera with a global depth transient ag-
gregated by a time-resolved detector to address scale ambiguity in MDE.

– We introduce a depth reconstruction algorithm that uses the detector’s im-
age formation model in conjunction with a modified version of histogram
matching, to produce a depth map from a single RGB image and transient.
The algorithm can be applied instantly to any existing and future MDE
algorithms.

– We analyze this approach on indoor scenes using the NYU Depth v2 dataset
and demonstrate that our approach is able to resolve scale ambiguity while
being fast and easy to implement.

– We build a prototype camera and evaluate its efficacy on captured data,
assessing both the quality and the ability of our method to improve gener-
alization of monocular depth estimators across scene types.

2 Related Work

Monocular Depth Estimation Estimating a depth map from a single RGB image
has been approached using Markov Random Fields [45], geometric approaches [20],
and non-parametric, SIFT-based methods [21]. More recently, deep neural net-
works have been applied to this problem, for example using a multi-scale neural
network to predict depth maps [7], using an unsupervised approach that trains
a network using stereo pairs [12], and using a logarithmic depth discretization
scheme combined with an ordinal regression loss function [9]. Various experi-
ments using different types of encoder networks (e.g., ResNet, DenseNet) [2,
23] have also been employed with some success, as have approaches mixing deep
learning with conditional random fields [60], and attention-based approaches [18,
61]. Recently, Lasinger et al. [25] improved the robustness of monocular depth
estimation using cross-dataset transfer.

Despite achieving remarkable success on estimating ordinal depth from a
single image, none of these methods is able to resolve inherent scale ambigu-
ity in a principled manner. We introduce a new approach that leverages exist-
ing monocular depth estimation networks and disambiguates the output using
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depth histogram–like measurements obtained from a single time-resolved detec-
tor. Other approaches to disambiguating monocular depth estimation use op-
timized freeform lenses [6, 57] or dual-pixel sensors [10], but these approaches
require custom lenses or sensors and specialized image reconstruction methods.
In contrast, our approach adds minimal additional hardware to a single RGB
camera, and may leverage sensors currently deployed in consumer electronics.

Depth Imaging and Sensor Fusion with Time-resolved Detectors Emerging Li-
DAR systems use avalanche photon diodes (APDs) or single-photon avalanche
diodes (SPADs) to record the time of flight of individual photons. These time-
resolved detectors can be fabricated using standard CMOS processes, but the
required time-stamping electronics are challenging to miniaturize and fabricate
at low cost. For this reason, many LiDAR systems, especially those using SPADs,
use a single or a few detectors combined with a scanning mechanism [22, 24, 26,
40, 15]. Unfortunately, this makes it challenging to scan dynamic scenes at high
resolution and scanners can also be expensive, difficult to calibrate, and prone
to mechanical failure. To reduce the scanning complexity to one dimension, 1D
detector arrays have been developed [3, 4, 38], and 2D SPAD arrays are also an
active area of research [35, 52, 56, 62]. Yet, single-pixel time-resolved detectors
remain the only viable option for low-cost consumer devices today.

The proposed method uses a single-pixel APD or SPAD and pulsed light
source that are diffused across the entire scene instead of aimed at a single
point, as with proximity sensors. This unique configuration captures a measure-
ment that closely resembles the depth histogram of the scene. Our sensor fusion
algorithm achieves reliable absolute depth estimation by combining the transient
measurement with the output of a monocular depth estimator using a histogram
matching technique. While other recent work also explored RGB-SPAD sensor
fusion [28, 53, 1], the RGB image was primarily used to guide the denoising and
upsampling of measurements from a SPAD array.

Histogram Matching and Global Hints Histogram matching is a well-known im-
age processing technique for adjusting an image so that its histogram matches
some pre-specified histogram (often derived from another image) [13, 14]. Nikolova
et al. [36] use optimization to recover a strict ordering of the image pixels, yield-
ing an exact histogram match. Morovic et al. [34] provide an efficient and precise
method for fast histogram matching which supports weighted pixel values. In the
image reconstruction space, Swoboda and Schnörr [54] use a histogram to form
an image prior based on the Wasserstein distance for image denoising and in-
painting. Rother et al. [44] use a histogram prior to create an energy function
that penalizes foreground segmentations with dissimilar histograms. In the area
of non-line-of-sight imaging [8, 29–31, 39], Caramazza et al. [5] use a single non-
line-of-sight transient to recover the identity of a person hidden from view. In
a slightly different application area, Zhang et al. [63] train a neural network to
produce realistically colorized images given only a black-and-white image and a
histogram of global color information.
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Fig. 2: Overview of processing pipeline. The processing pipeline uses the input
transient measurement and an RGB image to produce an accurate depth map.
The transient is preprocessed to adjust for ambient photon detections, radio-
metric falloff factors, and to calibrate the bin widths. From the RGB image, an
MDE estimates an initial depth map and the scene reflectance is estimated. A
reflectance-weighted depth histogram is compared to the processed transient to
calculate a histogram matching matrix which is used to output the corrected
depth.

In our procedure, the transient measurements closely resemble a histogram
of the depth map where the histogram values are weighted by spatially varying
scene reflectances and inverse-square falloff effects. We therefore adapt the algo-
rithm in Morovic et al. [34] in order to accommodate general per-pixel weights
during histogram matching.

3 Method

In this section, we describe the image formation of a diffused pulsed laser and
time-resolved detector. Although our model is derived for the specific case of
imaging with a single-photon avalanche diode (SPAD), the resulting image for-
mation model equally applies to other time-resolved detectors. We also describe
an approach for correcting a depth map generated with a monocular depth es-
timator to match the global scene information captured by the transient.

3.1 Image Formation Model of a Diffused SPAD

Consider a diffused laser that emits a pulse at time t = 0 with time-varying
intensity g(t) illuminating some 3D scene. We parameterize the geometry of the
scene as a distance map z(x, y), where each of the 3D points has also some
unknown reflectivity α at the wavelength of the laser. Ignoring interreflections
of the emitted light within the scene, a single-pixel diffused SPAD integrates
light scattered back from the scene onto the detector as

s (t) =

∫
Ωx

∫
Ωy

α (x, y)

z(x, y)2
· g
(
t− 2z(x, y)

c

)
dxdy, (1)

where c is the speed of light, Ωx,y is the spatial extent of the diffused light, and
we assume that the light is diffused uniformly over the scene points. Each time
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such a light pulse is emitted into the scene and scattered back to the detector,
the single-pixel SPAD time-stamps up to one of the returning photons with
some probability. The process is repeated millions of times per second with the
specific number of emitted pulses being controlled by the repetition rate of the
laser. As derived in previous work, the resulting measurement can be modeled as
an inhomogeneous Poisson process P [22, 46, 47]. Each detected photon arrival
event is discretized into a histogram h of the form

h[n] ∼ P

(
η

∫ (n+1)∆t

n∆t

(f ∗ s) (t) dt+ b

)
, (2)

where [n∆t, (n + 1)∆t) models the nth time interval or bin of the temporal
histogram, η is the photon detection probability of the SPAD, f is a function that
models the temporal uncertainty in the detector, and b represents background
detections from ambient light and false positive detections known as dark count.
Like previous work, we neglect scene interreflections and confine ourselves to the
low-flux condition (where the number of photon detections is controlled to be
much smaller than the number of emitted pulses) to avoid pileup [47]. Finally,
we adopt the term transient for the histogram h[n] [59].

3.2 Ambient Rejection and Falloff Correction

Before performing histogram matching, we apply three preprocessing steps to (1)
remove background counts from the transient, (2) compensate for distance falloff
effects, and (3) re-bin the transient to improve relative accuracy with increasing
distance. An overview of the processing pipeline, including these preprocessing
steps and the histogram matching procedure is depicted in Figure 2.
Background Subtraction. In the first step, we remove the background counts
from the transient by initially estimating the average amount of background
counts in each time bin. For nearly all natural scenes, the closest objects to the
camera are a finite distance away, and so the first bins of the SPAD measure-
ment contain only background counts without any backscattered signal. We can
therefore estimate the average number of background and noise counts b̂ as

b̂ =
1

N

N∑
n=0

h[n]. (3)

where we choose the number of bins N to correspond to time values before the
backscattered signal arrives.

While simply subtracting b̂ from the measurements would remove many of the
background counts, a large number of bins containing only background counts
would still have non-zero values, resulting in a skewed estimate after applying
histogram matching. Instead, we estimate the temporal support of transient
bins containing signal photons (i.e., the range of depths in the scene) and only

subtract b̂ from these bins (clipping negative bin values to 0). We assume that
other transient bins contain only background counts that can be discarded.
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Specifically, we identify the first and last bins that record backscattered signal
photons by locating discontinuities in the recorded counts [59]. An initial spike in
the measurements at bin nfirst results from the onset of backscattered signal from
the closest object, and a steep dropoff occurs after bin nlast after backscattered
photons from the furthest object are recorded. We estimate nfirst and nlast by
calculating first order differences of the transient d[n] = |h[n] − h[n + 1]|. For
a moderate number of background counts, each background bin h[n] can be
approximated as a Gaussian with mean and variance b, and thus h[n]− h[n+ 1]
can be approximated as a Gaussian with mean 0 and variance 2b. We identify
candidate discontinuities E with a threshold on the measured differences:

E =
{
n : d[n] > β

√
2b̂
}
. (4)

We find that β = 5 yields good results across both simulated and captured data.
Initial estimates n′first and n′last are set to the minimum value in E and the

maximum value, incremented by one bin. Then, we refine these estimates by
selecting the closest bins that remain above a threshold τ such that

n̂first = min{n : h[n] > τ, h[n+ 1] > τ, · · · , h[n′first] > τ}
n̂last = max{n : h[n′last] > τ, · · · , h[n− 1] > τ, h[n] > τ}.

(5)

The remaining ambient counts are discarded by setting the recorded counts to

zero for all bins where n < n̂first and n > n̂last. We use τ = b̂+
√
b̂ in all of our

experiments.
Falloff Compensation. In the second step, we compensate for distance falloff
effects by multiplying the transient by the distance-dependent scaling factor,

h′[n] = h[n] · z2
n. (6)

Here, zn =
(
n+ 1

2

)(
c∆t

2

)
is the distance corresponding to bin n, and this radio-

metric falloff model is consistent with measurements captured with our proto-
type.
Transient Re-binning. Last, we re-bin the transient so that the bin widths
increase for increasingly distant objects. We select the Spacing-Increasing Dis-
cretization (SID) method of [9], which changes the bin widths according to an
exponential function, allocating more bins to closer distances and fewer bins to
farther distances for a fixed number of bins. The bin edges ti are given by the
following equation, parameterized by the number of bins K and the range of
distances [`, u]:

ti = elog(`)+
log(u/`)·i

K for i = 0, . . . ,K. (7)

This rebinning procedure allows us to use a reduced number of bins in the
histogram matching, reducing computation time while maintaining accuracy.
For the simulated results we use K = 140 bins with (`, u) corresponding to the
depth values of bins n̂first and n̂last respectively. The output of the rebinning
procedure is the target histogram htarget which we use for histogram matching.
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3.3 Histogram Matching

Histogram matching is a procedure that adjusts pixel values from an input image
so that the image histogram matches a target histogram. We apply this proce-
dure to match the histogram of an input depth map, obtained from a monocular
depth estimator, to the post-processed target histogram htarget from the SPAD.
This initialize-then-refine approach allows us to swap out the monocular depth
estimator to deal with different scene types without requiring end-to-end retrain-
ing.

The input depth map cannot be directly histogram-matched to the target
histogram because the target histogram incorporates the spatially varying re-
flectance of the scene. To account for reflectance in the histogram matching
procedure, we use the normalized image color channel closest to the laser wave-
length as an estimate of the reflectance and compute a reflectance-weighted
depth histogram hsource; instead of incrementing a bin in the depth histogram
by one for every pixel in the MDE at the corresponding depth, we add the es-
timated reflectance value of the pixel to the histogram bin. We also re-bin this
histogram, following Fu et al. and using K = 140 with (`, u) = (0.657, 9.972) [9].

We match the re-binned histogram hsource to htarget using the method of
Morovic et al. [34]. The method involves computing a pixel movement matrix T
such that T [m,n] is the fraction of hsource[m] that should be moved to htarget[n].
We refer the reader to the supplement for pseudocode. Intuitively, the procedure
starts from the first bin of the source histogram and distributes its contents
to the first bins of the target histogram, with successive source histogram bins
being shifted to successive target bins in sequence.

Finally, we use the movement matrix T to shift the pixels of the input depth
map to match the global depth of the target histogram. For a depth map pixel
with depth bin k, we select the corrected bin by sampling from the distribution
T [k, :]/

∑N
n=1 T [k, n]. This sampling procedure handles the case where a single

input depth bin of the MDE is mapped to multiple output bins [34].
Pseudo-code for this procedure is included in the supplement; we will make

source code and data available.

4 Evaluation and Assessment

4.1 Implementation Details

We use the NYU Depth v2 dataset to evaluate our method. This dataset consists
of 249 training and 215 testing RGB-D images captured with a Kinect.

To simulate a transient, we take the provided depth map and calculate a
weighted depth histogram by weighting the pixel contributions to each depth bin
by the luminance of each pixel. To model radiometric falloff, we multiply each
bin by 1/z2, and convolve with a modeled system temporal response, which we
approximate as a Gaussian with a full-width at half-maximum of 70 ps. We scale
the histogram by the total number of observed signal photon counts (set to 106)
and add a fixed number of background photons b ∈ {2× 105, 105, 2× 104, 104}.
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δ1 ↑ δ2 ↑ δ3 ↑ rel ↓ rmse ↓ log10 ↓

DORN 0.846 0.954 0.983 0.120 0.501 0.053
DORN + median rescaling 0.871 0.964 0.988 0.111 0.473 0.048
DORN + GT histogram matching 0.906 0.972 0.990 0.095 0.419 0.040
Proposed (SBR=5) 0.902 0.970 0.989 0.092 0.423 0.040
Proposed (SBR=10) 0.905 0.971 0.990 0.090 0.413 0.039
Proposed (SBR=50) 0.906 0.971 0.990 0.089 0.408 0.039
Proposed (SBR=100) 0.907 0.971 0.990 0.089 0.408 0.039

DenseDepth 0.847 0.973 0.994 0.123 0.461 0.053
DenseDepth + median rescaling 0.888 0.978 0.995 0.106 0.409 0.045
DenseDepth + GT histogram matching 0.930 0.984 0.995 0.079 0.338 0.034
Proposed (SBR=5) 0.922 0.981 0.994 0.083 0.361 0.036
Proposed (SBR=10) 0.924 0.982 0.995 0.082 0.352 0.035
Proposed (SBR=50) 0.925 0.983 0.995 0.081 0.347 0.035
Proposed (SBR=100) 0.926 0.983 0.995 0.081 0.346 0.035

MiDaS + GT histogram matching 0.801 0.943 0.982 0.149 0.558 0.062
Proposed (SBR=5) 0.792 0.937 0.978 0.153 0.579 0.064
Proposed (SBR=10) 0.793 0.937 0.979 0.152 0.572 0.064
Proposed (SBR=50) 0.794 0.938 0.979 0.151 0.570 0.063
Proposed (SBR=100) 0.794 0.938 0.979 0.151 0.570 0.064

Table 1: Quantitative evaluation using NYU Depth v2. Bold indicates best
performance for that metric, while underline indicates second best. The pro-
posed scheme outperforms DenseDepth and DORN on all metrics, and it closely
matches or even outperforms the median rescaling scheme and histogram match-
ing with the exact depth map histogram, even though those methods have access
to ground truth. Metric definitions can be found in [7].

The background counts are evenly distributed across all bins to simulate the am-
bient and dark count detections, and the different background levels correspond
to signal-to-background ratios (SBR) of 5, 10, 50 and 100 respectively. Finally,
each bin is Poisson sampled to produce the final simulated transient.

4.2 Simulated Results

We show an extensive quantitative evaluation in Table 1. Here, we evaluate
three recent monocular depth estimation CNNs: DORN [9], DenseDepth [2],
and MiDaS [25]. To evaluate the quality of DORN and DenseDepth, we report
various standard error metrics [7]. Moreover, we show a simple post-processing
step that rescales their outputs to match the median ground truth depth [2].
We also show the results of histogram matching the output of the CNNs with
the ground truth depth map histogram. Note that we do not report the quality
of the direct output of MiDaS as this algorithm does not output metric depth.
However, we do show its output histogram matched with the ground truth depth
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RMSE=0.521 RMSE=0.504 RMSE=0.187 RMSE=0.195

RMSE=0.521 RMSE=0.426 RMSE=0.263 RMSE=0.272

Fig. 3: Simulated results from NYU Depth v2 computed with the DenseDepth
CNN [2]. The depth maps estimated by the CNN are reasonable, but contain
systematic error. Oracle access to the ground truth depth maps, either through
the median depth or the depth histogram, can remove this error and correct the
depth maps. The proposed method uses a single transient measurement and does
not rely on ground truth depth, but it achieves a quality that closely matches
the best-performing oracle.

map histogram. In all cases, post-processing the estimated depth maps either
with the median depth or depth histogram significantly improves the absolute
depth estimation, often by a large margin compared to the raw output of the
CNNs. Unfortunately, ground truth depth is typically not accessible so neither of
these two post-processing methods are viable in practical application scenarios.

Instead, our method uses the simulated measurements from a single aggre-
gated transient to correct the depth map. In Table 1, results are shown for several
different signal-to-background ratios (SBRs). We see that the proposed method
achieves high-quality results for correcting the raw depth map estimated by the
respective CNNs for all cases. The quality of the resulting depth maps is almost
as good as that achieved with the oracle ground truth histogram, which can be
interpreted as an approximate upper bound on the performance, despite a rel-
atively high amount of noise and background signal. These results demonstrate
that the proposed method is agnostic to the specific depth estimation CNN
applied to get the initial depth map and that it generally achieves significant
improvements in the estimated depth maps, clearly surpassing the variation in
performance between depth estimation CNNs.

In Figure 3, we also show qualitative results of our simulations. For each of
these scenes, we show the RGB reference image, the ground truth depth map,



Disambiguating Monocular Depth Estimation with a Single Transient 11

the raw output of the DenseDepth CNN, the result of rescaling the CNN output
with the median ground truth depth, the result of histogram-matching the CNN
output by the ground truth depth map histogram, and the result achieved by
the proposed method for an SBR of 100. Error maps for all the depth estima-
tion methods are shown. As expected, the CNN outputs depth maps that look
reasonable but that have an average root mean squared error (RMSE) of about
50–60 cm. Rescaling this depth map to match the median ground truth depth
value slightly improves the quality and histogram-matching with the ground
truth depth histogram shows a large amount of improvement. The quality of the
proposed method is close to using the oracle histogram, despite relying on noisy
transient measurements. Additional simulations using DenseDepth and other
depth estimation CNNs for a variety of scenes are shown in the supplement.

5 Experimental Demonstration

5.1 Prototype RGB-SPAD Camera Hardware

As shown in Figure 4, our prototype comprises a color camera (Microsoft Kinect
v2), a single-pixel SPAD (Micro Photon Devices 100 µm PDM series, free-
running), a laser (ALPHALAS PICOPOWER-LD-450-50), and a two-axis gal-
vanometer mirror system (Thorlabs GVS012). The laser operates at 670 nm with
a pulse repetition rate of 10 MHz with a peak power of 450 mW and average
power of 0.5 mW. The ground truth depth map is raster-scanned at a resolution
of 512×512 pixels, and the single transient is generated by summing all of these
measurements for a specific scene. This allows us to validate the accuracy of the
proposed histogram matching algorithm, which only uses the integrated single
histogram, by comparing it with the captured depth. To verify that our digitally
aggregated scanned SPAD measurements match measurements produced by an
optically diffused SPAD (see Figure 4(b,c)), we set up a slightly modified ver-
sion of our prototype consisting of both scanned and optically diffused SPADs
side-by-side. Additional details about the hardware prototype can be found in
the supplement.

We determined camera intrinsics and extrinsics for the Kinect’s RGB cam-
era and the scanning system using MATLAB’s camera calibration toolbox. The
SPAD histogram and RGB image were captured from slightly different view-
points; we account for this in the SPAD histogram by shifting the 1D transient
according to the SPAD’s offset from the RGB camera. We re-bin the captured
1D transient for the indoor captured results using Equation 7 with K = 600
bins, and (`, u) = (0.4, 9.). For the outdoor captured result, we use K = 600 and
(`, u) = (0.4, 11).

5.2 Experimental Results

Using the hardware prototype, we captured a number of scenes as shown in Fig-
ures 5, 6, and in the supplement. We crop the RGB image to have dimensions
that are multiples of 32. For DORN only, we further downsample the image to
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Fig. 4: (a) Prototype scanning setup. The pulsed light from the laser travels
through a beam splitter before being guided by the galvo to the scene. Returning
light is measured by the single-pixel SPAD. The Kinect v2 RGB camera is used
to capture the image used to generate the monocular depth estimate (the depth
camera is not used). (b) Scene and (c) measurements for diffused and summed
scanned mode (10s capture, aligned peaks). The observed counts in the diffuse
mode match closely with the sum of the raster-scanned measurements.

a resolution of 353 × 257. We then feed this RGB image into the monocular
depth estimation algorithm. In Figure 5 we show a subset of the scenes we cap-
tured and processed with MiDaS [25], which achieved the best results among
the depth estimators we tested. Additional scenes, also processed with other
MDE approaches, including DenseDepth [2] and DORN [9], are included in the
supplement. The ground truth depth is captured with the scanned SPAD, as de-
scribed above, and regions with low signal-to-noise ratio are masked out (shown
in black).

In the first two examples, the “Hallway” and “Conference Room” scenes,
we see that the monocular depth CNN estimates the ordinal depth of the scene
reasonably well. However, the root mean squared error (RMSE) for these two
scenes is relatively high ranging from 2.6–3.2 m (see red/white error maps in
Fig. 5). The proposed method using a single diffused SPAD measurement corrects
this systematic depth estimation error and brings the RMSE down to 0.6–0.9 m.
The “Poster” scene is meant to confuse the CNN—it shows a flat poster with a
printed scene. As expected, the CNN predicts that the statue is closer than the
arches in the background, which is incorrect in this case. The proposed method
uses the SPAD histogram to correctly flatten the estimated depth map.

Figure 6 shows the RGB image of a scene along with the monocular depth
estimate computed by MiDaS and depth maps corrected by our method using
both the digitally aggregated transients from the scanned SPAD and the single
optically diffused measurement, which are very similar.

6 Discussion

In summary, we demonstrate a method to greatly improve depth estimates from
monocular depth estimators by correcting the scale ambiguity errors inherent
with such techniques. Our approach produces depth maps with accurate absolute
depth, and helps MDE neural networks generalize across scene types, including



Disambiguating Monocular Depth Estimation with a Single Transient 13

1.0 Depth (m) 8.3 0.0 7.8Abs diff (m) 1.0 Depth (m) 7.3 0.0 7.2Abs diff (m) 0.9 Depth (m) 1.2 0.0 1.6Abs diff (m)

Hallway Conference Room Poster

RMSE=2.68

RMSE=0.92

RMSE=3.22

RMSE=0.59

RMSE=0.473

RMSE=0.05

G
ro

un
d 

Tr
ut

h 
De

pt
h

Pr
op

os
ed

 M
et

ho
d

M
iD

aS

Fig. 5: Experimental results. For each scene, we record a ground truth depth map
that is raster-scanned with the SPAD (upper left subimages), and an RGB image
(upper right subimages). A monocular depth CNN predicts an initial depth map
(top middle left subimages), which is corrected with the digitally aggregated
SPAD histogram using the proposed method (bottom left subimages), as shown
by the error maps and root mean squared error (RMSE) for each example (middle
left, bottom subimages). The CNN is confused when we show it a photograph of
a poster (rightmost scene); it incorrectly predicts the depth of the scene depicted
on the flat print. Our method is able to correct this error.

on data captured with our hardware prototype. Moreover, we require only mini-
mal additional sensing hardware; we show that a single measurement histogram
from a diffused SPAD sensor contains enough information about global scene
geometry to correct errors in monocular depth estimates.

The performance of our method is highly dependent on the accuracy of the
initial depth map of the MDE algorithm. Our results demonstrate that when the
MDE technique produces a depth map with good ordinal accuracy, where the
ordering of object depths is roughly correct, the depth estimate can be corrected
to produce accurate absolute depth. However, if the ordering of the initial depths
is not correct, these errors may propagate to the final output depth map.

In the optically diffused configuration, the laser power is spread out over the
entire scene. Accordingly, for distant scene points very little light may return to
the SPAD, making reconstruction difficult (an analogous problem occurs with
dark objects). Thus, our method is best suited to short- to medium-range scenes.
On the other hand, in bright environments, pileup will ultimately limit the range
of our method. However, this can be mitigated with optical elements to reduce
the amount of incident light, with pileup correction [19, 42], or even by taking two
transient measurements, one with and one without laser illumination, and using
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RGB MiDaS Scanned + Summed Optically Diffused

Fig. 6: Captured result comparing the direct output of the MiDaS MDE and
depth maps corrected by our method using the digitally aggregated transient of
the scanned SPAD (center right) and a single transient captured by an optically
diffused SPAD and laser (right). Both of these approaches result in very similar
results and both are significantly better than the output of the MDE, as shown
by the error maps in the insets. The diffused SPAD results are captured at
∼25mW laser power indoors.

their difference to approximate the background-free transient. Finally, under
normal indoor conditions, it is theoretically possible to achieve an SBR of 5 at
a range of 3 meters with a laser of only 21 mW while remaining in the low-
flux regime. We confirm this empirically with our diffused setup, which operates
without significant pileup effects while using approximately 25 mW of laser power
(see Figure 6 and the supplement for details).

Future Work Future work could implement our algorithm or similar sensor fusion
algorithms on smaller platforms such as existing cell phones with single-pixel
SPAD proximity sensors and RGB cameras. Necessary adjustments, such as
pairing near-infrared (NIR) SPADs with NIR sensors, could be made. The small
baseline of such sensors would also mitigate the effects of shading and complex
BRDFs on the reflectance estimation step. More sophisticated intrinsic imaging
techniques could also be employed.

Conclusions Since their introduction, monocular depth estimation algorithms
have improved tremendously. However, recent advances, which have generally
relied on new network architectures or revised training procedures, have pro-
duced only modest performance improvements. In this work we dramatically
improve the performance of several monocular depth estimation algorithms by
fusing their estimates with transient measurements. Such histograms are easy to
capture using time-resolved single-photon detectors and are poised to become
an important component of future low-cost imaging systems.
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